blob: 66cb36c667d06e9cc0e6007fff2bbdf68160731d [file] [log] [blame] [edit]
/*
* Copyright 2024 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/ShaderInfo.h"
#include "src/gpu/BlendFormula.h"
#include "src/gpu/graphite/ContextUtils.h"
#include "src/gpu/graphite/PaintParamsKey.h"
#include "src/gpu/graphite/RenderPassDesc.h"
#include "src/gpu/graphite/Renderer.h"
#include "src/gpu/graphite/ShaderCodeDictionary.h"
#include "src/gpu/graphite/TextureFormat.h"
#include "src/gpu/graphite/UniformManager.h"
#include "src/sksl/SkSLString.h"
#include "src/sksl/SkSLUtil.h"
using namespace skia_private;
namespace skgpu::graphite {
namespace {
struct LiftedExpression {
// The node who's expression should be lifted.
const ShaderNode* fNode;
// The arguments to use as input to the lifted expression.
ShaderSnippet::Args fArgs;
// If true, capture the expression's resolved value in a varying.
// This is false for expressions whose output is only used in other lifted expressions.
bool fEmitVarying = true;
};
std::string get_uniform_header(int set, int bufferID) {
std::string result;
SkSL::String::appendf(
&result, "layout (set=%d, binding=%d) uniform CombinedUniforms {\n", set, bufferID);
return result;
}
std::string get_uniforms(UniformOffsetCalculator* offsetter,
SkSpan<const Uniform> uniforms,
int manglingSuffix,
bool* wrotePaintColor) {
std::string result;
std::string uniformName;
for (const Uniform& u : uniforms) {
uniformName = u.name();
if (u.isPaintColor() && wrotePaintColor) {
if (*wrotePaintColor) {
SkSL::String::appendf(&result, " // deduplicated %s\n", u.name());
continue;
}
*wrotePaintColor = true;
} else {
if (manglingSuffix >= 0) {
uniformName.append("_");
uniformName.append(std::to_string(manglingSuffix));
}
}
SkSL::String::appendf(&result,
" layout(offset=%d) %s %s",
offsetter->advanceOffset(u.type(), u.count()),
SkSLTypeString(u.type()),
uniformName.c_str());
if (u.count()) {
result.append("[");
result.append(std::to_string(u.count()));
result.append("]");
}
result.append(";\n");
}
return result;
}
std::string get_node_uniforms(UniformOffsetCalculator* offsetter,
const ShaderNode* node,
int* numUniforms,
int* numUnliftedUniforms,
bool* wrotePaintColor) {
std::string result;
SkSpan<const Uniform> uniforms = node->entry()->fUniforms;
if (!uniforms.empty()) {
*numUniforms += uniforms.size();
if (!((node->requiredFlags() & SnippetRequirementFlags::kLiftExpression) ||
(node->requiredFlags() & SnippetRequirementFlags::kOmitExpression))) {
*numUnliftedUniforms += uniforms.size();
}
if (node->entry()->fUniformStructName) {
auto substruct = UniformOffsetCalculator::ForStruct(offsetter->layout());
for (const Uniform& u : uniforms) {
substruct.advanceOffset(u.type(), u.count());
}
const int structOffset = offsetter->advanceStruct(substruct);
SkSL::String::appendf(&result,
"layout(offset=%d) %s node_%d;",
structOffset,
node->entry()->fUniformStructName,
node->keyIndex());
} else {
#if defined(SK_DEBUG)
SkSL::String::appendf(&result, "// %d - %s uniforms\n",
node->keyIndex(), node->entry()->fName);
#endif
result += get_uniforms(offsetter, uniforms, node->keyIndex(), wrotePaintColor);
}
}
for (const ShaderNode* child : node->children()) {
result += get_node_uniforms(
offsetter, child, numUniforms, numUnliftedUniforms, wrotePaintColor);
}
return result;
}
std::string get_ssbo_fields(SkSpan<const Uniform> uniforms,
int manglingSuffix,
bool* wrotePaintColor) {
std::string result;
std::string uniformName;
for (const Uniform& u : uniforms) {
uniformName = u.name();
if (u.isPaintColor() && wrotePaintColor) {
if (*wrotePaintColor) {
#if defined(SK_DEBUG)
SkSL::String::appendf(&result, " // deduplicated %s\n", u.name());
#endif
continue;
}
*wrotePaintColor = true;
} else {
if (manglingSuffix >= 0) {
uniformName.append("_");
uniformName.append(std::to_string(manglingSuffix));
}
}
SkSL::String::appendf(&result, " %s %s", SkSLTypeString(u.type()), uniformName.c_str());
if (u.count()) {
SkSL::String::appendf(&result, "[%d]", u.count());
}
result.append(";\n");
}
return result;
}
std::string get_node_ssbo_fields(const ShaderNode* node,
int* numUniforms,
int* numUnliftedUniforms,
bool* wrotePaintColor) {
std::string result;
SkSpan<const Uniform> uniforms = node->entry()->fUniforms;
if (!uniforms.empty()) {
*numUniforms += uniforms.size();
if (!((node->requiredFlags() & SnippetRequirementFlags::kLiftExpression) ||
(node->requiredFlags() & SnippetRequirementFlags::kOmitExpression))) {
*numUnliftedUniforms += uniforms.size();
}
if (node->entry()->fUniformStructName) {
SkSL::String::appendf(&result, "%s node_%d;",
node->entry()->fUniformStructName, node->keyIndex());
} else {
#if defined(SK_DEBUG)
SkSL::String::appendf(&result, "// %d - %s uniforms\n",
node->keyIndex(), node->entry()->fName);
#endif
result += get_ssbo_fields(uniforms, node->keyIndex(), wrotePaintColor);
}
}
for (const ShaderNode* child : node->children()) {
result += get_node_ssbo_fields(child, numUniforms, numUnliftedUniforms, wrotePaintColor);
}
return result;
}
std::string emit_intrinsic_constants(const ResourceBindingRequirements& bindingReqs) {
std::string result;
auto offsetter = UniformOffsetCalculator::ForTopLevel(bindingReqs.fUniformBufferLayout);
if (bindingReqs.fUsePushConstantsForIntrinsicConstants) {
SkASSERT(bindingReqs.fBackendApi == BackendApi::kVulkan ||
bindingReqs.fBackendApi == BackendApi::kDawn);
result = SkSL::String::printf(
"layout (%s, push_constant) uniform IntrinsicUniforms {\n",
bindingReqs.fBackendApi == BackendApi::kVulkan ? "vulkan" : "webgpu");
} else {
std::string header;
SkSL::String::appendf(&header,
"layout (set=%d, binding=%d) uniform IntrinsicUniforms {\n",
bindingReqs.fUniformsSetIdx,
bindingReqs.fIntrinsicBufferBinding);
result = std::move(header);
}
result += get_uniforms(&offsetter, kIntrinsicUniforms, -1, /* wrotePaintColor= */ nullptr);
result.append("};\n\n");
SkASSERTF(bindingReqs.fUsePushConstantsForIntrinsicConstants ||
result.find('[') == std::string::npos,
"Arrays are not supported in intrinsic uniforms");
return result;
}
std::string emit_combined_uniforms(int set,
int bufferID,
const Layout layout,
SkSpan<const ShaderNode*> nodes,
SkSpan<const Uniform> stepUniforms,
int* numPaintUniforms,
int* numUnliftedPaintUniforms,
bool* wrotePaintColor) {
auto offsetter = UniformOffsetCalculator::ForTopLevel(layout);
std::string result = get_uniform_header(set, bufferID);
for (const ShaderNode* n : nodes) {
result += get_node_uniforms(
&offsetter, n, numPaintUniforms, numUnliftedPaintUniforms, wrotePaintColor);
}
// Paint and RenderStep uniforms share a binding. When RenderSteps are processed in DrawList,
// the paint uniforms are always processed before the render step ones, so the emitted uniforms
// must respect that ordering.
