|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "src/pathops/SkIntersections.h" | 
|  | #include "src/pathops/SkPathOpsCubic.h" | 
|  | #include "src/pathops/SkPathOpsCurve.h" | 
|  | #include "src/pathops/SkPathOpsLine.h" | 
|  |  | 
|  | /* | 
|  | Find the interection of a line and cubic by solving for valid t values. | 
|  |  | 
|  | Analogous to line-quadratic intersection, solve line-cubic intersection by | 
|  | representing the cubic as: | 
|  | x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 | 
|  | y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 | 
|  | and the line as: | 
|  | y = i*x + j  (if the line is more horizontal) | 
|  | or: | 
|  | x = i*y + j  (if the line is more vertical) | 
|  |  | 
|  | Then using Mathematica, solve for the values of t where the cubic intersects the | 
|  | line: | 
|  |  | 
|  | (in) Resultant[ | 
|  | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, | 
|  | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] | 
|  | (out) -e     +   j     + | 
|  | 3 e t   - 3 f t   - | 
|  | 3 e t^2 + 6 f t^2 - 3 g t^2 + | 
|  | e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + | 
|  | i ( a     - | 
|  | 3 a t + 3 b t + | 
|  | 3 a t^2 - 6 b t^2 + 3 c t^2 - | 
|  | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) | 
|  |  | 
|  | if i goes to infinity, we can rewrite the line in terms of x. Mathematica: | 
|  |  | 
|  | (in) Resultant[ | 
|  | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, | 
|  | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y] | 
|  | (out)  a     -   j     - | 
|  | 3 a t   + 3 b t   + | 
|  | 3 a t^2 - 6 b t^2 + 3 c t^2 - | 
|  | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - | 
|  | i ( e     - | 
|  | 3 e t   + 3 f t   + | 
|  | 3 e t^2 - 6 f t^2 + 3 g t^2 - | 
|  | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) | 
|  |  | 
|  | Solving this with Mathematica produces an expression with hundreds of terms; | 
|  | instead, use Numeric Solutions recipe to solve the cubic. | 
|  |  | 
|  | The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0 | 
|  | A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     ) | 
|  | B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     ) | 
|  | C = 3*(-(-e +   f          ) + i*(-a +   b          )     ) | 
|  | D =   (-( e                ) + i*( a                ) + j ) | 
|  |  | 
|  | The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0 | 
|  | A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     ) | 
|  | B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     ) | 
|  | C = 3*( (-a +   b          ) - i*(-e +   f          )     ) | 
|  | D =   ( ( a                ) - i*( e                ) - j ) | 
|  |  | 
|  | For horizontal lines: | 
|  | (in) Resultant[ | 
|  | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, | 
|  | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] | 
|  | (out)  e     -   j     - | 
|  | 3 e t   + 3 f t   + | 
|  | 3 e t^2 - 6 f t^2 + 3 g t^2 - | 
|  | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 | 
|  | */ | 
|  |  | 
|  | class LineCubicIntersections { | 
|  | public: | 
|  | enum PinTPoint { | 
|  | kPointUninitialized, | 
|  | kPointInitialized | 
|  | }; | 
|  |  | 
|  | LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) | 
|  | : fCubic(c) | 
|  | , fLine(l) | 
|  | , fIntersections(i) | 
|  | , fAllowNear(true) { | 
|  | i->setMax(4); | 
|  | } | 
|  |  | 
|  | void allowNear(bool allow) { | 
|  | fAllowNear = allow; | 
|  | } | 
|  |  | 
|  | void checkCoincident() { | 
|  | int last = fIntersections->used() - 1; | 
|  | for (int index = 0; index < last; ) { | 
|  | double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; | 
|  | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); | 
|  | double t = fLine.nearPoint(cubicMidPt, nullptr); | 
|  | if (t < 0) { | 
|  | ++index; | 
|  | continue; | 
|  | } | 
|  | if (fIntersections->isCoincident(index)) { | 
|  | fIntersections->removeOne(index); | 
|  | --last; | 
|  | } else if (fIntersections->isCoincident(index + 1)) { | 
|  | fIntersections->removeOne(index + 1); | 
|  | --last; | 
|  | } else { | 
|  | fIntersections->setCoincident(index++); | 
|  | } | 
|  | fIntersections->setCoincident(index); | 
|  | } | 
|  | } | 
|  |  | 
|  | // see parallel routine in line quadratic intersections | 
|  | int intersectRay(double roots[3]) { | 
|  | double adj = fLine[1].fX - fLine[0].fX; | 
|  | double opp = fLine[1].fY - fLine[0].fY; | 
|  | SkDCubic c; | 
|  | SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState()); | 
|  | for (int n = 0; n < 4; ++n) { | 
|  | c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; | 
|  | } | 
|  | double A, B, C, D; | 
|  | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); | 
