|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkEdge.h" | 
|  |  | 
|  | #include "SkFDot6.h" | 
|  | #include "SkMathPriv.h" | 
|  | #include "SkTo.h" | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | /* | 
|  | In setLine, setQuadratic, setCubic, the first thing we do is to convert | 
|  | the points into FDot6. This is modulated by the shift parameter, which | 
|  | will either be 0, or something like 2 for antialiasing. | 
|  |  | 
|  | In the float case, we want to turn the float into .6 by saying pt * 64, | 
|  | or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). | 
|  |  | 
|  | In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, | 
|  | or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). | 
|  | */ | 
|  |  | 
|  | static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { | 
|  | // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw | 
|  | // away data in value, so just perform a modify up-shift | 
|  | return SkLeftShift(value, 16 - 6 - 1); | 
|  | } | 
|  |  | 
|  | ///////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, | 
|  | int shift) { | 
|  | SkFDot6 x0, y0, x1, y1; | 
|  |  | 
|  | { | 
|  | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
|  | x0 = SkScalarRoundToFDot6(p0.fX, shift); | 
|  | y0 = SkScalarRoundToFDot6(p0.fY, shift); | 
|  | x1 = SkScalarRoundToFDot6(p1.fX, shift); | 
|  | y1 = SkScalarRoundToFDot6(p1.fY, shift); | 
|  | #else | 
|  | float scale = float(1 << (shift + 6)); | 
|  | x0 = int(p0.fX * scale); | 
|  | y0 = int(p0.fY * scale); | 
|  | x1 = int(p1.fX * scale); | 
|  | y1 = int(p1.fY * scale); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int winding = 1; | 
|  |  | 
|  | if (y0 > y1) { | 
|  | using std::swap; | 
|  | swap(x0, x1); | 
|  | swap(y0, y1); | 
|  | winding = -1; | 
|  | } | 
|  |  | 
|  | int top = SkFDot6Round(y0); | 
|  | int bot = SkFDot6Round(y1); | 
|  |  | 
|  | // are we a zero-height line? | 
|  | if (top == bot) { | 
|  | return 0; | 
|  | } | 
|  | // are we completely above or below the clip? | 
|  | if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); | 
|  | const SkFDot6 dy  = SkEdge_Compute_DY(top, y0); | 
|  |  | 
|  | fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2 | 
|  | fDX         = slope; | 
|  | fFirstY     = top; | 
|  | fLastY      = bot - 1; | 
|  | fCurveCount = 0; | 
|  | fWinding    = SkToS8(winding); | 
|  | fCurveShift = 0; | 
|  |  | 
|  | if (clip) { | 
|  | this->chopLineWithClip(*clip); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // called from a curve subclass | 
|  | int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) | 
|  | { | 
|  | SkASSERT(fWinding == 1 || fWinding == -1); | 
|  | SkASSERT(fCurveCount != 0); | 
|  | //    SkASSERT(fCurveShift != 0); | 
|  |  | 
|  | y0 >>= 10; | 
|  | y1 >>= 10; | 
|  |  | 
|  | SkASSERT(y0 <= y1); | 
|  |  | 
|  | int top = SkFDot6Round(y0); | 
|  | int bot = SkFDot6Round(y1); | 
|  |  | 
|  | //  SkASSERT(top >= fFirstY); | 
|  |  | 
|  | // are we a zero-height line? | 
|  | if (top == bot) | 
|  | return 0; | 
|  |  | 
|  | x0 >>= 10; | 
|  | x1 >>= 10; | 
|  |  | 
|  | SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); | 
|  | const SkFDot6 dy  = SkEdge_Compute_DY(top, y0); | 
|  |  | 
|  | fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2 | 
|  | fDX         = slope; | 
|  | fFirstY     = top; | 
|  | fLastY      = bot - 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void SkEdge::chopLineWithClip(const SkIRect& clip) | 
|  | { | 
|  | int top = fFirstY; | 
|  |  | 
|  | SkASSERT(top < clip.fBottom); | 
|  |  | 
|  | // clip the line to the top | 
|  | if (top < clip.fTop) | 
|  | { | 
|  | SkASSERT(fLastY >= clip.fTop); | 
|  | fX += fDX * (clip.fTop - top); | 
|  | fFirstY = clip.fTop; | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. | 
|  | Note that this limits the number of lines we use to approximate a curve. | 
