blob: b921e2ff3b3df467ff1b3f0962677efde861973b [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/mtl/GrMtlOpsRenderPass.h"
#include "src/gpu/GrBackendUtils.h"
#include "src/gpu/GrColor.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/mtl/GrMtlCommandBuffer.h"
#include "src/gpu/mtl/GrMtlPipelineState.h"
#include "src/gpu/mtl/GrMtlPipelineStateBuilder.h"
#include "src/gpu/mtl/GrMtlRenderTarget.h"
#include "src/gpu/mtl/GrMtlTexture.h"
#if !__has_feature(objc_arc)
#error This file must be compiled with Arc. Use -fobjc-arc flag
#endif
GR_NORETAIN_BEGIN
GrMtlOpsRenderPass::GrMtlOpsRenderPass(GrMtlGpu* gpu, GrRenderTarget* rt, GrSurfaceOrigin origin,
const GrOpsRenderPass::LoadAndStoreInfo& colorInfo,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo)
: INHERITED(rt, origin)
, fGpu(gpu) {
this->setupRenderPass(colorInfo, stencilInfo);
}
GrMtlOpsRenderPass::~GrMtlOpsRenderPass() {
}
void GrMtlOpsRenderPass::precreateCmdEncoder() {
// For clears, we may not have an associated draw. So we prepare a cmdEncoder that
// will be submitted whether there's a draw or not.
SkDEBUGCODE(id<MTLRenderCommandEncoder> cmdEncoder =)
fGpu->commandBuffer()->getRenderCommandEncoder(fRenderPassDesc, nullptr, this);
SkASSERT(nil != cmdEncoder);
}
void GrMtlOpsRenderPass::submit() {
if (!fRenderTarget) {
return;
}
SkIRect iBounds;
fBounds.roundOut(&iBounds);
fGpu->submitIndirectCommandBuffer(fRenderTarget, fOrigin, &iBounds);
fActiveRenderCmdEncoder = nil;
}
static MTLPrimitiveType gr_to_mtl_primitive(GrPrimitiveType primitiveType) {
const static MTLPrimitiveType mtlPrimitiveType[] {
MTLPrimitiveTypeTriangle,
MTLPrimitiveTypeTriangleStrip,
MTLPrimitiveTypePoint,
MTLPrimitiveTypeLine,
MTLPrimitiveTypeLineStrip
};
static_assert((int)GrPrimitiveType::kTriangles == 0);
static_assert((int)GrPrimitiveType::kTriangleStrip == 1);
static_assert((int)GrPrimitiveType::kPoints == 2);
static_assert((int)GrPrimitiveType::kLines == 3);
static_assert((int)GrPrimitiveType::kLineStrip == 4);
SkASSERT(primitiveType <= GrPrimitiveType::kLineStrip);
return mtlPrimitiveType[static_cast<int>(primitiveType)];
}
bool GrMtlOpsRenderPass::onBindPipeline(const GrProgramInfo& programInfo,
const SkRect& drawBounds) {
const GrMtlCaps& caps = fGpu->mtlCaps();
GrProgramDesc programDesc = caps.makeDesc(fRenderTarget, programInfo,
GrCaps::ProgramDescOverrideFlags::kNone);
if (!programDesc.isValid()) {
return false;
}
fActivePipelineState = fGpu->resourceProvider().findOrCreateCompatiblePipelineState(
programDesc, programInfo);
if (!fActivePipelineState) {
return false;
}
fActivePipelineState->setData(fRenderTarget, programInfo);
fCurrentVertexStride = programInfo.geomProc().vertexStride();
if (!fActiveRenderCmdEncoder) {
fActiveRenderCmdEncoder =
fGpu->commandBuffer()->getRenderCommandEncoder(fRenderPassDesc, nullptr, this);
}
[fActiveRenderCmdEncoder setRenderPipelineState:fActivePipelineState->mtlPipelineState()];
fActivePipelineState->setDrawState(fActiveRenderCmdEncoder,
programInfo.pipeline().writeSwizzle(),
programInfo.pipeline().getXferProcessor());
if (this->gpu()->caps()->wireframeMode() || programInfo.pipeline().isWireframe()) {
[fActiveRenderCmdEncoder setTriangleFillMode:MTLTriangleFillModeLines];
} else {
[fActiveRenderCmdEncoder setTriangleFillMode:MTLTriangleFillModeFill];
}
if (!programInfo.pipeline().isScissorTestEnabled()) {
// "Disable" scissor by setting it to the full pipeline bounds.