if (!stepUniforms.empty()) {
result += get_uniforms(&offsetter, stepUniforms, -1, /* wrotePaintColor= */ nullptr);
}
result.append("};\n\n");
if (*numPaintUniforms == 0 && stepUniforms.empty()) {
// No uniforms were added
return {};
}
return result;
}
std::string emit_combined_storage_buffer(int set,
int bufferID,
SkSpan<const ShaderNode*> nodes,
SkSpan<const Uniform> stepUniforms,
int* numPaintUniforms,
int* numUnliftedPaintUniforms,
bool* wrotePaintColor) {
std::string fields;
for (const ShaderNode* n : nodes) {
fields += get_node_ssbo_fields(
n, numPaintUniforms, numUnliftedPaintUniforms, wrotePaintColor);
}
if (!stepUniforms.empty()) {
fields += get_ssbo_fields(stepUniforms, -1, /*wrotePaintColor=*/nullptr);
}
if (*numPaintUniforms == 0 && stepUniforms.empty()) {
// No uniforms were added
return {};
}
return SkSL::String::printf(
"struct CombinedUniformData {\n"
" %s\n"
"};\n\n"
"layout (set=%d, binding=%d) readonly buffer CombinedUniforms {\n"
" CombinedUniformData combinedUniformData[];\n"
"};\n",
fields.c_str(),
set,
bufferID);
}
std::string emit_uniforms_from_storage_buffer(const char* indexVariableName,
SkSpan<const Uniform> uniforms) {
std::string result;
for (const Uniform& u : uniforms) {
SkSL::String::appendf(&result, "%s %s", SkSLTypeString(u.type()), u.name());
if (u.count()) {
SkSL::String::appendf(&result, "[%d]", u.count());
}
SkSL::String::appendf(&result,
" = combinedUniformData[%s].%s;\n",
indexVariableName,
u.name());
}
return result;
}
void append_sampler_descs(const SkSpan<const uint32_t> samplerData,
skia_private::TArray<SamplerDesc>& outDescs) {
// Sampler data consists of variable-length SamplerDesc representations which can differ based
// upon a sampler's immutability and format. For this reason, handle incrementing i in the loop.
for (size_t i = 0; i < samplerData.size();) {
// Create a default-initialized SamplerDesc (which only takes up one uint32). If we are
// using a dynamic sampler, this will be directly inserted into outDescs. Otherwise, it will
// be populated with actual immutable sampler data and then inserted.
SamplerDesc desc{};
size_t samplerDescLength = 1;
SkASSERT(desc.asSpan().size() == samplerDescLength);
// Isolate the ImmutableSamplerInfo portion of the SamplerDesc represented by samplerData.
// If immutableSamplerInfo is non-zero, that means we are using an immutable sampler.
uint32_t immutableSamplerInfo = samplerData[i] >> SamplerDesc::kImmutableSamplerInfoShift;
if (immutableSamplerInfo != 0) {
// Consult the first bit of immutableSamplerInfo which tells us whether the sampler uses
// a known or external format. With this, update sampler description length.
bool usesExternalFormat = immutableSamplerInfo & 0b1;
samplerDescLength = usesExternalFormat ? SamplerDesc::kInt32sNeededExternalFormat
: SamplerDesc::kInt32sNeededKnownFormat;
// Populate a SamplerDesc with samplerDescLength quantity of immutable sampler data
memcpy(&desc, samplerData.data() + i, samplerDescLength * sizeof(uint32_t));
}
outDescs.push_back(desc);
i += samplerDescLength;
}
}
std::string get_node_texture_samplers(const ResourceBindingRequirements& bindingReqs,
const ShaderNode* node,
int* binding,
skia_private::TArray<SamplerDesc>* outDescs) {
std::string result;
SkSpan<const TextureAndSampler> samplers = node->entry()->fTexturesAndSamplers;
if (!samplers.empty()) {
#if defined(SK_DEBUG)
SkSL::String::appendf(&result, "// %d - %s samplers\n",
node->keyIndex(), node->entry()->fName);
#endif
// Determine whether we need to analyze & interpret a ShaderNode's data as immutable
// SamplerDescs based upon whether:
// 1) A backend passes in a non-nullptr outImmutableSamplers param (may be nullptr in
// backends or circumstances where we know immutable sampler data is never stored)
// 2) Any data is stored on the ShaderNode
// 3) Whether the ShaderNode snippet's ID matches that of any snippet ID that could store
// immutable sampler data.
int32_t snippetId = node->codeSnippetId();
if (outDescs) {
// TODO(b/369846881): Refactor checking snippet ID to instead having a named
// snippet requirement flag that we can check here to decrease fragility.
if (!node->data().empty() &&
(snippetId == static_cast<int32_t>(BuiltInCodeSnippetID::kImageShader) ||
snippetId == static_cast<int32_t>(BuiltInCodeSnippetID::kImageShaderClamp) ||
snippetId == static_cast<int32_t>(BuiltInCodeSnippetID::kCubicImageShader) ||
snippetId == static_cast<int32_t>(BuiltInCodeSnippetID::kHWImageShader))) {
append_sampler_descs(node->data(), *outDescs);
} else {
// Add default SamplerDescs for any dynamic samplers to outDescs.
outDescs->push_back_n(samplers.size());
}
}
for (const TextureAndSampler& t : samplers) {
result += EmitSamplerLayout(bindingReqs, binding);
SkSL::String::appendf(&result, " sampler2D %s_%d;\n", t.name(), node->keyIndex());
}
}
for (const ShaderNode* child : node->children()) {
result += get_node_texture_samplers(bindingReqs, child, binding, outDescs);
}
return result;
}
std::string emit_textures_and_samplers(const ResourceBindingRequirements& bindingReqs,
SkSpan<const ShaderNode*> nodes,
int* binding,
skia_private::TArray<SamplerDesc>* outDescs) {
std::string result;
for (const ShaderNode* n : nodes) {
result += get_node_texture_samplers(bindingReqs, n, binding, outDescs);
}
return result;
}
SkSLType sksl_type_for_lifted_expression(
ShaderSnippet::LiftableExpressionType liftedExpressionType) {
switch (liftedExpressionType) {
case ShaderSnippet::LiftableExpressionType::kNone:
return SkSLType::kVoid;
case ShaderSnippet::LiftableExpressionType::kLocalCoords:
return SkSLType::kFloat2;
case ShaderSnippet::LiftableExpressionType::kPriorStageOutput:
return SkSLType::kHalf4;
}
return SkSLType::kVoid;
}
std::string emit_varyings(const RenderStep* step,
const char* direction,
SkSpan<const LiftedExpression> liftedExpressions,
bool emitSsboIndexVarying,
bool emitLocalCoordsVarying) {
std::string result;
int location = 0;
auto appendVarying = [&](const Varying& v) {
const char* interpolation;
switch (v.interpolation()) {
case Interpolation::kPerspective: interpolation = ""; break;
case Interpolation::kLinear: interpolation = "noperspective "; break;
case Interpolation::kFlat: interpolation = "flat "; break;
}
SkSL::String::appendf(&result, "layout(location=%d) %s %s%s %s;\n",
location++,
direction,
interpolation,
SkSLTypeString(v.gpuType()),
v.name());
};
if (emitSsboIndexVarying) {
appendVarying({RenderStep::ssboIndexVarying(), SkSLType::kUInt});
}
if (emitLocalCoordsVarying) {
appendVarying({"localCoordsVar", SkSLType::kFloat2});
}
for (const LiftedExpression& expr : liftedExpressions) {
if (expr.fEmitVarying) {
const ShaderNode* node = expr.fNode;
const std::string name = node->getExpressionVaryingName();
appendVarying({name.c_str(),
sksl_type_for_lifted_expression(node->entry()->fLiftableExpressionType),
node->entry()->fLiftableExpressionInterpolation});
}
}
for (auto v : step->varyings()) {
appendVarying(v);
}
return result;
}
// Walk the node tree and generate all preambles, accumulating into 'preamble'.