|  | If we need to increase this, we need to store fCurveCount in something | 
|  | larger than int8_t. | 
|  | */ | 
|  | #define MAX_COEFF_SHIFT     6 | 
|  |  | 
|  | static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) | 
|  | { | 
|  | dx = SkAbs32(dx); | 
|  | dy = SkAbs32(dy); | 
|  | // return max + min/2 | 
|  | if (dx > dy) | 
|  | dx += dy >> 1; | 
|  | else | 
|  | dx = dy + (dx >> 1); | 
|  | return dx; | 
|  | } | 
|  |  | 
|  | static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2) | 
|  | { | 
|  | // cheap calc of distance from center of p0-p2 to the center of the curve | 
|  | SkFDot6 dist = cheap_distance(dx, dy); | 
|  |  | 
|  | // shift down dist (it is currently in dot6) | 
|  | // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) | 
|  | // this is chosen by heuristic: make it as big as possible (to minimize segments) | 
|  | // ... but small enough so that our curves still look smooth | 
|  | // When shift > 0, we're using AA and everything is scaled up so we can | 
|  | // lower the accuracy. | 
|  | dist = (dist + (1 << 4)) >> (3 + shiftAA); | 
|  |  | 
|  | // each subdivision (shift value) cuts this dist (error) by 1/4 | 
|  | return (32 - SkCLZ(dist)) >> 1; | 
|  | } | 
|  |  | 
|  | bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { | 
|  | SkFDot6 x0, y0, x1, y1, x2, y2; | 
|  |  | 
|  | { | 
|  | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
|  | x0 = SkScalarRoundToFDot6(pts[0].fX, shift); | 
|  | y0 = SkScalarRoundToFDot6(pts[0].fY, shift); | 
|  | x1 = SkScalarRoundToFDot6(pts[1].fX, shift); | 
|  | y1 = SkScalarRoundToFDot6(pts[1].fY, shift); | 
|  | x2 = SkScalarRoundToFDot6(pts[2].fX, shift); | 
|  | y2 = SkScalarRoundToFDot6(pts[2].fY, shift); | 
|  | #else | 
|  | float scale = float(1 << (shift + 6)); | 
|  | x0 = int(pts[0].fX * scale); | 
|  | y0 = int(pts[0].fY * scale); | 
|  | x1 = int(pts[1].fX * scale); | 
|  | y1 = int(pts[1].fY * scale); | 
|  | x2 = int(pts[2].fX * scale); | 
|  | y2 = int(pts[2].fY * scale); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int winding = 1; | 
|  | if (y0 > y2) | 
|  | { | 
|  | using std::swap; | 
|  | swap(x0, x2); | 
|  | swap(y0, y2); | 
|  | winding = -1; | 
|  | } | 
|  | SkASSERT(y0 <= y1 && y1 <= y2); | 
|  |  | 
|  | int top = SkFDot6Round(y0); | 
|  | int bot = SkFDot6Round(y2); | 
|  |  | 
|  | // are we a zero-height quad (line)? | 
|  | if (top == bot) | 
|  | return 0; | 
|  |  | 
|  | // compute number of steps needed (1 << shift) | 
|  | { | 
|  | SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; | 
|  | SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; | 
|  | // This is a little confusing: | 
|  | // before this line, shift is the scale up factor for AA; | 
|  | // after this line, shift is the fCurveShift. | 
|  | shift = diff_to_shift(dx, dy, shift); | 
|  | SkASSERT(shift >= 0); | 
|  | } | 
|  | // need at least 1 subdivision for our bias trick | 
|  | if (shift == 0) { | 
|  | shift = 1; | 
|  | } else if (shift > MAX_COEFF_SHIFT) { | 
|  | shift = MAX_COEFF_SHIFT; | 
|  | } | 
|  |  | 
|  | fWinding    = SkToS8(winding); | 
|  | //fCubicDShift only set for cubics | 
|  | fCurveCount = SkToS8(1 << shift); | 
|  |  | 
|  | /* | 
|  | *  We want to reformulate into polynomial form, to make it clear how we | 
|  | *  should forward-difference. | 
|  | * | 
|  | *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C | 
|  | * | 
|  | *  A = p0 - 2p1 + p2 | 
|  | *  B = 2(p1 - p0) | 
|  | *  C = p0 | 
|  | * | 
|  | *  Our caller must have constrained our inputs (p0..p2) to all fit into | 
|  | *  16.16. However, as seen above, we sometimes compute values that can be | 
|  | *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store | 
|  | *  A and B at 1/2 of their actual value, and just apply a 2x scale during | 
|  | *  application in updateQuadratic(). Hence we store (shift - 1) in | 
|  | *  fCurveShift. | 
|  | */ | 
|  |  | 
