blob: b32d68e7341ab447b116df5ee89e490614565b9d [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScanPriv.h"
#include "SkBlitter.h"
#include "SkEdge.h"
#include "SkEdgeBuilder.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkQuadClipper.h"
#include "SkRasterClip.h"
#include "SkRegion.h"
#include "SkTemplates.h"
#include "SkTSort.h"
#ifdef SK_USE_LEGACY_AA_COVERAGE
#define SK_USE_STD_SORT_FOR_EDGES
#endif
#define kEDGE_HEAD_Y SK_MinS32
#define kEDGE_TAIL_Y SK_MaxS32
#ifdef SK_DEBUG
static void validate_sort(const SkEdge* edge) {
int y = kEDGE_HEAD_Y;
while (edge->fFirstY != SK_MaxS32) {
edge->validate();
SkASSERT(y <= edge->fFirstY);
y = edge->fFirstY;
edge = edge->fNext;
}
}
#else
#define validate_sort(edge)
#endif
static inline void remove_edge(SkEdge* edge) {
edge->fPrev->fNext = edge->fNext;
edge->fNext->fPrev = edge->fPrev;
}
static inline void swap_edges(SkEdge* prev, SkEdge* next) {
SkASSERT(prev->fNext == next && next->fPrev == prev);
// remove prev from the list
prev->fPrev->fNext = next;
next->fPrev = prev->fPrev;
// insert prev after next
prev->fNext = next->fNext;
next->fNext->fPrev = prev;
next->fNext = prev;
prev->fPrev = next;
}
static void backward_insert_edge_based_on_x(SkEdge* edge SkDECLAREPARAM(int, curr_y)) {
SkFixed x = edge->fX;
for (;;) {
SkEdge* prev = edge->fPrev;
// add 1 to curr_y since we may have added new edges (built from curves)
// that start on the next scanline
SkASSERT(prev && prev->fFirstY <= curr_y + 1);
if (prev->fX <= x) {
break;
}
swap_edges(prev, edge);
}
}
static void insert_new_edges(SkEdge* newEdge, int curr_y) {
SkASSERT(newEdge->fFirstY >= curr_y);
while (newEdge->fFirstY == curr_y) {
SkEdge* next = newEdge->fNext;
backward_insert_edge_based_on_x(newEdge SkPARAM(curr_y));
newEdge = next;
}
}
#ifdef SK_DEBUG
static void validate_edges_for_y(const SkEdge* edge, int curr_y) {
while (edge->fFirstY <= curr_y) {
SkASSERT(edge->fPrev && edge->fNext);
SkASSERT(edge->fPrev->fNext == edge);
SkASSERT(edge->fNext->fPrev == edge);
SkASSERT(edge->fFirstY <= edge->fLastY);
SkASSERT(edge->fPrev->fX <= edge->fX);
edge = edge->fNext;
}
}
#else
#define validate_edges_for_y(edge, curr_y)
#endif
#if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
#define PREPOST_START true
#define PREPOST_END false
static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
SkBlitter* blitter, int start_y, int stop_y,
PrePostProc proc) {
validate_sort(prevHead->fNext);
int curr_y = start_y;
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (fillType & 1) ? 1 : -1;
for (;;) {
int w = 0;
int left SK_INIT_TO_AVOID_WARNING;
bool in_interval = false;
SkEdge* currE = prevHead->fNext;
SkFixed prevX = prevHead->fX;
validate_edges_for_y(currE, curr_y);
if (proc) {
proc(blitter, curr_y, PREPOST_START); // pre-proc
}
while (currE->fFirstY <= curr_y) {
SkASSERT(currE->fLastY >= curr_y);
int x = SkFixedRoundToInt(currE->fX);
w += currE->fWinding;
if ((w & windingMask) == 0) { // we finished an interval
SkASSERT(in_interval);
int width = x - left;
SkASSERT(width >= 0);
if (width)
blitter->blitH(left, curr_y, width);
in_interval = false;
} else if (!in_interval) {
left = x;
in_interval = true;
}
SkEdge* next = currE->fNext;
SkFixed newX;
if (currE->fLastY == curr_y) { // are we done with this edge?