void emit_preambles(const ShaderInfo& shaderInfo,
SkSpan<const ShaderNode*> nodes,
std::string treeLabel,
std::string* preamble) {
for (int i = 0; i < SkTo<int>(nodes.size()); ++i) {
const ShaderNode* node = nodes[i];
std::string nodeLabel = std::to_string(i);
std::string nextLabel = treeLabel.empty() ? nodeLabel : (treeLabel + "<-" + nodeLabel);
if (node->numChildren() > 0) {
emit_preambles(shaderInfo, node->children(), nextLabel, preamble);
}
std::string nodePreamble = node->entry()->fPreambleGenerator
? node->entry()->fPreambleGenerator(shaderInfo, node)
: node->generateDefaultPreamble(shaderInfo);
if (!nodePreamble.empty()) {
SkSL::String::appendf(preamble,
"// [%d] %s: %s\n"
"%s\n",
node->keyIndex(),
nextLabel.c_str(),
node->entry()->fName,
nodePreamble.c_str());
}
}
}
std::string emit_color_output(BlendFormula::OutputType outputType,
const char* outColor,
const char* inColor) {
switch (outputType) {
case BlendFormula::kNone_OutputType:
return SkSL::String::printf("%s = half4(0.0);", outColor);
case BlendFormula::kCoverage_OutputType:
return SkSL::String::printf("%s = outputCoverage;", outColor);
case BlendFormula::kModulate_OutputType:
return SkSL::String::printf("%s = %s * outputCoverage;", outColor, inColor);
case BlendFormula::kSAModulate_OutputType:
return SkSL::String::printf("%s = %s.a * outputCoverage;", outColor, inColor);
case BlendFormula::kISAModulate_OutputType:
return SkSL::String::printf("%s = (1.0 - %s.a) * outputCoverage;", outColor, inColor);
case BlendFormula::kISCModulate_OutputType:
return SkSL::String::printf(
"%s = (half4(1.0) - %s) * outputCoverage;", outColor, inColor);
default:
SkUNREACHABLE;
}
}
std::string emit_advanced_blend_color_output(const char* outColor, const char* inColor) {
/*
When using hardware for advanced blend modes, we apply coverage for advanced blend modes by
multiplying it into the src color before blending. This will "just work" given the following:
The general SVG blend equation is defined in the spec as follows:
Dca' = B(Sc, Dc) * Sa * Da + Y * Sca * (1-Da) + Z * Dca * (1-Sa)
Da' = X * Sa * Da + Y * Sa * (1-Da) + Z * Da * (1-Sa)
(Note that Sca, Dca indicate RGB vectors that are premultiplied by alpha,
and that B(Sc, Dc) is a mode-specific function that accepts non-multiplied
RGB colors.)
For every blend mode supported by this class, i.e. the "advanced" blend
modes, X=Y=Z=1 and this equation reduces to the PDF blend equation.
It can be shown that when X=Y=Z=1, these equations can modulate alpha for
coverage.
== Color ==
We substitute Y=Z=1 and define a blend() function that calculates Dca' in
terms of premultiplied alpha only:
blend(Sca, Dca, Sa, Da) = {
Dca : if Sa == 0,
Sca : if Da == 0,
B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa) : if Sa,Da != 0}
And for coverage modulation, we use a post blend src-over model:
Dca'' = f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
(Where f is the fractional coverage.)
Next we show that we can multiply coverage into the src color by proving the
following relationship:
blend(f*Sca, Dca, f*Sa, Da) == f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
General case (f,Sa,Da != 0):
f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
= f * (B(Sca/Sa, Dca/Da) * Sa * Da + Sca * (1-Da) + Dca * (1-Sa)) + (1-f) * Dca
[Sa,Da != 0, definition of blend()]
= B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + f*Dca * (1-Sa) + Dca - f*Dca
= B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da + f*Dca - f*Dca * Sa + Dca - f*Dca
= B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca - f*Sca * Da - f*Dca * Sa + Dca
= B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) - f*Dca * Sa + Dca
= B(Sca/Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa)
= B(f*Sca/f*Sa, Dca/Da) * f*Sa * Da + f*Sca * (1-Da) + Dca * (1 - f*Sa) [f!=0]
= blend(f*Sca, Dca, f*Sa, Da) [definition of blend()]
Corner cases (Sa=0, Da=0, and f=0):
Sa=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
= f * Dca + (1-f) * Dca [Sa=0, definition of blend()]
= Dca
= blend(0, Dca, 0, Da) [definition of blend()]
= blend(f*Sca, Dca, f*Sa, Da) [Sa=0]
Da=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
= f * Sca + (1-f) * Dca [Da=0, definition of blend()]
= f * Sca [Da=0]
= blend(f*Sca, 0, f*Sa, 0) [definition of blend()]
= blend(f*Sca, Dca, f*Sa, Da) [Da=0]
f=0: f * blend(Sca, Dca, Sa, Da) + (1-f) * Dca
= Dca [f=0]
= blend(0, Dca, 0, Da) [definition of blend()]
= blend(f*Sca, Dca, f*Sa, Da) [f=0]
== Alpha ==
We substitute X=Y=Z=1 and define a blend() function that calculates Da':
blend(Sa, Da) = Sa * Da + Sa * (1-Da) + Da * (1-Sa)
= Sa * Da + Sa - Sa * Da + Da - Da * Sa
= Sa + Da - Sa * Da
We use the same model for coverage modulation as we did with color:
Da'' = f * blend(Sa, Da) + (1-f) * Da
And show that show that we can multiply coverage into src alpha by proving the following
relationship:
blend(f*Sa, Da) == f * blend(Sa, Da) + (1-f) * Da
f * blend(Sa, Da) + (1-f) * Da
= f * (Sa + Da - Sa * Da) + (1-f) * Da
= f*Sa + f*Da - f*Sa * Da + Da - f*Da
= f*Sa - f*Sa * Da + Da
= f*Sa + Da - f*Sa * Da
= blend(f*Sa, Da)
*/
return emit_color_output(BlendFormula::OutputType::kModulate_OutputType, outColor, inColor);
}
void collect_lifted_expressions(SkSpan<const ShaderNode*> nodes,