|  | fCurveShift = SkToU8(shift - 1); | 
|  |  | 
|  | SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value | 
|  | SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value | 
|  |  | 
|  | fQx     = SkFDot6ToFixed(x0); | 
|  | fQDx    = B + (A >> shift);     // biased by shift | 
|  | fQDDx   = A >> (shift - 1);     // biased by shift | 
|  |  | 
|  | A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value | 
|  | B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value | 
|  |  | 
|  | fQy     = SkFDot6ToFixed(y0); | 
|  | fQDy    = B + (A >> shift);     // biased by shift | 
|  | fQDDy   = A >> (shift - 1);     // biased by shift | 
|  |  | 
|  | fQLastX = SkFDot6ToFixed(x2); | 
|  | fQLastY = SkFDot6ToFixed(y2); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) { | 
|  | if (!setQuadraticWithoutUpdate(pts, shift)) { | 
|  | return 0; | 
|  | } | 
|  | return this->updateQuadratic(); | 
|  | } | 
|  |  | 
|  | int SkQuadraticEdge::updateQuadratic() | 
|  | { | 
|  | int     success; | 
|  | int     count = fCurveCount; | 
|  | SkFixed oldx = fQx; | 
|  | SkFixed oldy = fQy; | 
|  | SkFixed dx = fQDx; | 
|  | SkFixed dy = fQDy; | 
|  | SkFixed newx, newy; | 
|  | int     shift = fCurveShift; | 
|  |  | 
|  | SkASSERT(count > 0); | 
|  |  | 
|  | do { | 
|  | if (--count > 0) | 
|  | { | 
|  | newx    = oldx + (dx >> shift); | 
|  | dx    += fQDDx; | 
|  | newy    = oldy + (dy >> shift); | 
|  | dy    += fQDDy; | 
|  | } | 
|  | else    // last segment | 
|  | { | 
|  | newx    = fQLastX; | 
|  | newy    = fQLastY; | 
|  | } | 
|  | success = this->updateLine(oldx, oldy, newx, newy); | 
|  | oldx = newx; | 
|  | oldy = newy; | 
|  | } while (count > 0 && !success); | 
|  |  | 
|  | fQx         = newx; | 
|  | fQy         = newy; | 
|  | fQDx        = dx; | 
|  | fQDy        = dy; | 
|  | fCurveCount = SkToS8(count); | 
|  | return success; | 
|  | } | 
|  |  | 
|  | ///////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { | 
|  | SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); | 
|  | return SkLeftShift(x, upShift); | 
|  | } | 
|  |  | 
|  | /*  f(1/3) = (8a + 12b + 6c + d) / 27 | 
|  | f(2/3) = (a + 6b + 12c + 8d) / 27 | 
|  |  | 
|  | f(1/3)-b = (8a - 15b + 6c + d) / 27 | 
|  | f(2/3)-c = (a + 6b - 15c + 8d) / 27 | 
|  |  | 
|  | use 16/512 to approximate 1/27 | 
|  | */ | 
|  | static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) | 
|  | { | 
|  | // since our parameters may be negative, we don't use << to avoid ASAN warnings | 
|  | SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; | 
|  | SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; | 
|  |  | 
|  | return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird)); | 
|  | } | 
|  |  | 
|  | bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) { | 
|  | SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; | 
|  |  | 
|  | { | 
|  | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
|  | x0 = SkScalarRoundToFDot6(pts[0].fX, shift); | 
|  | y0 = SkScalarRoundToFDot6(pts[0].fY, shift); | 
|  | x1 = SkScalarRoundToFDot6(pts[1].fX, shift); | 
|  | y1 = SkScalarRoundToFDot6(pts[1].fY, shift); | 
|  | x2 = SkScalarRoundToFDot6(pts[2].fX, shift); | 
|  | y2 = SkScalarRoundToFDot6(pts[2].fY, shift); | 
|  | x3 = SkScalarRoundToFDot6(pts[3].fX, shift); | 
|  | y3 = SkScalarRoundToFDot6(pts[3].fY, shift); | 
|  | #else | 
|  | float scale = float(1 << (shift + 6)); | 
|  | x0 = int(pts[0].fX * scale); | 
|  | y0 = int(pts[0].fY * scale); | 
|  | x1 = int(pts[1].fX * scale); | 
|  | y1 = int(pts[1].fY * scale); | 
|  | x2 = int(pts[2].fX * scale); | 
|  | y2 = int(pts[2].fY * scale); | 
|  | x3 = int(pts[3].fX * scale); | 
|  | y3 = int(pts[3].fY * scale); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int winding = 1; | 
|  | if (sortY && y0 > y3) | 
|  | { | 
|  | using std::swap; | 
|  | swap(x0, x3); | 
|  | swap(x1, x2); | 
|  | swap(y0, y3); | 
|  | swap(y1, y2); | 
|  | winding = -1; | 