|  | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|  | if (!approximately_zero(calcPt.fX)) { | 
|  | for (int n = 0; n < 4; ++n) { | 
|  | c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp | 
|  | + (fCubic[n].fX - fLine[0].fX) * adj; | 
|  | } | 
|  | double extremeTs[6]; | 
|  | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); | 
|  | count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | int intersect() { | 
|  | addExactEndPoints(); | 
|  | if (fAllowNear) { | 
|  | addNearEndPoints(); | 
|  | } | 
|  | double rootVals[3]; | 
|  | int roots = intersectRay(rootVals); | 
|  | for (int index = 0; index < roots; ++index) { | 
|  | double cubicT = rootVals[index]; | 
|  | double lineT = findLineT(cubicT); | 
|  | SkDPoint pt; | 
|  | if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) { | 
|  | fIntersections->insert(cubicT, lineT, pt); | 
|  | } | 
|  | } | 
|  | checkCoincident(); | 
|  | return fIntersections->used(); | 
|  | } | 
|  |  | 
|  | static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { | 
|  | double A, B, C, D; | 
|  | SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D); | 
|  | D -= axisIntercept; | 
|  | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|  | if (!approximately_equal(calcPt.fY, axisIntercept)) { | 
|  | double extremeTs[6]; | 
|  | int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs); | 
|  | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { | 
|  | addExactHorizontalEndPoints(left, right, axisIntercept); | 
|  | if (fAllowNear) { | 
|  | addNearHorizontalEndPoints(left, right, axisIntercept); | 
|  | } | 
|  | double roots[3]; | 
|  | int count = HorizontalIntersect(fCubic, axisIntercept, roots); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | double cubicT = roots[index]; | 
|  | SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept }; | 
|  | double lineT = (pt.fX - left) / (right - left); | 
|  | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { | 
|  | fIntersections->insert(cubicT, lineT, pt); | 
|  | } | 
|  | } | 
|  | if (flipped) { | 
|  | fIntersections->flip(); | 
|  | } | 
|  | checkCoincident(); | 
|  | return fIntersections->used(); | 
|  | } | 
|  |  | 
|  | bool uniqueAnswer(double cubicT, const SkDPoint& pt) { | 
|  | for (int inner = 0; inner < fIntersections->used(); ++inner) { | 
|  | if (fIntersections->pt(inner) != pt) { | 
|  | continue; | 
|  | } | 
|  | double existingCubicT = (*fIntersections)[0][inner]; | 
|  | if (cubicT == existingCubicT) { | 
|  | return false; | 
|  | } | 
|  | // check if midway on cubic is also same point. If so, discard this | 
|  | double cubicMidT = (existingCubicT + cubicT) / 2; | 
|  | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); | 
|  | if (cubicMidPt.approximatelyEqual(pt)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #if ONE_OFF_DEBUG | 
|  | SkDPoint cPt = fCubic.ptAtT(cubicT); | 
|  | SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, | 
|  | cPt.fX, cPt.fY); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { | 
|  | double A, B, C, D; | 
|  | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); | 
|  | D -= axisIntercept; | 
|  | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|  | if (!approximately_equal(calcPt.fX, axisIntercept)) { | 
|  | double extremeTs[6]; | 
|  | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); | 
|  | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { | 
|  | addExactVerticalEndPoints(top, bottom, axisIntercept); | 
|  | if (fAllowNear) { | 
|  | addNearVerticalEndPoints(top, bottom, axisIntercept); | 
|  | } | 
|  | double roots[3]; | 
|  | int count = VerticalIntersect(fCubic, axisIntercept, roots); | 
|  | for (int index = 0; index < count; ++index) { | 
|  | double cubicT = roots[index]; | 
|  | SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY }; | 
|  | double lineT = (pt.fY - top) / (bottom - top); | 
|  | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { | 
|  | fIntersections->insert(cubicT, lineT, pt); | 
|  | } | 
|  | } | 
|  | if (flipped) { | 
|  | fIntersections->flip(); | 
|  | } | 
|  | checkCoincident(); | 
|  | return fIntersections->used(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void addExactEndPoints() { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double lineT = fLine.exactPoint(fCubic[cIndex]); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note that this does not look for endpoints of the line that are near the cubic. | 
|  | These points are found later when check ends looks for missing points */ | 
|  | void addNearEndPoints() { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | if (fIntersections->hasT(cubicT)) { | 
|  | continue; | 
|  | } | 
