blob: b5965ab8f3ac9531a196b16ca381c12a9826b8c2 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tools/ToolUtils.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkImage.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPixelRef.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint3.h"
#include "include/core/SkRRect.h"
#include "include/core/SkShader.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTextBlob.h"
#include "include/encode/SkPngEncoder.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkFloatingPoint.h"
#include "src/core/SkFontPriv.h"
#include <cmath>
#include <cstring>
#if defined(SK_GRAPHITE)
#include "include/gpu/graphite/Image.h"
#include "include/gpu/graphite/ImageProvider.h"
#include <unordered_map>
#endif
#if defined(SK_ENABLE_SVG)
#include "modules/svg/include/SkSVGDOM.h"
#include "modules/svg/include/SkSVGNode.h"
#include "src/xml/SkDOM.h"
#endif
#if defined(SK_GANESH)
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/ganesh/SkImageGanesh.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#endif
#ifdef SK_BUILD_FOR_WIN
#include "include/ports/SkTypeface_win.h"
#endif
using namespace skia_private;
namespace ToolUtils {
const char* alphatype_name(SkAlphaType at) {
switch (at) {
case kUnknown_SkAlphaType: return "Unknown";
case kOpaque_SkAlphaType: return "Opaque";
case kPremul_SkAlphaType: return "Premul";
case kUnpremul_SkAlphaType: return "Unpremul";
}
SkUNREACHABLE;
}
const char* colortype_name(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return "Unknown";
case kAlpha_8_SkColorType: return "Alpha_8";
case kA16_unorm_SkColorType: return "Alpha_16";
case kA16_float_SkColorType: return "A16_float";
case kRGB_565_SkColorType: return "RGB_565";
case kARGB_4444_SkColorType: return "ARGB_4444";
case kRGBA_8888_SkColorType: return "RGBA_8888";
case kSRGBA_8888_SkColorType: return "SRGBA_8888";
case kRGB_888x_SkColorType: return "RGB_888x";
case kBGRA_8888_SkColorType: return "BGRA_8888";
case kRGBA_1010102_SkColorType: return "RGBA_1010102";
case kBGRA_1010102_SkColorType: return "BGRA_1010102";
case kRGB_101010x_SkColorType: return "RGB_101010x";
case kBGR_101010x_SkColorType: return "BGR_101010x";
case kBGR_101010x_XR_SkColorType: return "BGR_101010x_XR";
case kGray_8_SkColorType: return "Gray_8";
case kRGBA_F16Norm_SkColorType: return "RGBA_F16Norm";
case kRGBA_F16_SkColorType: return "RGBA_F16";
case kRGBA_F32_SkColorType: return "RGBA_F32";
case kR8G8_unorm_SkColorType: return "R8G8_unorm";
case kR16G16_unorm_SkColorType: return "R16G16_unorm";
case kR16G16_float_SkColorType: return "R16G16_float";
case kR16G16B16A16_unorm_SkColorType: return "R16G16B16A16_unorm";
case kR8_unorm_SkColorType: return "R8_unorm";
}
SkUNREACHABLE;
}
const char* colortype_depth(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return "Unknown";
case kAlpha_8_SkColorType: return "A8";
case kA16_unorm_SkColorType: return "A16";
case kA16_float_SkColorType: return "AF16";
case kRGB_565_SkColorType: return "565";
case kARGB_4444_SkColorType: return "4444";
case kRGBA_8888_SkColorType: return "8888";
case kSRGBA_8888_SkColorType: return "8888";
case kRGB_888x_SkColorType: return "888";
case kBGRA_8888_SkColorType: return "8888";
case kRGBA_1010102_SkColorType: return "1010102";
case kBGRA_1010102_SkColorType: return "1010102";
case kRGB_101010x_SkColorType: return "101010";
case kBGR_101010x_SkColorType: return "101010";
case kBGR_101010x_XR_SkColorType: return "101010";
case kGray_8_SkColorType: return "G8";
case kRGBA_F16Norm_SkColorType: return "F16Norm";
case kRGBA_F16_SkColorType: return "F16";
case kRGBA_F32_SkColorType: return "F32";
case kR8G8_unorm_SkColorType: return "88";
case kR16G16_unorm_SkColorType: return "1616";
case kR16G16_float_SkColorType: return "F16F16";
case kR16G16B16A16_unorm_SkColorType: return "16161616";
case kR8_unorm_SkColorType: return "R8";
}
SkUNREACHABLE;
}
const char* tilemode_name(SkTileMode mode) {
switch (mode) {
case SkTileMode::kClamp: return "clamp";
case SkTileMode::kRepeat: return "repeat";
case SkTileMode::kMirror: return "mirror";
case SkTileMode::kDecal: return "decal";
}
SkUNREACHABLE;
}
SkColor color_to_565(SkColor color) {
// Not a good idea to use this function for greyscale colors...