if (currE->fCurveCount < 0) {
if (((SkCubicEdge*)currE)->updateCubic()) {
SkASSERT(currE->fFirstY == curr_y + 1);
newX = currE->fX;
goto NEXT_X;
}
} else if (currE->fCurveCount > 0) {
if (((SkQuadraticEdge*)currE)->updateQuadratic()) {
newX = currE->fX;
goto NEXT_X;
}
}
remove_edge(currE);
} else {
SkASSERT(currE->fLastY > curr_y);
newX = currE->fX + currE->fDX;
currE->fX = newX;
NEXT_X:
if (newX < prevX) { // ripple currE backwards until it is x-sorted
backward_insert_edge_based_on_x(currE SkPARAM(curr_y));
} else {
prevX = newX;
}
}
currE = next;
SkASSERT(currE);
}
if (proc) {
proc(blitter, curr_y, PREPOST_END); // post-proc
}
curr_y += 1;
if (curr_y >= stop_y) {
break;
}
// now currE points to the first edge with a Yint larger than curr_y
insert_new_edges(currE, curr_y);
}
}
// return true if we're done with this edge
static bool update_edge(SkEdge* edge, int last_y) {
SkASSERT(edge->fLastY >= last_y);
if (last_y == edge->fLastY) {
if (edge->fCurveCount < 0) {
if (((SkCubicEdge*)edge)->updateCubic()) {
SkASSERT(edge->fFirstY == last_y + 1);
return false;
}
} else if (edge->fCurveCount > 0) {
if (((SkQuadraticEdge*)edge)->updateQuadratic()) {
SkASSERT(edge->fFirstY == last_y + 1);
return false;
}
}
return true;
}
return false;
}
static void walk_convex_edges(SkEdge* prevHead, SkPath::FillType,
SkBlitter* blitter, int start_y, int stop_y,
PrePostProc proc) {
validate_sort(prevHead->fNext);
SkEdge* leftE = prevHead->fNext;
SkEdge* riteE = leftE->fNext;
SkEdge* currE = riteE->fNext;
#if 0
int local_top = leftE->fFirstY;
SkASSERT(local_top == riteE->fFirstY);
#else
// our edge choppers for curves can result in the initial edges
// not lining up, so we take the max.
int local_top = SkMax32(leftE->fFirstY, riteE->fFirstY);
#endif
SkASSERT(local_top >= start_y);
for (;;) {
SkASSERT(leftE->fFirstY <= stop_y);
SkASSERT(riteE->fFirstY <= stop_y);
if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
leftE->fDX > riteE->fDX)) {
SkTSwap(leftE, riteE);
}
int local_bot = SkMin32(leftE->fLastY, riteE->fLastY);
local_bot = SkMin32(local_bot, stop_y - 1);
SkASSERT(local_top <= local_bot);
SkFixed left = leftE->fX;
SkFixed dLeft = leftE->fDX;
SkFixed rite = riteE->fX;
SkFixed dRite = riteE->fDX;
int count = local_bot - local_top;
SkASSERT(count >= 0);
if (0 == (dLeft | dRite)) {
int L = SkFixedRoundToInt(left);
int R = SkFixedRoundToInt(rite);
if (L < R) {
count += 1;
blitter->blitRect(L, local_top, R - L, count);
left += count * dLeft;
rite += count * dRite;
}
local_top = local_bot + 1;
} else {
do {
int L = SkFixedRoundToInt(left);
int R = SkFixedRoundToInt(rite);
if (L < R) {
blitter->blitH(L, local_top, R - L);
}
left += dLeft;
rite += dRite;
local_top += 1;
} while (--count >= 0);
}
leftE->fX = left;
riteE->fX = rite;
if (update_edge(leftE, local_bot)) {
if (currE->fFirstY >= stop_y) {
break;
}
leftE = currE;
currE = currE->fNext;
}
if (update_edge(riteE, local_bot)) {
if (currE->fFirstY >= stop_y) {
break;
}
riteE = currE;
currE = currE->fNext;
}
SkASSERT(leftE);
SkASSERT(riteE);
// check our bottom clip
SkASSERT(local_top == local_bot + 1);
if (local_top >= stop_y) {
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// this guy overrides blitH, and will call its proxy blitter with the inverse
// of the spans it is given (clipped to the left/right of the cliprect)
//
// used to implement inverse filltypes on paths
//
class InverseBlitter : public SkBlitter {
public:
void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
fBlitter = blitter;
fFirstX = clip.fLeft << shift;
fLastX = clip.fRight << shift;
}
void prepost(int y, bool isStart) {
if (isStart) {
fPrevX = fFirstX;
} else {
int invWidth = fLastX - fPrevX;
if (invWidth > 0) {
fBlitter->blitH(fPrevX, y, invWidth);
}
}
}
// overrides
virtual void blitH(int x, int y, int width) {
int invWidth = x - fPrevX;
if (invWidth > 0) {
fBlitter->blitH(fPrevX, y, invWidth);
}
fPrevX = x + width;
}
// we do not expect to get called with these entrypoints
virtual void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) {
SkDEBUGFAIL("blitAntiH unexpected");
}
virtual void blitV(int x, int y, int height, SkAlpha alpha) {
SkDEBUGFAIL("blitV unexpected");
}
virtual void blitRect(int x, int y, int width, int height) {
SkDEBUGFAIL("blitRect unexpected");
}