GrMtlPipelineState::SetDynamicScissorRectState(fActiveRenderCmdEncoder,
fRenderTarget, fOrigin,
SkIRect::MakeWH(fRenderTarget->width(),
fRenderTarget->height()));
}
fActivePrimitiveType = gr_to_mtl_primitive(programInfo.primitiveType());
fBounds.join(drawBounds);
return true;
}
void GrMtlOpsRenderPass::onSetScissorRect(const SkIRect& scissor) {
SkASSERT(fActivePipelineState);
SkASSERT(fActiveRenderCmdEncoder);
GrMtlPipelineState::SetDynamicScissorRectState(fActiveRenderCmdEncoder, fRenderTarget,
fOrigin, scissor);
}
bool GrMtlOpsRenderPass::onBindTextures(const GrGeometryProcessor& geomProc,
const GrSurfaceProxy* const geomProcTextures[],
const GrPipeline& pipeline) {
SkASSERT(fActivePipelineState);
SkASSERT(fActiveRenderCmdEncoder);
fActivePipelineState->setTextures(geomProc, pipeline, geomProcTextures);
fActivePipelineState->bindTextures(fActiveRenderCmdEncoder);
return true;
}
void GrMtlOpsRenderPass::onClear(const GrScissorState& scissor, std::array<float, 4> color) {
// Partial clears are not supported
SkASSERT(!scissor.enabled());
// Ideally we should never end up here since all clears should either be done as draws or
// load ops in metal. However, if a client inserts a wait op we need to handle it.
auto colorAttachment = fRenderPassDesc.colorAttachments[0];
colorAttachment.clearColor = MTLClearColorMake(color[0], color[1], color[2], color[3]);
colorAttachment.loadAction = MTLLoadActionClear;
this->precreateCmdEncoder();
colorAttachment.loadAction = MTLLoadActionLoad;
fActiveRenderCmdEncoder =
fGpu->commandBuffer()->getRenderCommandEncoder(fRenderPassDesc, nullptr, this);
}
void GrMtlOpsRenderPass::onClearStencilClip(const GrScissorState& scissor, bool insideStencilMask) {
// Partial clears are not supported
SkASSERT(!scissor.enabled());
GrAttachment* sb = fRenderTarget->getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
int stencilBitCount = GrBackendFormatStencilBits(sb->backendFormat());
// The contract with the callers does not guarantee that we preserve all bits in the stencil
// during this clear. Thus we will clear the entire stencil to the desired value.
auto stencilAttachment = fRenderPassDesc.stencilAttachment;
if (insideStencilMask) {
stencilAttachment.clearStencil = (1 << (stencilBitCount - 1));
} else {
stencilAttachment.clearStencil = 0;
}
stencilAttachment.loadAction = MTLLoadActionClear;
this->precreateCmdEncoder();
stencilAttachment.loadAction = MTLLoadActionLoad;
fActiveRenderCmdEncoder =
fGpu->commandBuffer()->getRenderCommandEncoder(fRenderPassDesc, nullptr, this);
}
void GrMtlOpsRenderPass::inlineUpload(GrOpFlushState* state, GrDeferredTextureUploadFn& upload) {
// TODO: this could be more efficient
state->doUpload(upload);
// doUpload() creates a blitCommandEncoder, so we need to recreate a renderCommandEncoder
fActiveRenderCmdEncoder =
fGpu->commandBuffer()->getRenderCommandEncoder(fRenderPassDesc, nullptr, this);
}
void GrMtlOpsRenderPass::initRenderState(id<MTLRenderCommandEncoder> encoder) {
[encoder pushDebugGroup:@"initRenderState"];
[encoder setFrontFacingWinding:MTLWindingCounterClockwise];
// Strictly speaking we shouldn't have to set this, as the default viewport is the size of
// the drawable used to generate the renderCommandEncoder -- but just in case.
