blob: b9da3b0d68eb64dc308f11adf02928b413f2e675 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkShaderBase_DEFINED
#define SkShaderBase_DEFINED
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkShader.h"
#include "include/core/SkSurfaceProps.h"
#include "include/private/SkNoncopyable.h"
#include "src/core/SkEffectPriv.h"
#include "src/core/SkMask.h"
#include "src/core/SkTLazy.h"
#include "src/core/SkVM_fwd.h"
class GrFragmentProcessor;
struct GrFPArgs;
class SkArenaAlloc;
class SkColorSpace;
class SkImage;
struct SkImageInfo;
class SkPaint;
class SkRasterPipeline;
class SkRuntimeEffect;
class SkStageUpdater;
class SkUpdatableShader;
namespace skgpu::graphite {
class KeyContext;
class PaintParamsKeyBuilder;
class PipelineDataGatherer;
}
class SkShaderBase : public SkShader {
public:
~SkShaderBase() override;
sk_sp<SkShader> makeInvertAlpha() const;
sk_sp<SkShader> makeWithCTM(const SkMatrix&) const; // owns its own ctm
/**
* Returns true if the shader is guaranteed to produce only a single color.
* Subclasses can override this to allow loop-hoisting optimization.
*/
virtual bool isConstant() const { return false; }
enum class GradientType {
kNone,
kColor,
kLinear,
kRadial,
kSweep,
kConical
};
/**
* If the shader subclass can be represented as a gradient, asGradient
* returns the matching GradientType enum (or GradientType::kNone if it
* cannot). Also, if info is not null, asGradient populates info with
* the relevant (see below) parameters for the gradient. fColorCount
* is both an input and output parameter. On input, it indicates how
* many entries in fColors and fColorOffsets can be used, if they are
* non-NULL. After asGradient has run, fColorCount indicates how
* many color-offset pairs there are in the gradient. If there is
* insufficient space to store all of the color-offset pairs, fColors
* and fColorOffsets will not be altered. fColorOffsets specifies
* where on the range of 0 to 1 to transition to the given color.
* The meaning of fPoint and fRadius is dependent on the type of gradient.
*
* None:
* info is ignored.
* Color:
* fColorOffsets[0] is meaningless.
* Linear:
* fPoint[0] and fPoint[1] are the end-points of the gradient
* Radial:
* fPoint[0] and fRadius[0] are the center and radius
* Conical:
* fPoint[0] and fRadius[0] are the center and radius of the 1st circle
* fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
* Sweep:
* fPoint[0] is the center of the sweep.
*/
struct GradientInfo {
int fColorCount = 0; //!< In-out parameter, specifies passed size
// of fColors/fColorOffsets on input, and
// actual number of colors/offsets on
// output.
SkColor* fColors = nullptr; //!< The colors in the gradient.
SkScalar* fColorOffsets = nullptr; //!< The unit offset for color transitions.
SkPoint fPoint[2]; //!< Type specific, see above.
SkScalar fRadius[2]; //!< Type specific, see above.
SkTileMode fTileMode;
uint32_t fGradientFlags = 0; //!< see SkGradientShader::Flags
};
virtual GradientType asGradient(GradientInfo* info = nullptr,
SkMatrix* localMatrix = nullptr) const {
return GradientType::kNone;
}
enum Flags {
//!< set if all of the colors will be opaque
kOpaqueAlpha_Flag = 1 << 0,
/** set if the spans only vary in X (const in Y).
e.g. an Nx1 bitmap that is being tiled in Y, or a linear-gradient
that varies from left-to-right. This flag specifies this for
shadeSpan().
*/
kConstInY32_Flag = 1 << 1,
/** hint for the blitter that 4f is the preferred shading mode.
*/
kPrefers4f_Flag = 1 << 2,
};
/**
* ContextRec acts as a parameter bundle for creating Contexts.