virtual void blitMask(const SkMask&, const SkIRect& clip) {
SkDEBUGFAIL("blitMask unexpected");
}
virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) {
SkDEBUGFAIL("justAnOpaqueColor unexpected");
return NULL;
}
private:
SkBlitter* fBlitter;
int fFirstX, fLastX, fPrevX;
};
static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
((InverseBlitter*)blitter)->prepost(y, isStart);
}
///////////////////////////////////////////////////////////////////////////////
#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif
#ifdef SK_USE_STD_SORT_FOR_EDGES
extern "C" {
static int edge_compare(const void* a, const void* b) {
const SkEdge* edgea = *(const SkEdge**)a;
const SkEdge* edgeb = *(const SkEdge**)b;
int valuea = edgea->fFirstY;
int valueb = edgeb->fFirstY;
if (valuea == valueb) {
valuea = edgea->fX;
valueb = edgeb->fX;
}
// this overflows if valuea >>> valueb or vice-versa
// return valuea - valueb;
// do perform the slower but safe compares
return (valuea < valueb) ? -1 : (valuea > valueb);
}
}
#else
static bool operator<(const SkEdge& a, const SkEdge& b) {
int valuea = a.fFirstY;
int valueb = b.fFirstY;
if (valuea == valueb) {
valuea = a.fX;
valueb = b.fX;
}
return valuea < valueb;
}
#endif
static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) {
#ifdef SK_USE_STD_SORT_FOR_EDGES
qsort(list, count, sizeof(SkEdge*), edge_compare);
#else
SkTQSort(list, list + count - 1);
#endif
// now make the edges linked in sorted order
for (int i = 1; i < count; i++) {
list[i - 1]->fNext = list[i];
list[i]->fPrev = list[i - 1];
}
*last = list[count - 1];
return list[0];
}
// clipRect may be null, even though we always have a clip. This indicates that
// the path is contained in the clip, and so we can ignore it during the blit
//
// clipRect (if no null) has already been shifted up
//
void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter,
int start_y, int stop_y, int shiftEdgesUp,
const SkRegion& clipRgn) {
SkASSERT(&path && blitter);
SkEdgeBuilder builder;
int count = builder.build(path, clipRect, shiftEdgesUp);
SkEdge** list = builder.edgeList();
if (count < 2) {
if (path.isInverseFillType()) {
/*
* Since we are in inverse-fill, our caller has already drawn above
* our top (start_y) and will draw below our bottom (stop_y). Thus
* we need to restrict our drawing to the intersection of the clip
* and those two limits.
*/
SkIRect rect = clipRgn.getBounds();
if (rect.fTop < start_y) {
rect.fTop = start_y;
}
if (rect.fBottom > stop_y) {
rect.fBottom = stop_y;
}
if (!rect.isEmpty()) {
blitter->blitRect(rect.fLeft << shiftEdgesUp,
rect.fTop << shiftEdgesUp,
rect.width() << shiftEdgesUp,
rect.height() << shiftEdgesUp);
}
}
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = NULL;
headEdge.fNext = edge;
headEdge.fFirstY = kEDGE_HEAD_Y;
headEdge.fX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fPrev = last;
tailEdge.fNext = NULL;
tailEdge.fFirstY = kEDGE_TAIL_Y;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
start_y <<= shiftEdgesUp;
stop_y <<= shiftEdgesUp;
if (clipRect && start_y < clipRect->fTop) {
start_y = clipRect->fTop;
}
if (clipRect && stop_y > clipRect->fBottom) {
stop_y = clipRect->fBottom;
}
InverseBlitter ib;
PrePostProc proc = NULL;
if (path.isInverseFillType()) {
ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp);
blitter = &ib;
proc = PrePostInverseBlitterProc;
}
if (path.isConvex() && (NULL == proc)) {
walk_convex_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, NULL);
} else {
walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc);
}
}
void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
const SkIRect& cr = clip.getBounds();
SkIRect tmp;
tmp.fLeft = cr.fLeft;
tmp.fRight = cr.fRight;
tmp.fTop = cr.fTop;
tmp.fBottom = ir.fTop;
if (!tmp.isEmpty()) {
blitter->blitRectRegion(tmp, clip);
}
}
void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
const SkIRect& cr = clip.getBounds();
SkIRect tmp;
tmp.fLeft = cr.fLeft;
tmp.fRight = cr.fRight;
tmp.fTop = ir.fBottom;
tmp.fBottom = cr.fBottom;
if (!tmp.isEmpty()) {
blitter->blitRectRegion(tmp, clip);
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* If the caller is drawing an inverse-fill path, then it pass true for
* skipRejectTest, so we don't abort drawing just because the src bounds (ir)
* is outside of the clip.