const ShaderSnippet::Args& args,
std::vector<LiftedExpression>& lifted) {
for (const ShaderNode* node : nodes) {
const bool emitVaryingInFS =
static_cast<bool>(node->requiredFlags() & SnippetRequirementFlags::kLiftExpression);
const bool emitExpressionInVS =
emitVaryingInFS ||
(node->requiredFlags() & SnippetRequirementFlags::kOmitExpression);
SkASSERT(!emitExpressionInVS || node->entry()->fLiftableExpressionGenerator);
ShaderSnippet::Args childArgs = args;
if (emitExpressionInVS && node->entry()->fLiftableExpressionGenerator) {
lifted.push_back({node, args, emitVaryingInFS});
switch (node->entry()->fLiftableExpressionType) {
case ShaderSnippet::LiftableExpressionType::kLocalCoords:
childArgs.fFragCoord = node->getExpressionVaryingName();
break;
case ShaderSnippet::LiftableExpressionType::kPriorStageOutput:
childArgs.fPriorStageOutput = node->getExpressionVaryingName();
break;
default:
SkUNREACHABLE;
}
}
collect_lifted_expressions(node->children(), childArgs, lifted);
}
}
std::vector<LiftedExpression> collect_lifted_expressions(SkSpan<const ShaderNode*> nodes) {
std::vector<LiftedExpression> lifted;
ShaderSnippet::Args args = ShaderSnippet::kDefaultArgs;
args.fFragCoord = "stepLocalCoords"; // Render Steps' stepLocalCoords
collect_lifted_expressions(nodes, args, lifted);
return lifted;
}
std::string dst_read_strategy_to_str(DstReadStrategy strategy) {
switch (strategy) {
case DstReadStrategy::kNoneRequired:
return "NoneRequired";
case DstReadStrategy::kTextureCopy:
return "TextureCopy";
case DstReadStrategy::kTextureSample:
return "TextureSample";
case DstReadStrategy::kReadFromInput:
return "ReadFromInput";
case DstReadStrategy::kFramebufferFetch:
return "FramebufferFetch";
}
SkUNREACHABLE;
}
constexpr skgpu::BlendInfo make_simple_blendInfo(skgpu::BlendCoeff srcCoeff,
skgpu::BlendCoeff dstCoeff) {
return { skgpu::BlendEquation::kAdd,
srcCoeff,
dstCoeff,
SK_PMColor4fTRANSPARENT,
skgpu::BlendModifiesDst(skgpu::BlendEquation::kAdd, srcCoeff, dstCoeff) };
}
constexpr skgpu::BlendEquation get_advanced_blend_equation(SkBlendMode mode) {
SkASSERT(mode > SkBlendMode::kLastCoeffMode);
constexpr int kEqOffset = ((int)skgpu::BlendEquation::kOverlay - (int)SkBlendMode::kOverlay);
static_assert((int)skgpu::BlendEquation::kOverlay ==
(int)SkBlendMode::kOverlay + kEqOffset);
static_assert((int)skgpu::BlendEquation::kDarken ==
(int)SkBlendMode::kDarken + kEqOffset);
static_assert((int)skgpu::BlendEquation::kLighten ==
(int)SkBlendMode::kLighten + kEqOffset);
static_assert((int)skgpu::BlendEquation::kColorDodge ==
(int)SkBlendMode::kColorDodge + kEqOffset);
static_assert((int)skgpu::BlendEquation::kColorBurn ==
(int)SkBlendMode::kColorBurn + kEqOffset);
static_assert((int)skgpu::BlendEquation::kHardLight ==
(int)SkBlendMode::kHardLight + kEqOffset);
static_assert((int)skgpu::BlendEquation::kSoftLight ==
(int)SkBlendMode::kSoftLight + kEqOffset);
static_assert((int)skgpu::BlendEquation::kDifference ==
(int)SkBlendMode::kDifference + kEqOffset);
static_assert((int)skgpu::BlendEquation::kExclusion ==
(int)SkBlendMode::kExclusion + kEqOffset);
static_assert((int)skgpu::BlendEquation::kMultiply ==
(int)SkBlendMode::kMultiply + kEqOffset);
static_assert((int)skgpu::BlendEquation::kHSLHue ==
(int)SkBlendMode::kHue + kEqOffset);
static_assert((int)skgpu::BlendEquation::kHSLSaturation ==
(int)SkBlendMode::kSaturation + kEqOffset);
static_assert((int)skgpu::BlendEquation::kHSLColor ==
(int)SkBlendMode::kColor + kEqOffset);
static_assert((int)skgpu::BlendEquation::kHSLLuminosity ==
(int)SkBlendMode::kLuminosity + kEqOffset);
// There's an illegal BlendEquation that corresponds to no SkBlendMode, hence the extra +1.
static_assert(skgpu::kBlendEquationCnt == (int)SkBlendMode::kLastMode + 1 + 1 + kEqOffset);
return static_cast<skgpu::BlendEquation>((int)mode + kEqOffset);
}
constexpr skgpu::BlendInfo make_hardware_advanced_blendInfo(SkBlendMode advancedBlendMode) {
BlendInfo blendInfo;
blendInfo.fEquation = get_advanced_blend_equation(advancedBlendMode);
return blendInfo;
}
static constexpr skgpu::BlendInfo gBlendTable[kSkBlendModeCount] = {
/* Porter-Duff blend modes */
/* clear */ make_simple_blendInfo(skgpu::BlendCoeff::kZero, skgpu::BlendCoeff::kZero),
/* src */ make_simple_blendInfo(skgpu::BlendCoeff::kOne, skgpu::BlendCoeff::kZero),
/* dst */ make_simple_blendInfo(skgpu::BlendCoeff::kZero, skgpu::BlendCoeff::kOne),
/* src-over */ make_simple_blendInfo(skgpu::BlendCoeff::kOne, skgpu::BlendCoeff::kISA),
/* dst-over */ make_simple_blendInfo(skgpu::BlendCoeff::kIDA, skgpu::BlendCoeff::kOne),
/* src-in */ make_simple_blendInfo(skgpu::BlendCoeff::kDA, skgpu::BlendCoeff::kZero),
/* dst-in */ make_simple_blendInfo(skgpu::BlendCoeff::kZero, skgpu::BlendCoeff::kSA),
/* src-out */ make_simple_blendInfo(skgpu::BlendCoeff::kIDA, skgpu::BlendCoeff::kZero),
/* dst-out */ make_simple_blendInfo(skgpu::BlendCoeff::kZero, skgpu::BlendCoeff::kISA),
/* src-atop */ make_simple_blendInfo(skgpu::BlendCoeff::kDA, skgpu::BlendCoeff::kISA),
/* dst-atop */ make_simple_blendInfo(skgpu::BlendCoeff::kIDA, skgpu::BlendCoeff::kSA),
/* xor */ make_simple_blendInfo(skgpu::BlendCoeff::kIDA, skgpu::BlendCoeff::kISA),
/* plus */ make_simple_blendInfo(skgpu::BlendCoeff::kOne, skgpu::BlendCoeff::kOne),