// it will add an obvious purple or green tint.
SkASSERT(SkColorGetR(color) != SkColorGetG(color) || SkColorGetR(color) != SkColorGetB(color) ||
SkColorGetG(color) != SkColorGetB(color));
SkPMColor pmColor = SkPreMultiplyColor(color);
U16CPU color16 = SkPixel32ToPixel16(pmColor);
return SkPixel16ToColor(color16);
}
sk_sp<SkShader> create_checkerboard_shader(SkColor c1, SkColor c2, int size) {
SkBitmap bm;
bm.allocPixels(SkImageInfo::MakeS32(2 * size, 2 * size, kPremul_SkAlphaType));
bm.eraseColor(c1);
bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2);
bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2);
return bm.makeShader(SkTileMode::kRepeat, SkTileMode::kRepeat, SkSamplingOptions());
}
SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) {
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
SkCanvas canvas(bitmap);
ToolUtils::draw_checkerboard(&canvas, c1, c2, checkSize);
return bitmap;
}
sk_sp<SkImage> create_checkerboard_image(int w, int h, SkColor c1, SkColor c2, int checkSize) {
auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(w, h));
ToolUtils::draw_checkerboard(surf->getCanvas(), c1, c2, checkSize);
return surf->makeImageSnapshot();
}
void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) {
SkPaint paint;
paint.setShader(create_checkerboard_shader(c1, c2, size));
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawPaint(paint);
}
int make_pixmaps(SkColorType ct,
SkAlphaType at,
bool withMips,
const SkColor4f colors[6],
SkPixmap pixmaps[6],
std::unique_ptr<char[]>* mem) {
int levelSize = 32;
int numMipLevels = withMips ? 6 : 1;
size_t size = 0;
SkImageInfo ii[6];
size_t rowBytes[6];
for (int level = 0; level < numMipLevels; ++level) {
ii[level] = SkImageInfo::Make(levelSize, levelSize, ct, at);
rowBytes[level] = ii[level].minRowBytes();
// Make sure we test row bytes that aren't tight.
if (!(level % 2)) {
rowBytes[level] += (level + 1)*SkColorTypeBytesPerPixel(ii[level].colorType());
}
size += rowBytes[level]*ii[level].height();
levelSize /= 2;
}
mem->reset(new char[size]);
char* addr = mem->get();
for (int level = 0; level < numMipLevels; ++level) {
pixmaps[level].reset(ii[level], addr, rowBytes[level]);
addr += rowBytes[level]*ii[level].height();
pixmaps[level].erase(colors[level]);
}
return numMipLevels;
}
SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y, int textSize,
const char* str) {
SkBitmap bitmap;
bitmap.allocN32Pixels(w, h);
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setColor(c);
SkFont font(ToolUtils::create_portable_typeface(), textSize);
canvas.clear(0x00000000);
canvas.drawSimpleText(str,
strlen(str),
SkTextEncoding::kUTF8,
SkIntToScalar(x),
SkIntToScalar(y),
font,
paint);
// Tag data as sRGB (without doing any color space conversion). Color-space aware configs
// will process this correctly but legacy configs will render as if this returned N32.