MTLViewport viewport = { 0.0, 0.0,
(double) fRenderTarget->width(), (double) fRenderTarget->height(),
0.0, 1.0 };
[encoder setViewport:viewport];
this->resetBufferBindings();
[encoder popDebugGroup];
}
void GrMtlOpsRenderPass::setupRenderPass(
const GrOpsRenderPass::LoadAndStoreInfo& colorInfo,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo) {
const static MTLLoadAction mtlLoadAction[] {
MTLLoadActionLoad,
MTLLoadActionClear,
MTLLoadActionDontCare
};
static_assert((int)GrLoadOp::kLoad == 0);
static_assert((int)GrLoadOp::kClear == 1);
static_assert((int)GrLoadOp::kDiscard == 2);
SkASSERT(colorInfo.fLoadOp <= GrLoadOp::kDiscard);
SkASSERT(stencilInfo.fLoadOp <= GrLoadOp::kDiscard);
const static MTLStoreAction mtlStoreAction[] {
MTLStoreActionStore,
MTLStoreActionDontCare
};
static_assert((int)GrStoreOp::kStore == 0);
static_assert((int)GrStoreOp::kDiscard == 1);
SkASSERT(colorInfo.fStoreOp <= GrStoreOp::kDiscard);
SkASSERT(stencilInfo.fStoreOp <= GrStoreOp::kDiscard);
fRenderPassDesc = [MTLRenderPassDescriptor new];
auto colorAttachment = fRenderPassDesc.colorAttachments[0];
colorAttachment.texture =
static_cast<GrMtlRenderTarget*>(fRenderTarget)->mtlColorTexture();
const std::array<float, 4>& clearColor = colorInfo.fClearColor;
colorAttachment.clearColor =
MTLClearColorMake(clearColor[0], clearColor[1], clearColor[2], clearColor[3]);
colorAttachment.loadAction = mtlLoadAction[static_cast<int>(colorInfo.fLoadOp)];
colorAttachment.storeAction = mtlStoreAction[static_cast<int>(colorInfo.fStoreOp)];
auto* stencil = static_cast<GrMtlAttachment*>(fRenderTarget->getStencilAttachment());
auto mtlStencil = fRenderPassDesc.stencilAttachment;
if (stencil) {
mtlStencil.texture = stencil->view();
}
mtlStencil.clearStencil = 0;
mtlStencil.loadAction = mtlLoadAction[static_cast<int>(stencilInfo.fLoadOp)];
mtlStencil.storeAction = mtlStoreAction[static_cast<int>(stencilInfo.fStoreOp)];
// Manage initial clears
if (colorInfo.fLoadOp == GrLoadOp::kClear || stencilInfo.fLoadOp == GrLoadOp::kClear) {
fBounds = SkRect::MakeWH(fRenderTarget->width(),
fRenderTarget->height());
this->precreateCmdEncoder();
if (colorInfo.fLoadOp == GrLoadOp::kClear) {
colorAttachment.loadAction = MTLLoadActionLoad;
}
if (stencilInfo.fLoadOp == GrLoadOp::kClear) {
mtlStencil.loadAction = MTLLoadActionLoad;
}
} else {
fBounds.setEmpty();
}
// For now, we lazily create the renderCommandEncoder because we may have no draws,
// and an empty renderCommandEncoder can still produce output. This can cause issues
// when we've cleared a texture upon creation -- we'll subsequently discard the contents.