/* modulate */ make_simple_blendInfo(skgpu::BlendCoeff::kZero, skgpu::BlendCoeff::kSC),
/* screen */ make_simple_blendInfo(skgpu::BlendCoeff::kOne, skgpu::BlendCoeff::kISC),
/* BlendInfo for advanced blend modes */
make_hardware_advanced_blendInfo(SkBlendMode::kOverlay),
make_hardware_advanced_blendInfo(SkBlendMode::kDarken),
make_hardware_advanced_blendInfo(SkBlendMode::kLighten),
make_hardware_advanced_blendInfo(SkBlendMode::kColorDodge),
make_hardware_advanced_blendInfo(SkBlendMode::kColorBurn),
make_hardware_advanced_blendInfo(SkBlendMode::kHardLight),
make_hardware_advanced_blendInfo(SkBlendMode::kSoftLight),
make_hardware_advanced_blendInfo(SkBlendMode::kDifference),
make_hardware_advanced_blendInfo(SkBlendMode::kExclusion),
make_hardware_advanced_blendInfo(SkBlendMode::kMultiply),
make_hardware_advanced_blendInfo(SkBlendMode::kHue),
make_hardware_advanced_blendInfo(SkBlendMode::kSaturation),
make_hardware_advanced_blendInfo(SkBlendMode::kColor),
make_hardware_advanced_blendInfo(SkBlendMode::kLuminosity)
};
} // anonymous namespace
struct ShaderInfo::SharedGeneratorData {
SharedGeneratorData(const Caps* caps,
const ShaderCodeDictionary* dict,
SkArenaAlloc* alloc,
const RenderStep* step,
UniquePaintParamsID paintID,
const char* uniformSsboIndex)
: fRootNodes(SkSpan<const ShaderNode*>())
, fHasStepUniforms(step->numUniforms() > 0) {
// Decompress Root Nodes & Determine Local Coords
if (paintID.isValid()) {
PaintParamsKey key = dict->lookup(paintID);
SkASSERT(key.isValid());
constexpr int kFixedVaryings = 2;
const int availableVaryings =
caps->maxVaryings() - kFixedVaryings - step->varyings().size();
fRootNodes = key.getRootNodes(caps, dict, alloc, availableVaryings);
fNeedsLocalCoords = !fRootNodes.empty() &&
SkToBool(fRootNodes[0]->requiredFlags() &
SnippetRequirementFlags::kLocalCoords);
} else {
fNeedsLocalCoords = false;
}
// Lift Expressions & Check Uniforms
bool vsHasLiftedPaintUniforms = false;
fLiftedExpr = collect_lifted_expressions(fRootNodes);
for (const auto& expr : fLiftedExpr) {
if (!expr.fNode->entry()->fUniforms.empty()) {
vsHasLiftedPaintUniforms = true;
break;
}
}
bool needsCombinedBufferVS = fHasStepUniforms || vsHasLiftedPaintUniforms;
fUseUniformStorageBufferVS = caps->storageBufferSupport() && needsCombinedBufferVS;
fUseUniformStorageBufferFS = caps->storageBufferSupport() && step->performsShading();
bool useUniformStorageBuffer = fUseUniformStorageBufferVS || fUseUniformStorageBufferFS;
// Emit Preamble
int numPaintUniforms = 0;
int numUnliftedPaintUniforms = 0;
bool wrotePaintColor = false;
SkSpan<const Uniform> allStepUniforms = step->uniforms();
const ResourceBindingRequirements& bindingReqs = caps->resourceBindingRequirements();
if (useUniformStorageBuffer) {
fSharedPreamble = emit_combined_storage_buffer(
bindingReqs.fUniformsSetIdx,
bindingReqs.fCombinedUniformBufferBinding,
fRootNodes,
allStepUniforms,
&numPaintUniforms,
&numUnliftedPaintUniforms,
&wrotePaintColor);
} else {
fSharedPreamble = emit_combined_uniforms(
bindingReqs.fUniformsSetIdx,
bindingReqs.fCombinedUniformBufferBinding,
bindingReqs.fUniformBufferLayout,
fRootNodes,
allStepUniforms,
&numPaintUniforms,
&numUnliftedPaintUniforms,
&wrotePaintColor);
}
// Calculate Final Flags
fHasPaintUniforms = numPaintUniforms > 0;
fHasLiftedPaintUniforms = (numPaintUniforms - numUnliftedPaintUniforms) > 0;
bool hasUnliftedPaintUniforms = numUnliftedPaintUniforms > 0;
fHasSsboIndexVarying = useUniformStorageBuffer &&
(hasUnliftedPaintUniforms ||
(fHasStepUniforms && step->usesUniformsInFragmentSkSL()));
// Append SSBO Index to preamble if required
if (useUniformStorageBuffer && uniformSsboIndex) {
SkSL::String::appendf(&fSharedPreamble, "uint %s;\n", uniformSsboIndex);
}
}
// The decompressed shader tree
SkSpan<const ShaderNode*> fRootNodes;
// The expressions lifted from the shader tree
// Changed from const& to value to allow ownership
std::vector<LiftedExpression> fLiftedExpr;
// The base SkSL preamble (uniforms, varyings) shared by both stages
std::string fSharedPreamble;
// Shared calculated properties
bool fNeedsLocalCoords;
bool fHasSsboIndexVarying;
bool fHasStepUniforms;
bool fHasPaintUniforms;
bool fHasLiftedPaintUniforms;
// Buffer usage flags needed by generators
bool fUseUniformStorageBufferVS;
bool fUseUniformStorageBufferFS;
};
std::unique_ptr<ShaderInfo> ShaderInfo::Make(const Caps* caps,
const ShaderCodeDictionary* dict,
const RuntimeEffectDictionary* rteDict,
const RenderPassDesc& rpDesc,
const RenderStep* step,
UniquePaintParamsID paintID,
skia_private::TArray<SamplerDesc>* outDescs) {
// Determine if an SSBO index is needed at all (by either stage)
bool needsSsboIndex =
caps->storageBufferSupport() && (step->performsShading() || step->numUniforms() > 0);
const char* uniformSsboIndex = needsSsboIndex ? "uniformSsboIndex" : nullptr;
const bool hasFragShader = paintID.isValid() && step->performsShading();
// Create the final ShaderInfo object.
auto result = std::unique_ptr<ShaderInfo>(new ShaderInfo(dict, rteDict, uniformSsboIndex,
hasFragShader ? rpDesc.fDstReadStrategy
: DstReadStrategy::kNoneRequired));
// This arena holds all the ShaderNodes. It must live for the duration of 'Make' so the
// rootNodes span is valid when passed to helpers.