SkBitmap result;
result.setInfo(SkImageInfo::MakeS32(w, h, kPremul_SkAlphaType));
result.setPixelRef(sk_ref_sp(bitmap.pixelRef()), 0, 0);
return result;
}
sk_sp<SkImage> create_string_image(int w, int h, SkColor c, int x, int y, int textSize,
const char* str) {
return create_string_bitmap(w, h, c, x, y, textSize, str).asImage();
}
void add_to_text_blob_w_len(SkTextBlobBuilder* builder,
const char* text,
size_t len,
SkTextEncoding encoding,
const SkFont& font,
SkScalar x,
SkScalar y) {
int count = font.countText(text, len, encoding);
if (count < 1) {
return;
}
auto run = builder->allocRun(font, count, x, y);
font.textToGlyphs(text, len, encoding, run.glyphs, count);
}
void add_to_text_blob(SkTextBlobBuilder* builder,
const char* text,
const SkFont& font,
SkScalar x,
SkScalar y) {
add_to_text_blob_w_len(builder, text, strlen(text), SkTextEncoding::kUTF8, font, x, y);
}
void get_text_path(const SkFont& font,
const void* text,
size_t length,
SkTextEncoding encoding,
SkPath* dst,
const SkPoint pos[]) {
SkAutoToGlyphs atg(font, text, length, encoding);
const int count = atg.count();
AutoTArray<SkPoint> computedPos;
if (pos == nullptr) {
computedPos.reset(count);
font.getPos(atg.glyphs(), count, &computedPos[0]);
pos = computedPos.get();
}
struct Rec {
SkPath* fDst;
const SkPoint* fPos;
} rec = {dst, pos};
font.getPaths(atg.glyphs(),
atg.count(),
[](const SkPath* src, const SkMatrix& mx, void* ctx) {
Rec* rec = (Rec*)ctx;
if (src) {
SkMatrix tmp(mx);
tmp.postTranslate(rec->fPos->fX, rec->fPos->fY);
rec->fDst->addPath(*src, tmp);
}
rec->fPos += 1;
},
&rec);
}
SkPath make_star(const SkRect& bounds, int numPts, int step) {
SkASSERT(numPts != step);
SkPathBuilder builder;
builder.setFillType(SkPathFillType::kEvenOdd);
builder.moveTo(0, -1);
for (int i = 1; i < numPts; ++i) {
int idx = i * step % numPts;
SkScalar theta = idx * 2 * SK_ScalarPI / numPts + SK_ScalarPI / 2;
SkScalar x = SkScalarCos(theta);
SkScalar y = -SkScalarSin(theta);
builder.lineTo(x, y);
}
SkPath path = builder.detach();
path.transform(SkMatrix::RectToRect(path.getBounds(), bounds));
return path;
}
static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) {
SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f));
unsigned char r = static_cast<unsigned char>((0.5f * norm.fX + 0.5f) * 255);
unsigned char g = static_cast<unsigned char>((-0.5f * norm.fY + 0.5f) * 255);
unsigned char b = static_cast<unsigned char>((0.5f * norm.fZ + 0.5f) * 255);
*bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b);
}
void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center =
SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f));
const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f);
SkVector3 norm;
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
norm.fX = (x + 0.5f - center.fX) / halfSize.fX;
norm.fY = (y + 0.5f - center.fY) / halfSize.fY;
SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY;
if (tmp >= 1.0f) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
norm.fZ = sqrtf(1.0f - tmp);
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center =
SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f));
SkIRect inner = dst;
inner.inset(dst.width() / 4, dst.height() / 4);
SkPoint3 norm;
const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