// This can be removed when that ordering is fixed.
fActiveRenderCmdEncoder = nil;
}
void GrMtlOpsRenderPass::onBindBuffers(sk_sp<const GrBuffer> indexBuffer,
sk_sp<const GrBuffer> instanceBuffer,
sk_sp<const GrBuffer> vertexBuffer,
GrPrimitiveRestart primRestart) {
SkASSERT(GrPrimitiveRestart::kNo == primRestart);
int inputBufferIndex = 0;
if (vertexBuffer) {
SkASSERT(!vertexBuffer->isCpuBuffer());
SkASSERT(!static_cast<const GrGpuBuffer*>(vertexBuffer.get())->isMapped());
fActiveVertexBuffer = std::move(vertexBuffer);
fGpu->commandBuffer()->addGrBuffer(fActiveVertexBuffer);
++inputBufferIndex;
}
if (instanceBuffer) {
SkASSERT(!instanceBuffer->isCpuBuffer());
SkASSERT(!static_cast<const GrGpuBuffer*>(instanceBuffer.get())->isMapped());
this->setVertexBuffer(fActiveRenderCmdEncoder, instanceBuffer.get(), 0, inputBufferIndex++);
fActiveInstanceBuffer = std::move(instanceBuffer);
fGpu->commandBuffer()->addGrBuffer(fActiveInstanceBuffer);
}
if (indexBuffer) {
SkASSERT(!indexBuffer->isCpuBuffer());
SkASSERT(!static_cast<const GrGpuBuffer*>(indexBuffer.get())->isMapped());
fActiveIndexBuffer = std::move(indexBuffer);
fGpu->commandBuffer()->addGrBuffer(fActiveIndexBuffer);
}
}
void GrMtlOpsRenderPass::onDraw(int vertexCount, int baseVertex) {
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(), 0, 0);
[fActiveRenderCmdEncoder drawPrimitives:fActivePrimitiveType
vertexStart:baseVertex
vertexCount:vertexCount];
fGpu->stats()->incNumDraws();
}
void GrMtlOpsRenderPass::onDrawIndexed(int indexCount, int baseIndex, uint16_t minIndexValue,
uint16_t maxIndexValue, int baseVertex) {
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
SkASSERT(fActiveIndexBuffer);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(),
fCurrentVertexStride * baseVertex, 0);
auto mtlIndexBuffer = static_cast<const GrMtlBuffer*>(fActiveIndexBuffer.get());
size_t indexOffset = mtlIndexBuffer->offset() + sizeof(uint16_t) * baseIndex;
[fActiveRenderCmdEncoder drawIndexedPrimitives:fActivePrimitiveType
indexCount:indexCount
indexType:MTLIndexTypeUInt16
indexBuffer:mtlIndexBuffer->mtlBuffer()
indexBufferOffset:indexOffset];
fGpu->stats()->incNumDraws();
}
void GrMtlOpsRenderPass::onDrawInstanced(int instanceCount, int baseInstance, int vertexCount,
int baseVertex) {
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(), 0, 0);
if (@available(macOS 10.11, iOS 9.0, *)) {
[fActiveRenderCmdEncoder drawPrimitives:fActivePrimitiveType
vertexStart:baseVertex
vertexCount:vertexCount
instanceCount:instanceCount
baseInstance:baseInstance];
} else {
SkASSERT(false);
}
fGpu->stats()->incNumDraws();
}
void GrMtlOpsRenderPass::onDrawIndexedInstanced(
int indexCount, int baseIndex, int instanceCount, int baseInstance, int baseVertex) {
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
SkASSERT(fActiveIndexBuffer);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(), 0, 0);
auto mtlIndexBuffer = static_cast<const GrMtlBuffer*>(fActiveIndexBuffer.get());
size_t indexOffset = mtlIndexBuffer->offset() + sizeof(uint16_t) * baseIndex;
if (@available(macOS 10.11, iOS 9.0, *)) {
[fActiveRenderCmdEncoder drawIndexedPrimitives:fActivePrimitiveType
indexCount:indexCount
indexType:MTLIndexTypeUInt16
indexBuffer:mtlIndexBuffer->mtlBuffer()