SkArenaAlloc shaderNodeAlloc{256};
SharedGeneratorData sharedData(
caps, dict, &shaderNodeAlloc, step, paintID, result->uniformSsboIndex());
result->fHasCombinedUniforms = sharedData.fHasStepUniforms || sharedData.fHasPaintUniforms;
SkString paintLabel = dict->idToString(caps, paintID);
if (hasFragShader) {
result->generateFragmentSkSL(caps,
dict,
paintLabel.c_str(),
step,
paintID,
rpDesc.fColorAttachment.fFormat,
rpDesc.fWriteSwizzle,
outDescs,
sharedData);
} else {
result->fBlendInfo.fWritesColor = false;
}
result->generateVertexSkSL(caps, step, sharedData);
result->fVSLabel = step->name();
if (sharedData.fNeedsLocalCoords) {
result->fVSLabel += " (w/ local coords)";
}
result->fFSLabel = step->name();
result->fFSLabel += " + ";
result->fFSLabel += paintLabel.c_str();
if (rpDesc.fWriteSwizzle != Swizzle::RGBA() ||
result->fDstReadStrategy != DstReadStrategy::kNoneRequired) {
result->fFSLabel += "(";
result->fFSLabel += rpDesc.fWriteSwizzle.asString().c_str();
if (result->fDstReadStrategy != DstReadStrategy::kNoneRequired) {
result->fFSLabel += ", ";
result->fFSLabel += dst_read_strategy_to_str(result->fDstReadStrategy);
}
result->fFSLabel += ")";
}
// KEEP IN SYNC with ContextUtils::GetPipelineLabel()
result->fPipelineLabel = rpDesc.toPipelineLabel().c_str();
result->fPipelineLabel += " + ";
result->fPipelineLabel += step->name();
result->fPipelineLabel += " + ";
result->fPipelineLabel += paintLabel.c_str();
return result;
}
ShaderInfo::ShaderInfo(const ShaderCodeDictionary* shaderCodeDictionary,
const RuntimeEffectDictionary* rteDict,
const char* uniformSsboIndex,
DstReadStrategy dstReadStrategy)
: fShaderCodeDictionary(shaderCodeDictionary)
, fRuntimeEffectDictionary(rteDict)
, fUniformSsboIndex(uniformSsboIndex)
, fDstReadStrategy(dstReadStrategy) {}
// The current, incomplete, model for shader construction is:
// - Static code snippets (which can have an arbitrary signature) live in the Graphite
// pre-compiled module, which is located at `src/sksl/sksl_graphite_frag.sksl`.
// - Glue code is generated in a `main` method which calls these static code snippets.
// The glue code is responsible for:
// 1) gathering the correct (mangled) uniforms
// 2) passing the uniforms and any other parameters to the helper method
// - The result of the final code snippet is then copied into "sk_FragColor".
// Note: each entry's 'fStaticFunctionName' field is expected to match the name of a function
// in the Graphite pre-compiled module, or be null if the preamble and expression generators are
// overridden to not use a static function.
void ShaderInfo::generateFragmentSkSL(const Caps* caps,
const ShaderCodeDictionary* dict,
const char* label,
const RenderStep* step,
UniquePaintParamsID paintID,
TextureFormat targetFormat,
Swizzle writeSwizzle,
skia_private::TArray<SamplerDesc>* outDescs,
const SharedGeneratorData& sharedData) {
#if defined(SK_DEBUG)
// Validate the root node structure of the key.
SkASSERT(sharedData.fRootNodes.size() == 2 || sharedData.fRootNodes.size() == 3);
// First node produces the source color (all snippets return a half4), so we just require that
// its signature takes no extra args or just local coords.
const ShaderSnippet* srcSnippet = dict->getEntry(sharedData.fRootNodes[0]->codeSnippetId());
SkASSERT(!srcSnippet->needsBlenderDstColor());
// TODO(b/349997190): Once SkEmptyShader doesn't use the passthrough snippet, we can assert
// that srcSnippet->needsPriorStageOutput() is false.
SkASSERT(!srcSnippet->needsBlenderDstColor());
// Second node is the final blender, so it must take both the src color and dst color, and not
// any local coordinate.
const ShaderSnippet* blendSnippet = dict->getEntry(sharedData.fRootNodes[1]->codeSnippetId());
SkASSERT(blendSnippet->needsPriorStageOutput() && blendSnippet->needsBlenderDstColor());
SkASSERT(!blendSnippet->needsLocalCoords());
// Optional third node is the clip
const ShaderSnippet* clipSnippet = sharedData.fRootNodes.size() > 2 ?
dict->getEntry(sharedData.fRootNodes[2]->codeSnippetId()) : nullptr;
SkASSERT(!clipSnippet ||
(!clipSnippet->needsPriorStageOutput() && !clipSnippet->needsBlenderDstColor()));
#endif
// Check for unexpected corruption / illegal instructions occurring in the wild.
SkASSERTF_RELEASE(sharedData.fRootNodes.size() == 2 || sharedData.fRootNodes.size() == 3,
"root node size = %zu, label = %s", sharedData.fRootNodes.size(), label);
// Extract the root nodes for clarity
const ShaderNode* const srcColorRoot = sharedData.fRootNodes[0];
const ShaderNode* const finalBlendRoot = sharedData.fRootNodes[1];
const int32_t finalBlendRootSnippetId = finalBlendRoot->codeSnippetId();
const ShaderNode* const clipRoot =
sharedData.fRootNodes.size() > 2 ? sharedData.fRootNodes[2] : nullptr;
// Determine the algorithm for final blending: direct HW blending, coverage-modified HW
// blending (w/ or w/o dual-source blending) or via dst-read requirement.
Coverage finalCoverage = step->coverage();
if (finalCoverage == Coverage::kNone && SkToBool(clipRoot)) {
finalCoverage = Coverage::kSingleChannel;
}
// Initialize the final blend mode to the final snippet's blend mode. It may be changed based
// upon whether or not we can use hardware blending.
std::optional<SkBlendMode> finalBlendMode;
if (finalBlendRootSnippetId < kBuiltInCodeSnippetIDCount &&
finalBlendRootSnippetId >= kFixedBlendIDOffset) {
finalBlendMode = static_cast<SkBlendMode>(finalBlendRootSnippetId - kFixedBlendIDOffset);
}
if (finalBlendMode.has_value() &&
CanUseHardwareBlending(caps, targetFormat, *finalBlendMode, finalCoverage)) {
// If we can use hardware blending, update the dstReadStrategy to be kNoneRequired to ensure
// that ShaderInfo properly informs PipelineInfo of the pipeline's dst read requirement.
fDstReadStrategy = DstReadStrategy::kNoneRequired;
} else {
// If we cannot use hardware blending, then we must perform a dst read within the shader.
// Therefore we should assert that a valid strategy to do so was passed in. Later operations
// also expect the blend mode to be kSrc, so update that here.
SkASSERT(fDstReadStrategy != DstReadStrategy::kNoneRequired);
finalBlendMode = SkBlendMode::kSrc;
}
auto allReqFlags = srcColorRoot->requiredFlags() | finalBlendRoot->requiredFlags();
if (clipRoot) {
allReqFlags |= clipRoot->requiredFlags();
}
std::string fsPreamble;
const ResourceBindingRequirements& bindingReqs = caps->resourceBindingRequirements();
fsPreamble += emit_intrinsic_constants(bindingReqs);
fsPreamble += emit_varyings(step, "in",
sharedData.fLiftedExpr,
sharedData.fHasSsboIndexVarying,
sharedData.fNeedsLocalCoords);
if (fDstReadStrategy == DstReadStrategy::kReadFromInput) {
// If this shader reads the dst texture as an input attachment, assert that a valid set
// index has been assigned within ResourceBindingRequirements.
SkASSERT(bindingReqs.fInputAttachmentSetIdx != ResourceBindingRequirements::kUnassigned);
// TODO: The following SkSL depends upon the fact that Vulkan is currently the only backend
// that utilizes DstReadStrategy::kReadFromInput. Update accordingly if other backends add
// support for this DstReadStrategy.