if (inner.contains(x, y)) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? right : down; // LR corner
} else {
norm = locX > -locY ? right : up; // UR corner
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? left : down; // LL corner
} else {
norm = locX > locY ? up : left; // UL corner
}
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center =
SkPoint::Make(dst.fLeft + (dst.width() / 2.0f), dst.fTop + (dst.height() / 2.0f));
static const SkScalar k1OverRoot3 = 0.5773502692f;
SkPoint3 norm;
const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? rightUp : down; // LR corner
} else {
norm = rightUp;
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? leftUp : down; // LL corner
} else {
norm = leftUp;
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
bool copy_to(SkBitmap* dst, SkColorType dstColorType, const SkBitmap& src) {
SkPixmap srcPM;
if (!src.peekPixels(&srcPM)) {
return false;
}
SkBitmap tmpDst;
SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType);
if (!tmpDst.setInfo(dstInfo)) {
return false;
}
if (!tmpDst.tryAllocPixels()) {
return false;
}
SkPixmap dstPM;
if (!tmpDst.peekPixels(&dstPM)) {
return false;
}
if (!srcPM.readPixels(dstPM)) {
return false;
}
dst->swap(tmpDst);
return true;
}
void copy_to_g8(SkBitmap* dst, const SkBitmap& src) {
SkASSERT(kBGRA_8888_SkColorType == src.colorType() ||
kRGBA_8888_SkColorType == src.colorType());
SkImageInfo grayInfo = src.info().makeColorType(kGray_8_SkColorType);
dst->allocPixels(grayInfo);
uint8_t* dst8 = (uint8_t*)dst->getPixels();
const uint32_t* src32 = (const uint32_t*)src.getPixels();
const int w = src.width();
const int h = src.height();
const bool isBGRA = (kBGRA_8888_SkColorType == src.colorType());
for (int y = 0; y < h; ++y) {
if (isBGRA) {
// BGRA
for (int x = 0; x < w; ++x) {
uint32_t s = src32[x];
dst8[x] = SkComputeLuminance((s >> 16) & 0xFF, (s >> 8) & 0xFF, s & 0xFF);
}
} else {
// RGBA
for (int x = 0; x < w; ++x) {
uint32_t s = src32[x];
dst8[x] = SkComputeLuminance(s & 0xFF, (s >> 8) & 0xFF, (s >> 16) & 0xFF);
}
}
src32 = (const uint32_t*)((const char*)src32 + src.rowBytes());
dst8 += dst->rowBytes();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
bool equal_pixels(const SkPixmap& a, const SkPixmap& b) {
if (a.width() != b.width() || a.height() != b.height() || a.colorType() != b.colorType()) {
return false;
}
for (int y = 0; y < a.height(); ++y) {
const char* aptr = (const char*)a.addr(0, y);
const char* bptr = (const char*)b.addr(0, y);
if (0 != memcmp(aptr, bptr, a.width() * a.info().bytesPerPixel())) {
return false;
}
}
return true;
}
bool equal_pixels(const SkBitmap& bm0, const SkBitmap& bm1) {
SkPixmap pm0, pm1;
return bm0.peekPixels(&pm0) && bm1.peekPixels(&pm1) && equal_pixels(pm0, pm1);
}
bool equal_pixels(const SkImage* a, const SkImage* b) {
// ensure that peekPixels will succeed
auto imga = a->makeRasterImage();
auto imgb = b->makeRasterImage();
SkPixmap pm0, pm1;
return imga->peekPixels(&pm0) && imgb->peekPixels(&pm1) && equal_pixels(pm0, pm1);
}
sk_sp<SkSurface> makeSurface(SkCanvas* canvas,
const SkImageInfo& info,
const SkSurfaceProps* props) {
auto surf = canvas->makeSurface(info, props);
if (!surf) {
surf = SkSurfaces::Raster(info, props);
}
return surf;
}
void sniff_paths(const char filepath[], std::function<PathSniffCallback> callback) {
SkFILEStream stream(filepath);