*/
struct ContextRec {
ContextRec(const SkPaint& paint, const SkMatrix& matrix, const SkMatrix* localM,
SkColorType dstColorType, SkColorSpace* dstColorSpace, SkSurfaceProps props)
: fMatrix(&matrix)
, fLocalMatrix(localM)
, fDstColorType(dstColorType)
, fDstColorSpace(dstColorSpace)
, fProps(props) {
fPaintAlpha = paint.getAlpha();
fPaintDither = paint.isDither();
}
const SkMatrix* fMatrix; // the current matrix in the canvas
const SkMatrix* fLocalMatrix; // optional local matrix
SkColorType fDstColorType; // the color type of the dest surface
SkColorSpace* fDstColorSpace; // the color space of the dest surface (if any)
SkSurfaceProps fProps; // props of the dest surface
SkAlpha fPaintAlpha;
bool fPaintDither;
bool isLegacyCompatible(SkColorSpace* shadersColorSpace) const;
};
class Context : public ::SkNoncopyable {
public:
Context(const SkShaderBase& shader, const ContextRec&);
virtual ~Context();
/**
* Called sometimes before drawing with this shader. Return the type of
* alpha your shader will return. The default implementation returns 0.
* Your subclass should override if it can (even sometimes) report a
* non-zero value, since that will enable various blitters to perform
* faster.
*/
virtual uint32_t getFlags() const { return 0; }
/**
* Called for each span of the object being drawn. Your subclass should
* set the appropriate colors (with premultiplied alpha) that correspond
* to the specified device coordinates.
*/
virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
protected:
// Reference to shader, so we don't have to dupe information.
const SkShaderBase& fShader;
uint8_t getPaintAlpha() const { return fPaintAlpha; }
const SkMatrix& getTotalInverse() const { return fTotalInverse; }
const SkMatrix& getCTM() const { return fCTM; }
private:
SkMatrix fCTM;
SkMatrix fTotalInverse;
uint8_t fPaintAlpha;
using INHERITED = SkNoncopyable;
};
/**
* Make a context using the memory provided by the arena.
*
* @return pointer to context or nullptr if can't be created
*/
Context* makeContext(const ContextRec&, SkArenaAlloc*) const;
#if SK_SUPPORT_GPU
/**
* Returns a GrFragmentProcessor that implements the shader for the GPU backend. nullptr is
* returned if there is no GPU implementation.
*
* The GPU device does not call SkShader::createContext(), instead we pass the view matrix,
* local matrix, and filter quality directly.
*
* The GrRecordingContext may be used by the to create textures that are required by the
* returned processor.
*
* The returned GrFragmentProcessor should expect an unpremultiplied input color and
* produce a premultiplied output.
*/
virtual std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const;
#endif
/**
* If the shader can represent its "average" luminance in a single color, return true and
* if color is not NULL, return that color. If it cannot, return false and ignore the color
* parameter.
*
* Note: if this returns true, the returned color will always be opaque, as only the RGB
* components are used to compute luminance.
*/
bool asLuminanceColor(SkColor*) const;
// If this returns false, then we draw nothing (do not fall back to shader context)
SK_WARN_UNUSED_RESULT
bool appendStages(const SkStageRec&) const;
bool SK_WARN_UNUSED_RESULT computeTotalInverse(const SkMatrix& ctm,
const SkMatrix* localMatrix,
SkMatrix* totalInverse) const;
virtual SkImage* onIsAImage(SkMatrix*, SkTileMode[2]) const {
return nullptr;
}
virtual SkRuntimeEffect* asRuntimeEffect() const { return nullptr; }
static Type GetFlattenableType() { return kSkShader_Type; }
Type getFlattenableType() const override { return GetFlattenableType(); }
static sk_sp<SkShaderBase> Deserialize(const void* data, size_t size,
const SkDeserialProcs* procs = nullptr) {
return sk_sp<SkShaderBase>(static_cast<SkShaderBase*>(
SkFlattenable::Deserialize(GetFlattenableType(), data, size, procs).release()));
}
static void RegisterFlattenables();
/** DEPRECATED. skbug.com/8941
* If this shader can be represented by another shader + a localMatrix, return that shader and
* the localMatrix. If not, return nullptr and ignore the localMatrix parameter.