SkSL::String::appendf(
&fsPreamble,
"layout (vulkan, input_attachment_index=%d, set=%d, binding=%d) "
"subpassInput DstTextureInput;\n",
/*input attachment idx within set=*/0,
/*input attachment set idx=*/bindingReqs.fInputAttachmentSetIdx,
/*binding=*/0);
}
bool useGradientBuffer = caps->gradientBufferSupport() &&
(allReqFlags & SnippetRequirementFlags::kGradientBuffer);
if (useGradientBuffer) {
SkSL::String::appendf(&fsPreamble,
"layout (set=%d, binding=%d) readonly buffer FSGradientBuffer {\n"
" float %s[];\n"
"};\n",
bindingReqs.fUniformsSetIdx,
bindingReqs.fGradientBufferBinding,
ShaderInfo::kGradientBufferName);
fHasGradientBuffer = true;
}
const bool useDstSampler = fDstReadStrategy == DstReadStrategy::kTextureCopy ||
fDstReadStrategy == DstReadStrategy::kTextureSample;
{
int binding = 0;
fsPreamble += emit_textures_and_samplers(bindingReqs, sharedData.fRootNodes, &binding,
outDescs);
int paintTextureCount = binding;
if (step->hasTextures()) {
fsPreamble += step->texturesAndSamplersSkSL(bindingReqs, &binding);
if (outDescs) {
// Determine how many render step samplers were used by comparing the binding value
// against paintTextureCount, taking into account the binding requirements. We
// assume and do not anticipate the render steps to use immutable samplers.
int renderStepSamplerCount = bindingReqs.fSeparateTextureAndSamplerBinding
? (binding - paintTextureCount) / 2
: binding - paintTextureCount;
// Add default SamplerDescs for all the dynamic samplers used by the render step so
// the size of outDescs will be equivalent to the total number of samplers.
outDescs->push_back_n(renderStepSamplerCount);
}
}
if (useDstSampler) {
fsPreamble += EmitSamplerLayout(bindingReqs, &binding);
fsPreamble += " sampler2D dstSampler;";
// Add default SamplerDesc for the intrinsic dstSampler to stay consistent with
// `fNumFragmentTexturesAndSamplers`.
if (outDescs) {
outDescs->push_back({});
}
}
// Record how many textures and samplers are used.
fNumFragmentTexturesAndSamplers = binding;
}
// Emit preamble declarations and helper functions required for snippets. In the default case
// this adds functions that bind a node's specific mangled uniforms to the snippet's
// implementation in the SkSL modules.
emit_preambles(*this, sharedData.fRootNodes, /*treeLabel=*/"", &fsPreamble);
std::string mainBody = "void main() {";
if (sharedData.fHasSsboIndexVarying) {
SkSL::String::appendf(&mainBody,
"%s = %s;\n",
this->uniformSsboIndex(),
RenderStep::ssboIndexVarying());
}
if (step->emitsPrimitiveColor()) {
mainBody += "half4 primitiveColor;";
mainBody += step->fragmentColorSkSL();
} else {
SkASSERT(!(sharedData.fRootNodes[0]->requiredFlags() &
SnippetRequirementFlags::kPrimitiveColor));
}
// Using kDefaultArgs as the initial value means it will refer to undefined variables, but the
// root nodes should--at most--be depending on the coordinate when "needsLocalCoords" is true.
// If the PaintParamsKey violates that structure, this will produce SkSL compile errors.
ShaderSnippet::Args args = ShaderSnippet::kDefaultArgs;
args.fFragCoord = "localCoordsVar"; // the varying added in emit_varyings()
// TODO(b/349997190): The paint root node should not depend on any prior stage's output, but
// it can happen with how SkEmptyShader is currently mapped to `sk_passthrough`. In this case
// it requires that prior stage color to be transparent black. When SkEmptyShader can instead
// cause the draw to be skipped, this can go away.
args.fPriorStageOutput = "half4(0)";
// Calculate the src color and stash its output variable in `args`
args.fPriorStageOutput = srcColorRoot->invokeAndAssign(*this, args, &mainBody);
// If not using hardware blending, we perform a dst read in the shader and must add SkSL
// accordingly.
if (fDstReadStrategy != DstReadStrategy::kNoneRequired) {
// Get the current dst color into a local variable, it may be used later on for coverage
// blending as well as the final blend.
mainBody += "half4 dstColor;";
if (useDstSampler) {
// dstReadBounds is in frag coords and already includes the replay translation. The
// reciprocol of the dstCopy dimensions are in ZW.
mainBody += "dstColor = sample(dstSampler,"
"dstReadBounds.zw*(sk_FragCoord.xy - dstReadBounds.xy));";
} else if (fDstReadStrategy == DstReadStrategy::kReadFromInput) {
// The dst texture should have been written to with the appropriate write swizzle, so we
// do not need to worry about the read swizzle when accessing that value for blending.
mainBody += "// Read color from input attachment\n";
mainBody += "dstColor = subpassLoad(DstTextureInput);\n";
} else {
SkASSERT(fDstReadStrategy == DstReadStrategy::kFramebufferFetch);
mainBody += "dstColor = sk_LastFragColor;";
}
args.fBlenderDstColor = "dstColor";
args.fPriorStageOutput = finalBlendRoot->invokeAndAssign(*this, args, &mainBody);
}
if (writeSwizzle != Swizzle::RGBA()) {
SkSL::String::appendf(&mainBody, "%s = %s.%s;", args.fPriorStageOutput.c_str(),
args.fPriorStageOutput.c_str(),
writeSwizzle.asString().c_str());
}
if (finalCoverage == Coverage::kNone) {
// Either direct HW blending or a dst-read w/o any extra coverage. In both cases we just
// need to assign directly to sk_FragCoord and update the HW blend info to finalBlendMode.
SkASSERT(finalBlendMode.has_value());
fBlendInfo = gBlendTable[static_cast<int>(*finalBlendMode)];
SkSL::String::appendf(&mainBody, "sk_FragColor = %s;", args.fPriorStageOutput.c_str());
} else {
// Accumulate the output coverage. This will either modify the src color and secondary
// outputs for dual-source blending, or be combined directly with the in-shader blended
// final color if a dst-readback was required.
if (sharedData.fUseUniformStorageBufferFS && sharedData.fHasStepUniforms) {
mainBody +=
emit_uniforms_from_storage_buffer(this->uniformSsboIndex(), step->uniforms());
}
mainBody += "half4 outputCoverage = half4(1);";
if (step->coverage() != Coverage::kNone) {
mainBody += step->fragmentCoverageSkSL();
}
if (clipRoot) {
// The clip block node is invoked with device coords, not local coords like the main
// shading root node. However sk_FragCoord includes any replay translation and we
// need to recover the original device coordinate.
mainBody += "float2 devCoord = sk_FragCoord.xy - viewport.xy;";
args.fFragCoord = "devCoord";
std::string clipBlockOutput = clipRoot->invokeAndAssign(*this, args, &mainBody);
SkSL::String::appendf(&mainBody, "outputCoverage *= %s.a;", clipBlockOutput.c_str());
}
const char* outColor = args.fPriorStageOutput.c_str();
if (fDstReadStrategy != DstReadStrategy::kNoneRequired) {
// If this draw uses a non-coherent dst read, we want to keep the existing dst color (or
// whatever has been previously drawn) when there's no coverage. This helps for batching
// text draws that need to read from a dst copy for blends. However, this only helps the
// case where the outer bounding boxes of each letter overlap and not two actual parts
// of the text.
if (useDstSampler) {
// We don't think any shaders actually output negative coverage, but just as a
// safety check for floating point precision errors, we compare with <= here. We
// just check the RGB values of the coverage, since the alpha may not have been set
// when using LCD. If we are using single-channel coverage, alpha will be equal to
// RGB anyway.
mainBody +=
"if (all(lessThanEqual(outputCoverage.rgb, half3(0)))) {"
"discard;"
"}";
}
// Use kSrc HW BlendInfo and do the coverage blend with dst in the shader.