indexBufferOffset:indexOffset
instanceCount:instanceCount
baseVertex:baseVertex
baseInstance:baseInstance];
} else {
SkASSERT(false);
}
fGpu->stats()->incNumDraws();
}
void GrMtlOpsRenderPass::onDrawIndirect(const GrBuffer* drawIndirectBuffer,
size_t bufferOffset,
int drawCount) {
SkASSERT(fGpu->caps()->nativeDrawIndirectSupport());
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(), 0, 0);
auto mtlIndirectBuffer = static_cast<const GrMtlBuffer*>(drawIndirectBuffer);
const size_t stride = sizeof(GrDrawIndirectCommand);
while (drawCount >= 1) {
if (@available(macOS 10.11, iOS 9.0, *)) {
[fActiveRenderCmdEncoder drawPrimitives:fActivePrimitiveType
indirectBuffer:mtlIndirectBuffer->mtlBuffer()
indirectBufferOffset:bufferOffset];
} else {
SkASSERT(false);
}
drawCount--;
bufferOffset += stride;
fGpu->stats()->incNumDraws();
}
}
void GrMtlOpsRenderPass::onDrawIndexedIndirect(const GrBuffer* drawIndirectBuffer,
size_t bufferOffset,
int drawCount) {
SkASSERT(fGpu->caps()->nativeDrawIndirectSupport());
SkASSERT(fActivePipelineState);
SkASSERT(nil != fActiveRenderCmdEncoder);
SkASSERT(fActiveIndexBuffer);
this->setVertexBuffer(fActiveRenderCmdEncoder, fActiveVertexBuffer.get(), 0, 0);
auto mtlIndexBuffer = static_cast<const GrMtlBuffer*>(fActiveIndexBuffer.get());
auto mtlIndirectBuffer = static_cast<const GrMtlBuffer*>(drawIndirectBuffer);
size_t indexOffset = mtlIndexBuffer->offset();
const size_t stride = sizeof(GrDrawIndexedIndirectCommand);
while (drawCount >= 1) {
if (@available(macOS 10.11, iOS 9.0, *)) {
[fActiveRenderCmdEncoder drawIndexedPrimitives:fActivePrimitiveType
indexType:MTLIndexTypeUInt16
indexBuffer:mtlIndexBuffer->mtlBuffer()
indexBufferOffset:indexOffset
indirectBuffer:mtlIndirectBuffer->mtlBuffer()
indirectBufferOffset:bufferOffset];
} else {
SkASSERT(false);
}
drawCount--;
bufferOffset += stride;
fGpu->stats()->incNumDraws();
}
}
void GrMtlOpsRenderPass::setVertexBuffer(id<MTLRenderCommandEncoder> encoder,
const GrBuffer* buffer,
size_t vertexOffset,
size_t inputBufferIndex) {
if (!buffer) {
return;
}
constexpr static int kFirstBufferBindingIdx = GrMtlUniformHandler::kLastUniformBinding + 1;
int index = inputBufferIndex + kFirstBufferBindingIdx;
SkASSERT(index < 4);
auto mtlBuffer = static_cast<const GrMtlBuffer*>(buffer);
id<MTLBuffer> mtlVertexBuffer = mtlBuffer->mtlBuffer();
SkASSERT(mtlVertexBuffer);
// Apple recommends using setVertexBufferOffset: when changing the offset
// for a currently bound vertex buffer, rather than setVertexBuffer:
size_t offset = mtlBuffer->offset() + vertexOffset;
if (fBufferBindings[index].fBuffer != mtlVertexBuffer) {
[encoder setVertexBuffer: mtlVertexBuffer
offset: offset
atIndex: index];
fBufferBindings[index].fBuffer = mtlVertexBuffer;
fBufferBindings[index].fOffset = offset;
} else if (fBufferBindings[index].fOffset != offset) {
if (@available(macOS 10.11, iOS 8.3, *)) {
[encoder setVertexBufferOffset: offset
atIndex: index];
} else {
// We only support iOS 9.0+, so we should never hit this
SK_ABORT("Missing interface. Skia only supports Metal on iOS 9.0 and higher");
}
fBufferBindings[index].fOffset = offset;
}
}
void GrMtlOpsRenderPass::resetBufferBindings() {
for (size_t i = 0; i < kNumBindings; ++i) {
fBufferBindings[i].fBuffer = nil;
}
}
GR_NORETAIN_END