|  | } | 
|  |  | 
|  | int top = SkFDot6Round(y0); | 
|  | int bot = SkFDot6Round(y3); | 
|  |  | 
|  | // are we a zero-height cubic (line)? | 
|  | if (sortY && top == bot) | 
|  | return 0; | 
|  |  | 
|  | // compute number of steps needed (1 << shift) | 
|  | { | 
|  | // Can't use (center of curve - center of baseline), since center-of-curve | 
|  | // need not be the max delta from the baseline (it could even be coincident) | 
|  | // so we try just looking at the two off-curve points | 
|  | SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); | 
|  | SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); | 
|  | // add 1 (by observation) | 
|  | shift = diff_to_shift(dx, dy) + 1; | 
|  | } | 
|  | // need at least 1 subdivision for our bias trick | 
|  | SkASSERT(shift > 0); | 
|  | if (shift > MAX_COEFF_SHIFT) { | 
|  | shift = MAX_COEFF_SHIFT; | 
|  | } | 
|  |  | 
|  | /*  Since our in coming data is initially shifted down by 10 (or 8 in | 
|  | antialias). That means the most we can shift up is 8. However, we | 
|  | compute coefficients with a 3*, so the safest upshift is really 6 | 
|  | */ | 
|  | int upShift = 6;    // largest safe value | 
|  | int downShift = shift + upShift - 10; | 
|  | if (downShift < 0) { | 
|  | downShift = 0; | 
|  | upShift = 10 - shift; | 
|  | } | 
|  |  | 
|  | fWinding    = SkToS8(winding); | 
|  | fCurveCount = SkToS8(SkLeftShift(-1, shift)); | 
|  | fCurveShift = SkToU8(shift); | 
|  | fCubicDShift = SkToU8(downShift); | 
|  |  | 
|  | SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); | 
|  | SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); | 
|  | SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); | 
|  |  | 
|  | fCx     = SkFDot6ToFixed(x0); | 
|  | fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift | 
|  | fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift | 
|  | fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift | 
|  |  | 
|  | B = SkFDot6UpShift(3 * (y1 - y0), upShift); | 
|  | C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); | 
|  | D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); | 
|  |  | 
|  | fCy     = SkFDot6ToFixed(y0); | 
|  | fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift | 
|  | fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift | 
|  | fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift | 
|  |  | 
|  | fCLastX = SkFDot6ToFixed(x3); | 
|  | fCLastY = SkFDot6ToFixed(y3); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) { | 
|  | if (!this->setCubicWithoutUpdate(pts, shift)) { | 
|  | return 0; | 
|  | } | 
|  | return this->updateCubic(); | 
|  | } | 
|  |  | 
|  | int SkCubicEdge::updateCubic() | 
|  | { | 
|  | int     success; | 
|  | int     count = fCurveCount; | 
|  | SkFixed oldx = fCx; | 
|  | SkFixed oldy = fCy; | 
|  | SkFixed newx, newy; | 
|  | const int ddshift = fCurveShift; | 
|  | const int dshift = fCubicDShift; | 
|  |  | 
|  | SkASSERT(count < 0); | 
|  |  | 
|  | do { | 
|  | if (++count < 0) | 
|  | { | 
|  | newx    = oldx + (fCDx >> dshift); | 
|  | fCDx    += fCDDx >> ddshift; | 
|  | fCDDx   += fCDDDx; | 
|  |  | 
|  | newy    = oldy + (fCDy >> dshift); | 
|  | fCDy    += fCDDy >> ddshift; | 
|  | fCDDy   += fCDDDy; | 
|  | } | 
|  | else    // last segment | 
|  | { | 
|  | //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); | 
|  | newx    = fCLastX; | 
|  | newy    = fCLastY; | 
|  | } | 
|  |  | 
|  | // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint | 
|  | // doesn't always achieve that, so we have to explicitly pin it here. | 
|  | if (newy < oldy) { | 
|  | newy = oldy; | 
|  | } | 
|  |  | 
|  | success = this->updateLine(oldx, oldy, newx, newy); | 
|  | oldx = newx; | 
|  | oldy = newy; | 
|  | } while (count < 0 && !success); | 
|  |  | 
|  | fCx         = newx; | 
|  | fCy         = newy; | 
|  | fCurveCount = SkToS8(count); | 
|  | return success; | 
|  | } |