SkASSERT(finalBlendMode.has_value() && finalBlendMode.value() == SkBlendMode::kSrc);
fBlendInfo = gBlendTable[static_cast<int>(*finalBlendMode)];
SkSL::String::appendf(
&mainBody,
"sk_FragColor = %s * outputCoverage + dstColor * (1.0 - outputCoverage);",
outColor);
if (finalCoverage == Coverage::kLCD) {
SkSL::String::appendf(
&mainBody,
"half3 lerpRGB = mix(dstColor.aaa, %s.aaa, outputCoverage.rgb);"
"sk_FragColor.a = max(max(lerpRGB.r, lerpRGB.g), lerpRGB.b);",
outColor);
}
} else {
// Adjust the shader output(s) to incorporate the coverage so that HW blending produces
// the correct output.
if (finalBlendMode > SkBlendMode::kLastCoeffMode) {
SkASSERT(finalCoverage == Coverage::kSingleChannel);
fBlendInfo = gBlendTable[static_cast<int>(*finalBlendMode)];
mainBody += emit_advanced_blend_color_output("sk_FragColor", outColor);
} else {
// Porter-Duff blend modes can utilize BlendFormula.
// TODO: Determine whether draw is opaque and pass that to GetBlendFormula.
BlendFormula coverageBlendFormula =
finalCoverage == Coverage::kLCD
? skgpu::GetLCDBlendFormula(*finalBlendMode)
: skgpu::GetBlendFormula(
/*isOpaque=*/false, /*hasCoverage=*/true, *finalBlendMode);
fBlendInfo = {coverageBlendFormula.equation(),
coverageBlendFormula.srcCoeff(),
coverageBlendFormula.dstCoeff(),
SK_PMColor4fTRANSPARENT,
coverageBlendFormula.modifiesDst()};
if (finalCoverage == Coverage::kLCD) {
mainBody += "outputCoverage.a = max(max(outputCoverage.r, "
"outputCoverage.g), "
"outputCoverage.b);";
}
mainBody += emit_color_output(coverageBlendFormula.primaryOutput(),
"sk_FragColor",
outColor);
if (coverageBlendFormula.hasSecondaryOutput()) {
SkASSERT(caps->shaderCaps()->fDualSourceBlendingSupport);
mainBody += emit_color_output(coverageBlendFormula.secondaryOutput(),
"sk_SecondaryFragColor",
outColor);
}
}
}
}
mainBody += "}\n";
SkASSERT(fFragmentSkSL.empty());
fFragmentSkSL.reserve(
sharedData.fSharedPreamble.size() + fsPreamble.size() + mainBody.size() +2);
fFragmentSkSL = sharedData.fSharedPreamble;
fFragmentSkSL += "\n";
fFragmentSkSL += fsPreamble;
fFragmentSkSL += "\n";
fFragmentSkSL += mainBody;
}
void ShaderInfo::generateVertexSkSL(const Caps* caps,
const RenderStep* step,
const SharedGeneratorData& sharedData) {
std::string vsPreamble;
// Fixed program header (intrinsics are always declared as an uniform interface block)
const ResourceBindingRequirements& bindingReqs = caps->resourceBindingRequirements();
vsPreamble = emit_intrinsic_constants(bindingReqs);
// Varyings needed by RenderStep and potentially lifted expressions
vsPreamble += emit_varyings(step, "out",
sharedData.fLiftedExpr,
sharedData.fHasSsboIndexVarying,
sharedData.fNeedsLocalCoords);
// Add vertex attributes
if (step->numStaticAttributes() > 0 || step->numAppendAttributes() > 0) {
int attr = 0;
auto add_attrs = [&vsPreamble, &attr](SkSpan<const Attribute> attrs) {
for (auto a : attrs) {
SkSL::String::appendf(&vsPreamble, " layout(location=%d) in ", attr++);
vsPreamble.append(SkSLTypeString(a.gpuType()));
SkSL::String::appendf(&vsPreamble, " %s;\n", a.name());
}
};
if (step->numStaticAttributes() > 0) {
#if defined(SK_DEBUG)
vsPreamble.append("// static attrs\n");
#endif
add_attrs(step->staticAttributes());
}
if (step->numAppendAttributes() > 0) {
#if defined(SK_DEBUG)
vsPreamble.append("// append attrs\n");
#endif
add_attrs(step->appendAttributes());
}
}
// Vertex shader function declaration
std::string mainBody = "void main() {";
// Create stepLocalCoords which render steps can write to.
mainBody += "float2 stepLocalCoords = float2(0);";
// We define the SSBO index variable immediately if the VS is using storage buffers. This covers
// both the "Step Uniforms" case and the "Lifted Uniforms Only" case.
if (sharedData.fUseUniformStorageBufferVS) {
SkSL::String::appendf(&mainBody, "uint %s = %s;\n", this->uniformSsboIndex(),
RenderStep::ssboIndexAttribute());
if (sharedData.fHasStepUniforms) {
mainBody +=
emit_uniforms_from_storage_buffer(this->uniformSsboIndex(), step->uniforms());
}
}
// Inject RenderStep's main vertex logic
mainBody += step->vertexSkSL();
// Calculate sk_Position
mainBody +=
"sk_Position = float4(viewport.zw*devPosition.xy - sign(viewport.zw)*devPosition.ww,"
"devPosition.zw);";
// Assign local coords to varying if needed
if (sharedData.fNeedsLocalCoords) {
mainBody += "localCoordsVar = stepLocalCoords;";
}
// Generate lifted expressions
if (!sharedData.fLiftedExpr.empty()) {
for (const LiftedExpression& expr : sharedData.fLiftedExpr) {
const ShaderNode* node = expr.fNode;
// Determine the SkSL type string if not emitting directly to a varying
const char* typeStr = expr.fEmitVarying
? ""
: SkSLTypeString(sksl_type_for_lifted_expression(
node->entry()->fLiftableExpressionType));
const std::string varName = node->getExpressionVaryingName();
// Generate the expression code, potentially extracting uniforms from SSBO if needed
std::string expression;
expression = node->entry()->fLiftableExpressionGenerator(*this, node, expr.fArgs);
// Assign the expression result to the varying or a temporary variable
SkSL::String::appendf(
&mainBody, "%s %s = %s;", typeStr, varName.c_str(), expression.c_str());
}
}
// Assign SSBO index to varying if needed
if (sharedData.fHasSsboIndexVarying) {
if (sharedData.fUseUniformStorageBufferVS) {
// Use the local variable we already defined
SkSL::String::appendf(&mainBody,
"%s = %s;",
RenderStep::ssboIndexVarying(),
this->uniformSsboIndex());
} else {
// No local variable, read directly from attribute
SkSL::String::appendf(&mainBody,
"%s = %s;",
RenderStep::ssboIndexVarying(),
RenderStep::ssboIndexAttribute());
}
}
mainBody += "}"; // End main()
SkASSERT(fVertexSkSL.empty());
fVertexSkSL.reserve(
sharedData.fSharedPreamble.size() + vsPreamble.size() + mainBody.size() + 2);
fVertexSkSL = sharedData.fSharedPreamble;
fVertexSkSL += "\n";
fVertexSkSL += vsPreamble;
fVertexSkSL += "\n";
fVertexSkSL += mainBody;
}
} // namespace skgpu::graphite