if (!stream.isValid()) {
SkDebugf("sniff_paths: invalid input file at \"%s\"\n", filepath);
return;
}
class PathSniffer : public SkCanvas {
public:
PathSniffer(std::function<PathSniffCallback> callback)
: SkCanvas(4096, 4096, nullptr)
, fPathSniffCallback(callback) {}
private:
void onDrawPath(const SkPath& path, const SkPaint& paint) override {
fPathSniffCallback(this->getTotalMatrix(), path, paint);
}
std::function<PathSniffCallback> fPathSniffCallback;
};
PathSniffer pathSniffer(callback);
if (const char* ext = strrchr(filepath, '.'); ext && !strcmp(ext, ".svg")) {
#if defined(SK_ENABLE_SVG)
sk_sp<SkSVGDOM> svg = SkSVGDOM::MakeFromStream(stream);
if (!svg) {
SkDebugf("sniff_paths: couldn't load svg at \"%s\"\n", filepath);
return;
}
svg->setContainerSize(SkSize::Make(pathSniffer.getBaseLayerSize()));
svg->render(&pathSniffer);
#endif
} else {
sk_sp<SkPicture> skp = SkPicture::MakeFromStream(&stream);
if (!skp) {
SkDebugf("sniff_paths: couldn't load skp at \"%s\"\n", filepath);
return;
}
skp->playback(&pathSniffer);
}
}
sk_sp<SkImage> MakeTextureImage(SkCanvas* canvas, sk_sp<SkImage> orig) {
if (!orig) {
return nullptr;
}
#if defined(SK_GANESH)
if (canvas->recordingContext() && canvas->recordingContext()->asDirectContext()) {
GrDirectContext* dContext = canvas->recordingContext()->asDirectContext();
const GrCaps* caps = dContext->priv().caps();
if (orig->width() >= caps->maxTextureSize() || orig->height() >= caps->maxTextureSize()) {
// Ganesh is able to tile large SkImage draws. Always forcing SkImages to be uploaded
// prevents this feature from being tested by our tools. For now, leave excessively
// large SkImages as bitmaps.
return orig;
}
return SkImages::TextureFromImage(dContext, orig);
}
#endif
#if defined(SK_GRAPHITE)
if (canvas->recorder()) {
return SkImages::TextureFromImage(canvas->recorder(), orig, {false});
}
#endif
return orig;
}
VariationSliders::VariationSliders(SkTypeface* typeface,
SkFontArguments::VariationPosition variationPosition) {
if (!typeface) {
return;
}
int numAxes = typeface->getVariationDesignParameters(nullptr, 0);
if (numAxes < 0) {
return;
}
std::unique_ptr<SkFontParameters::Variation::Axis[]> copiedAxes =
std::make_unique<SkFontParameters::Variation::Axis[]>(numAxes);
numAxes = typeface->getVariationDesignParameters(copiedAxes.get(), numAxes);
if (numAxes < 0) {
return;
}
auto argVariationPositionOrDefault = [&variationPosition](SkFourByteTag tag,
SkScalar defaultValue) -> SkScalar {
for (int i = 0; i < variationPosition.coordinateCount; ++i) {
if (variationPosition.coordinates[i].axis == tag) {
return variationPosition.coordinates[i].value;
}
}
return defaultValue;
};
fAxisSliders.resize(numAxes);
fCoords = std::make_unique<SkFontArguments::VariationPosition::Coordinate[]>(numAxes);
for (int i = 0; i < numAxes; ++i) {
fAxisSliders[i].axis = copiedAxes[i];
fAxisSliders[i].current =
argVariationPositionOrDefault(copiedAxes[i].tag, copiedAxes[i].def);
fAxisSliders[i].name = tagToString(fAxisSliders[i].axis.tag);
fCoords[i] = { fAxisSliders[i].axis.tag, fAxisSliders[i].current };
}
}
/* static */
SkString VariationSliders::tagToString(SkFourByteTag tag) {
char tagAsString[5];
tagAsString[4] = 0;
tagAsString[0] = (char)(uint8_t)(tag >> 24);
tagAsString[1] = (char)(uint8_t)(tag >> 16);
