blob: e9f7407e0b13d07de654750346a0c046eed52042 [file] [log] [blame] [edit]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkAnalyticEdge_DEFINED
#define SkAnalyticEdge_DEFINED
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkFixed.h"
#include "include/private/base/SkSafe32.h"
#include <cstdint>
struct SkPoint;
struct SkAnalyticEdge {
// Similar to SkEdge, the conic edges will be converted to quadratic edges
enum class Type : int8_t {
kLine,
kQuad,
kCubic,
};
enum class Winding : int8_t {
kCW = 1, // clockwise
kCCW = -1, // counter clockwise
};
SkAnalyticEdge* fNext;
SkAnalyticEdge* fPrev;
SkFixed fX;
SkFixed fDX;
SkFixed fUpperX; // The x value when y = fUpperY
SkFixed fY; // The current y
SkFixed fUpperY; // The upper bound of y (our edge is from y = fUpperY to y = fLowerY)
SkFixed fLowerY; // The lower bound of y (our edge is from y = fUpperY to y = fLowerY)
SkFixed fDY; // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0.
// fDY is only used for blitting trapezoids.
Type fEdgeType; // Remembers the *initial* edge type
int8_t fCurveCount; // only used by kQuad(+) and kCubic(-)
uint8_t fCurveShift; // appled to all Dx/DDx/DDDx except for fCubicDShift exception
Winding fWinding;
static constexpr int kDefaultAccuracy = 2; // default accuracy for snapping
static inline SkFixed SnapY(SkFixed y) {
constexpr int accuracy = kDefaultAccuracy;
// This approach is safer than left shift, round, then right shift
return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy);
}
// Update fX, fY of this edge so fY = y
inline void goY(SkFixed y) {
if (y == fY + SK_Fixed1) {
fX = fX + fDX;
fY = y;
} else if (y != fY) {
// Drop lower digits as our alpha only has 8 bits
// (fDX and y - fUpperY may be greater than SK_Fixed1)
fX = fUpperX + SkFixedMul(fDX, y - fUpperY);
fY = y;
}
}
inline void goY(SkFixed y, int yShift) {
SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy);
SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift);
fY = y;
fX += fDX >> yShift;
}
bool setLine(const SkPoint& p0, const SkPoint& p1);
bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
// return true if we're NOT done with this edge
bool update(SkFixed last_y);
#ifdef SK_DEBUG
void dump() const {
SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n",
fUpperY,
fLowerY,
SkFixedToFloat(fY),
SkFixedToFloat(fX),
SkFixedToFloat(fDX),
static_cast<int8_t>(fWinding));
}
void validate() const {
SkASSERT(fPrev && fNext);
SkASSERT(fPrev->fNext == this);
SkASSERT(fNext->fPrev == this);
SkASSERT(fUpperY < fLowerY);
SkASSERT(fWinding == Winding::kCW || fWinding == Winding::kCCW);
}
#endif
};
struct SkAnalyticQuadraticEdge : public SkAnalyticEdge {
SkFixed fQx, fQy;
SkFixed fQDx, fQDy;
SkFixed fQDDx, fQDDy;
SkFixed fQLastX, fQLastY;
// snap y to integer points in the middle of the curve to accelerate AAA path filling
SkFixed fSnappedX, fSnappedY;
bool setQuadraticWithoutUpdate(const SkPoint pts[3], int shiftUp);
bool setQuadratic(const SkPoint pts[3]);
bool updateQuadratic();
inline void keepContinuous() {
// We use fX as the starting x to ensure the continuouty.
// Without it, we may break the sorted edge list.
SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1);
SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump
fSnappedX = fX;
fSnappedY = fY;
}
};
struct SkAnalyticCubicEdge : public SkAnalyticEdge {
SkFixed fCx, fCy;
SkFixed fCDx, fCDy;
SkFixed fCDDx, fCDDy;
SkFixed fCDDDx, fCDDDy;
SkFixed fCLastX, fCLastY;
SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping
uint8_t fCubicDShift; // applied to fCDx and fCDy
bool setCubicWithoutUpdate(const SkPoint pts[4], int shiftUp);
bool setCubic(const SkPoint pts[4]);
bool updateCubic();
inline void keepContinuous() {
SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCy)) - fCx) < SK_Fixed1);
fCx = fX;
fSnappedY = fY;
}
};
#endif