*/
SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip,
const SkIRect& ir, bool skipRejectTest) {
fBlitter = NULL; // null means blit nothing
fClipRect = NULL;
if (clip) {
fClipRect = &clip->getBounds();
if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out
return;
}
if (clip->isRect()) {
if (fClipRect->contains(ir)) {
fClipRect = NULL;
} else {
// only need a wrapper blitter if we're horizontally clipped
if (fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) {
fRectBlitter.init(blitter, *fClipRect);
blitter = &fRectBlitter;
}
}
} else {
fRgnBlitter.init(blitter, clip);
blitter = &fRgnBlitter;
}
}
fBlitter = blitter;
}
///////////////////////////////////////////////////////////////////////////////
static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) {
const int32_t limit = 32767;
SkIRect limitR;
limitR.set(-limit, -limit, limit, limit);
if (limitR.contains(orig.getBounds())) {
return false;
}
reduced->op(orig, limitR, SkRegion::kIntersect_Op);
return true;
}
void SkScan::FillPath(const SkPath& path, const SkRegion& origClip,
SkBlitter* blitter) {
if (origClip.isEmpty()) {
return;
}
// Our edges are fixed-point, and don't like the bounds of the clip to
// exceed that. Here we trim the clip just so we don't overflow later on
const SkRegion* clipPtr = &origClip;
SkRegion finiteClip;
if (clip_to_limit(origClip, &finiteClip)) {
if (finiteClip.isEmpty()) {
return;
}
clipPtr = &finiteClip;
}
// don't reference "origClip" any more, just use clipPtr
SkIRect ir;
// We deliberately call dround() instead of round(), since we can't afford to generate a
// bounds that is tighter than the corresponding SkEdges. The edge code basically converts
// the floats to fixed, and then "rounds". If we called round() instead of dround() here,
// we could generate the wrong ir for values like 0.4999997.
path.getBounds().dround(&ir);
if (ir.isEmpty()) {
if (path.isInverseFillType()) {
blitter->blitRegion(*clipPtr);
}
return;
}
SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType());
blitter = clipper.getBlitter();
if (blitter) {
// we have to keep our calls to blitter in sorted order, so we
// must blit the above section first, then the middle, then the bottom.
if (path.isInverseFillType()) {
sk_blit_above(blitter, ir, *clipPtr);
}
sk_fill_path(path, clipper.getClipRect(), blitter, ir.fTop, ir.fBottom,
0, *clipPtr);
if (path.isInverseFillType()) {
sk_blit_below(blitter, ir, *clipPtr);
}
} else {
// what does it mean to not have a blitter if path.isInverseFillType???
}
}
void SkScan::FillPath(const SkPath& path, const SkIRect& ir,
SkBlitter* blitter) {
SkRegion rgn(ir);
FillPath(path, rgn, blitter);
}
///////////////////////////////////////////////////////////////////////////////
static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
const SkIRect* clipRect, SkEdge* list[]) {
SkEdge** start = list;
if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
*list++ = edge;
edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
}
if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
*list++ = edge;
edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
}
if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
*list++ = edge;
}
return (int)(list - start);
}
static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
SkBlitter* blitter, const SkIRect& ir) {
SkASSERT(pts && blitter);
SkEdge edgeStorage[3];
SkEdge* list[3];
int count = build_tri_edges(edgeStorage, pts, clipRect, list);
if (count < 2) {
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = NULL;
headEdge.fNext = edge;
headEdge.fFirstY = kEDGE_HEAD_Y;
headEdge.fX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fPrev = last;
tailEdge.fNext = NULL;
tailEdge.fFirstY = kEDGE_TAIL_Y;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
int stop_y = ir.fBottom;
if (clipRect && stop_y > clipRect->fBottom) {
stop_y = clipRect->fBottom;
}
int start_y = ir.fTop;
if (clipRect && start_y < clipRect->fTop) {
start_y = clipRect->fTop;
}
walk_convex_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, NULL);
// walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, NULL);
}
void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
SkRect r;
SkIRect ir;
r.set(pts, 3);
r.round(&ir);
if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) {
return;
}
SkAAClipBlitterWrapper wrap;
const SkRegion* clipRgn;
if (clip.isBW()) {
clipRgn = &clip.bwRgn();
} else {
wrap.init(clip, blitter);
clipRgn = &wrap.getRgn();
blitter = wrap.getBlitter();
}
SkScanClipper clipper(blitter, clipRgn, ir);
blitter = clipper.getBlitter();
if (NULL != blitter) {
sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
}
}