tagAsString[2] = (char)(uint8_t)(tag >> 8);
tagAsString[3] = (char)(uint8_t)(tag >> 0);
return SkString(tagAsString);
}
bool VariationSliders::writeControls(SkMetaData* controls) {
for (size_t i = 0; i < fAxisSliders.size(); ++i) {
SkScalar axisVars[kAxisVarsSize];
axisVars[0] = fAxisSliders[i].current;
axisVars[1] = fAxisSliders[i].axis.min;
axisVars[2] = fAxisSliders[i].axis.max;
controls->setScalars(fAxisSliders[i].name.c_str(), kAxisVarsSize, axisVars);
}
return true;
}
void VariationSliders::readControls(const SkMetaData& controls, bool* changed) {
for (size_t i = 0; i < fAxisSliders.size(); ++i) {
SkScalar axisVars[kAxisVarsSize] = {0};
int resultAxisVarsSize = 0;
SkASSERT_RELEASE(controls.findScalars(
tagToString(fAxisSliders[i].axis.tag).c_str(), &resultAxisVarsSize, axisVars));
SkASSERT_RELEASE(resultAxisVarsSize == kAxisVarsSize);
if (changed) {
*changed |= fAxisSliders[i].current != axisVars[0];
}
fAxisSliders[i].current = axisVars[0];
fCoords[i] = { fAxisSliders[i].axis.tag, fAxisSliders[i].current };
}
}
SkSpan<const SkFontArguments::VariationPosition::Coordinate> VariationSliders::getCoordinates() {
return SkSpan<const SkFontArguments::VariationPosition::Coordinate>{fCoords.get(),
fAxisSliders.size()};
}
#if defined(SK_GRAPHITE)
// Currently, we give each new Recorder its own ImageProvider. This means we don't have to deal
// w/ any threading issues.
// TODO: We should probably have this class generate and report some cache stats
// TODO: Hook up to listener system?
// TODO: add testing of a single ImageProvider passed to multiple recorders
class TestingImageProvider : public skgpu::graphite::ImageProvider {
public:
~TestingImageProvider() override {}
sk_sp<SkImage> findOrCreate(skgpu::graphite::Recorder* recorder,
const SkImage* image,
SkImage::RequiredProperties requiredProps) override {
if (!requiredProps.fMipmapped) {
// If no mipmaps are required, check to see if we have a mipmapped version anyway -
// since it can be used in that case.
// TODO: we could get fancy and, if ever a mipmapped key eclipsed a non-mipmapped
// key, we could remove the hidden non-mipmapped key/image from the cache.
uint64_t mipMappedKey = ((uint64_t)image->uniqueID() << 32) | 0x1;
auto result = fCache.find(mipMappedKey);
if (result != fCache.end()) {
return result->second;
}
}
uint64_t key = ((uint64_t)image->uniqueID() << 32) | (requiredProps.fMipmapped ? 0x1 : 0x0);
auto result = fCache.find(key);
if (result != fCache.end()) {
return result->second;
}
sk_sp<SkImage> newImage = SkImages::TextureFromImage(recorder, image, requiredProps);
if (!newImage) {
return nullptr;
}
auto [iter, success] = fCache.insert({ key, newImage });
SkASSERT(success);
return iter->second;
}
private:
std::unordered_map<uint64_t, sk_sp<SkImage>> fCache;
};
skgpu::graphite::RecorderOptions CreateTestingRecorderOptions() {
skgpu::graphite::RecorderOptions options;
options.fImageProvider.reset(new TestingImageProvider);
return options;
}
#endif // SK_GRAPHITE
bool EncodeImageToPngFile(const char* path, const SkBitmap& src) {
SkFILEWStream file(path);
return file.isValid() && SkPngEncoder::Encode(&file, src.pixmap(), {});
}
bool EncodeImageToPngFile(const char* path, const SkPixmap& src) {
SkFILEWStream file(path);
return file.isValid() && SkPngEncoder::Encode(&file, src, {});
}
} // namespace ToolUtils