|  | double lineT = fLine.nearPoint(fCubic[cIndex], nullptr); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | this->addLineNearEndPoints(); | 
|  | } | 
|  |  | 
|  | void addLineNearEndPoints() { | 
|  | for (int lIndex = 0; lIndex < 2; ++lIndex) { | 
|  | double lineT = (double) lIndex; | 
|  | if (fIntersections->hasOppT(lineT)) { | 
|  | continue; | 
|  | } | 
|  | double cubicT = ((SkDCurve*) &fCubic)->nearPoint(SkPath::kCubic_Verb, | 
|  | fLine[lIndex], fLine[!lIndex]); | 
|  | if (cubicT < 0) { | 
|  | continue; | 
|  | } | 
|  | fIntersections->insert(cubicT, lineT, fLine[lIndex]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addExactHorizontalEndPoints(double left, double right, double y) { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addNearHorizontalEndPoints(double left, double right, double y) { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | if (fIntersections->hasT(cubicT)) { | 
|  | continue; | 
|  | } | 
|  | double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | this->addLineNearEndPoints(); | 
|  | } | 
|  |  | 
|  | void addExactVerticalEndPoints(double top, double bottom, double x) { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addNearVerticalEndPoints(double top, double bottom, double x) { | 
|  | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|  | double cubicT = (double) (cIndex >> 1); | 
|  | if (fIntersections->hasT(cubicT)) { | 
|  | continue; | 
|  | } | 
|  | double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); | 
|  | if (lineT < 0) { | 
|  | continue; | 
|  | } | 
|  | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|  | } | 
|  | this->addLineNearEndPoints(); | 
|  | } | 
|  |  | 
|  | double findLineT(double t) { | 
|  | SkDPoint xy = fCubic.ptAtT(t); | 
|  | double dx = fLine[1].fX - fLine[0].fX; | 
|  | double dy = fLine[1].fY - fLine[0].fY; | 
|  | if (fabs(dx) > fabs(dy)) { | 
|  | return (xy.fX - fLine[0].fX) / dx; | 
|  | } | 
|  | return (xy.fY - fLine[0].fY) / dy; | 
|  | } | 
|  |  | 
|  | bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { | 
|  | if (!approximately_one_or_less(*lineT)) { | 
|  | return false; | 
|  | } | 
|  | if (!approximately_zero_or_more(*lineT)) { | 
|  | return false; | 
|  | } | 
|  | double cT = *cubicT = SkPinT(*cubicT); | 
|  | double lT = *lineT = SkPinT(*lineT); | 
|  | SkDPoint lPt = fLine.ptAtT(lT); | 
|  | SkDPoint cPt = fCubic.ptAtT(cT); | 
|  | if (!lPt.roughlyEqual(cPt)) { | 
|  | return false; | 
|  | } | 
|  | // FIXME: if points are roughly equal but not approximately equal, need to do | 
|  | // a binary search like quad/quad intersection to find more precise t values | 
|  | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { | 
|  | *pt = lPt; | 
|  | } else if (ptSet == kPointUninitialized) { | 
|  | *pt = cPt; | 
|  | } | 
|  | SkPoint gridPt = pt->asSkPoint(); | 
|  | if (gridPt == fLine[0].asSkPoint()) { | 
|  | *lineT = 0; | 
|  | } else if (gridPt == fLine[1].asSkPoint()) { | 
|  | *lineT = 1; | 
|  | } | 
|  | if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { | 
|  | *cubicT = 0; | 
|  | } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { | 
|  | *cubicT = 1; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const SkDCubic& fCubic; | 
|  | const SkDLine& fLine; | 
|  | SkIntersections* fIntersections; | 
|  | bool fAllowNear; | 
|  | }; | 
|  |  | 
|  | int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, | 
|  | bool flipped) { | 
|  | SkDLine line = {{{ left, y }, { right, y }}}; | 
|  | LineCubicIntersections c(cubic, line, this); | 
|  | return c.horizontalIntersect(y, left, right, flipped); | 
|  | } | 
|  |  | 
|  | int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, | 
|  | bool flipped) { | 
|  | SkDLine line = {{{ x, top }, { x, bottom }}}; | 
|  | LineCubicIntersections c(cubic, line, this); | 
|  | return c.verticalIntersect(x, top, bottom, flipped); | 
|  | } | 
|  |  | 
|  | int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { | 
|  | LineCubicIntersections c(cubic, line, this); | 
|  | c.allowNear(fAllowNear); | 
|  | return c.intersect(); | 
|  | } | 
|  |  | 
|  | int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { | 
|  | LineCubicIntersections c(cubic, line, this); | 
|  | fUsed = c.intersectRay(fT[0]); | 
|  | for (int index = 0; index < fUsed; ++index) { | 
|  | fPt[index] = cubic.ptAtT(fT[0][index]); | 
|  | } | 
|  | return fUsed; | 
|  | } | 
|  |  | 
|  | // SkDCubic accessors to Intersection utilities | 
|  |  | 
|  | int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const { | 
|  | return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots); | 
|  | } | 
|  |  | 
|  | int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const { | 
|  | return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots); | 
|  | } |