| /* |
| * Copyright 2021 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/SkSLConstantFolder.h" |
| #include "src/sksl/SkSLContext.h" |
| #include "src/sksl/SkSLErrorReporter.h" |
| #include "src/sksl/SkSLProgramSettings.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLType.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| namespace SkSL { |
| |
| std::unique_ptr<Expression> BinaryExpression::Convert(const Context& context, |
| Position pos, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right) { |
| if (!left || !right) { |
| return nullptr; |
| } |
| const Type* rawLeftType = (left->isIntLiteral() && right->type().isInteger()) |
| ? &right->type() |
| : &left->type(); |
| const Type* rawRightType = (right->isIntLiteral() && left->type().isInteger()) |
| ? &left->type() |
| : &right->type(); |
| |
| bool isAssignment = op.isAssignment(); |
| if (isAssignment && |
| !Analysis::UpdateVariableRefKind(left.get(), |
| op.kind() != Operator::Kind::EQ |
| ? VariableReference::RefKind::kReadWrite |
| : VariableReference::RefKind::kWrite, |
| context.fErrors)) { |
| return nullptr; |
| } |
| |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| if (!op.determineBinaryType(context, *rawLeftType, *rawRightType, |
| &leftType, &rightType, &resultType)) { |
| context.fErrors->error(pos, "type mismatch: '" + std::string(op.tightOperatorName()) + |
| "' cannot operate on '" + left->type().displayName() + "', '" + |
| right->type().displayName() + "'"); |
| return nullptr; |
| } |
| |
| if (isAssignment && (leftType->componentType().isOpaque() || leftType->isOrContainsAtomic())) { |
| context.fErrors->error(pos, "assignments to opaque type '" + left->type().displayName() + |
| "' are not permitted"); |
| return nullptr; |
| } |
| if (context.fConfig->strictES2Mode() && !op.isAllowedInStrictES2Mode()) { |
| context.fErrors->error(pos, "operator '" + std::string(op.tightOperatorName()) + |
| "' is not allowed"); |
| return nullptr; |
| } |
| if (context.fConfig->strictES2Mode() || op.kind() == OperatorKind::COMMA) { |
| // Most operators are already rejected on arrays, but GLSL ES 1.0 is very explicit that the |
| // *only* operator allowed on arrays is subscripting (and the rules against assignment, |
| // comparison, and even sequence apply to structs containing arrays as well). |
| // WebGL2 also restricts the usage of the sequence operator with arrays (section 5.26, |
| // "Disallowed variants of GLSL ES 3.00 operators"). Since there is very little practical |
| // application for sequenced array expressions, we disallow it in SkSL. |
| const Expression* arrayExpr = leftType->isOrContainsArray() ? left.get() : |
| rightType->isOrContainsArray() ? right.get() : |
| nullptr; |
| if (arrayExpr) { |
| context.fErrors->error(arrayExpr->position(), |
| "operator '" + std::string(op.tightOperatorName()) + |
| "' can not operate on arrays (or structs containing arrays)"); |
| return nullptr; |
| } |
| } |
| |
| left = leftType->coerceExpression(std::move(left), context); |
| right = rightType->coerceExpression(std::move(right), context); |
| if (!left || !right) { |
| return nullptr; |
| } |
| |
| return BinaryExpression::Make(context, pos, std::move(left), op, std::move(right), resultType); |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::Make(const Context& context, |
| Position pos, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right) { |
| // Determine the result type of the binary expression. |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| SkAssertResult(op.determineBinaryType(context, left->type(), right->type(), |
| &leftType, &rightType, &resultType)); |
| |
| return BinaryExpression::Make(context, pos, std::move(left), op, std::move(right), resultType); |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::Make(const Context& context, |
| Position pos, |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right, |
| const Type* resultType) { |
| // We should have detected non-ES2 compliant behavior in Convert. |
| SkASSERT(!context.fConfig->strictES2Mode() || op.isAllowedInStrictES2Mode()); |
| SkASSERT(!context.fConfig->strictES2Mode() || !left->type().isOrContainsArray()); |
| |
| // We should have detected non-assignable assignment expressions in Convert. |
| SkASSERT(!op.isAssignment() || Analysis::IsAssignable(*left)); |
| SkASSERT(!op.isAssignment() || !left->type().componentType().isOpaque()); |
| |
| // For simple assignments, detect and report out-of-range literal values. |
| if (op.kind() == Operator::Kind::EQ) { |
| left->type().checkForOutOfRangeLiteral(context, *right); |
| } |
| |
| // Perform constant-folding on the expression. |
| if (std::unique_ptr<Expression> result = ConstantFolder::Simplify(context, pos, *left, |
| op, *right, *resultType)) { |
| return result; |
| } |
| |
| return std::make_unique<BinaryExpression>(pos, std::move(left), op, |
| std::move(right), resultType); |
| } |
| |
| bool BinaryExpression::CheckRef(const Expression& expr) { |
| switch (expr.kind()) { |
| case Expression::Kind::kFieldAccess: |
| return CheckRef(*expr.as<FieldAccess>().base()); |
| |
| case Expression::Kind::kIndex: |
| return CheckRef(*expr.as<IndexExpression>().base()); |
| |
| case Expression::Kind::kSwizzle: |
| return CheckRef(*expr.as<Swizzle>().base()); |
| |
| case Expression::Kind::kTernary: { |
| const TernaryExpression& t = expr.as<TernaryExpression>(); |
| return CheckRef(*t.ifTrue()) && CheckRef(*t.ifFalse()); |
| } |
| case Expression::Kind::kVariableReference: { |
| const VariableReference& ref = expr.as<VariableReference>(); |
| return ref.refKind() == VariableRefKind::kWrite || |
| ref.refKind() == VariableRefKind::kReadWrite; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| std::unique_ptr<Expression> BinaryExpression::clone(Position pos) const { |
| return std::make_unique<BinaryExpression>(pos, |
| this->left()->clone(), |
| this->getOperator(), |
| this->right()->clone(), |
| &this->type()); |
| } |
| |
| std::string BinaryExpression::description(OperatorPrecedence parentPrecedence) const { |
| OperatorPrecedence operatorPrecedence = this->getOperator().getBinaryPrecedence(); |
| bool needsParens = (operatorPrecedence >= parentPrecedence); |
| return std::string(needsParens ? "(" : "") + |
| this->left()->description(operatorPrecedence) + |
| this->getOperator().operatorName() + |
| this->right()->description(operatorPrecedence) + |
| std::string(needsParens ? ")" : ""); |
| } |
| |
| VariableReference* BinaryExpression::isAssignmentIntoVariable() { |
| if (this->getOperator().isAssignment()) { |
| Analysis::AssignmentInfo assignmentInfo; |
| if (Analysis::IsAssignable(*this->left(), &assignmentInfo, /*errors=*/nullptr)) { |
| return assignmentInfo.fAssignedVar; |
| } |
| } |
| return nullptr; |
| } |
| |
| } // namespace SkSL |