| /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | /* tan(x) | 
 |  * Return tangent function of x. | 
 |  * | 
 |  * kernel function: | 
 |  *	__kernel_tan		... tangent function on [-pi/4,pi/4] | 
 |  *	__ieee754_rem_pio2	... argument reduction routine | 
 |  * | 
 |  * Method. | 
 |  *      Let S,C and T denote the sin, cos and tan respectively on | 
 |  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 | 
 |  *	in [-pi/4 , +pi/4], and let n = k mod 4. | 
 |  *	We have | 
 |  * | 
 |  *          n        sin(x)      cos(x)        tan(x) | 
 |  *     ---------------------------------------------------------- | 
 |  *	    0	       S	   C		 T | 
 |  *	    1	       C	  -S		-1/T | 
 |  *	    2	      -S	  -C		 T | 
 |  *	    3	      -C	   S		-1/T | 
 |  *     ---------------------------------------------------------- | 
 |  * | 
 |  * Special cases: | 
 |  *      Let trig be any of sin, cos, or tan. | 
 |  *      trig(+-INF)  is NaN, with signals; | 
 |  *      trig(NaN)    is that NaN; | 
 |  * | 
 |  * Accuracy: | 
 |  *	TRIG(x) returns trig(x) nearly rounded | 
 |  */ | 
 |  | 
 | #include "math_libm.h" | 
 | #include "math_private.h" | 
 |  | 
 | double tan(double x) | 
 | { | 
 | 	double y[2],z=0.0; | 
 | 	int32_t n, ix; | 
 |  | 
 |     /* High word of x. */ | 
 | 	GET_HIGH_WORD(ix,x); | 
 |  | 
 |     /* |x| ~< pi/4 */ | 
 | 	ix &= 0x7fffffff; | 
 | 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); | 
 |  | 
 |     /* tan(Inf or NaN) is NaN */ | 
 | 	else if (ix>=0x7ff00000) return x-x;		/* NaN */ | 
 |  | 
 |     /* argument reduction needed */ | 
 | 	else { | 
 | 	    n = __ieee754_rem_pio2(x,y); | 
 | 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even | 
 | 							-1 -- n odd */ | 
 | 	} | 
 | } | 
 | libm_hidden_def(tan) |