*/
virtual sk_sp<SkShader> makeAsALocalMatrixShader(SkMatrix* localMatrix) const;
SkUpdatableShader* updatableShader(SkArenaAlloc* alloc) const;
virtual SkUpdatableShader* onUpdatableShader(SkArenaAlloc* alloc) const;
SkStageUpdater* appendUpdatableStages(const SkStageRec& rec) const {
return this->onAppendUpdatableStages(rec);
}
SK_WARN_UNUSED_RESULT
skvm::Color program(skvm::Builder*, skvm::Coord device, skvm::Coord local, skvm::Color paint,
const SkMatrixProvider&, const SkMatrix* localM, const SkColorInfo& dst,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const;
#ifdef SK_GRAPHITE_ENABLED
/**
Add implementation details, for the specified backend, of this SkShader to the
provided key.
@param keyContext backend context for key creation
@param builder builder for creating the key for this SkShader
@param gatherer if non-null, storage for this shader's data
*/
virtual void addToKey(const skgpu::graphite::KeyContext& keyContext,
skgpu::graphite::PaintParamsKeyBuilder* builder,
skgpu::graphite::PipelineDataGatherer* gatherer) const;
#endif
static SkMatrix ConcatLocalMatrices(const SkMatrix& parentLM, const SkMatrix& childLM) {
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) // b/256873449
return SkMatrix::Concat(childLM, parentLM);
#endif
return SkMatrix::Concat(parentLM, childLM);
}
protected:
SkShaderBase();
void flatten(SkWriteBuffer&) const override;
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
/**
* Specialize creating a SkShader context using the supplied allocator.
* @return pointer to context owned by the arena allocator.
*/
virtual Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const {
return nullptr;
}
#endif
virtual bool onAsLuminanceColor(SkColor*) const {
return false;
}
// Default impl creates shadercontext and calls that (not very efficient)
virtual bool onAppendStages(const SkStageRec&) const;
virtual SkStageUpdater* onAppendUpdatableStages(const SkStageRec&) const { return nullptr; }
protected:
static skvm::Coord ApplyMatrix(skvm::Builder*, const SkMatrix&, skvm::Coord, skvm::Uniforms*);
private:
virtual skvm::Color onProgram(skvm::Builder*,
skvm::Coord device, skvm::Coord local, skvm::Color paint,
const SkMatrixProvider&, const SkMatrix* localM,
const SkColorInfo& dst, skvm::Uniforms*, SkArenaAlloc*) const = 0;
using INHERITED = SkShader;
};
/**
* Shaders can optionally return a subclass of this when appending their stages.
* Doing so tells the caller that the stages can be reused with different CTMs (but nothing
* else can change), by calling the updater's update() method before each use.
*
* This can be a perf-win bulk draws like drawAtlas and drawVertices, where most of the setup
* (i.e. uniforms) are constant, and only something small is changing (i.e. matrices). This
* reuse skips the cost of computing the stages (and/or avoids having to allocate a separate
* shader for each small draw.
*/
class SkStageUpdater {
public:
virtual ~SkStageUpdater() {}
virtual bool SK_WARN_UNUSED_RESULT update(const SkMatrix& ctm) const = 0;
};
// TODO: use the SkStageUpdater as an interface until all the code is converted over to use
// SkUpdatableShader.
class SkUpdatableShader : public SkShaderBase, public SkStageUpdater {
private:
// For serialization. This will never be called.
Factory getFactory() const override { return nullptr; }
const char* getTypeName() const override { return nullptr; }
};
inline SkShaderBase* as_SB(SkShader* shader) {
return static_cast<SkShaderBase*>(shader);
}
inline const SkShaderBase* as_SB(const SkShader* shader) {
return static_cast<const SkShaderBase*>(shader);
}
inline const SkShaderBase* as_SB(const sk_sp<SkShader>& shader) {
return static_cast<SkShaderBase*>(shader.get());
}
void SkRegisterColor4ShaderFlattenable();
void SkRegisterColorShaderFlattenable();
void SkRegisterComposeShaderFlattenable();
void SkRegisterEmptyShaderFlattenable();
#endif // SkShaderBase_DEFINED