|  | /* | 
|  | * Copyright 2016 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkTypes.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | #include "GrClip.h" | 
|  | #include "GrContext.h" | 
|  | #include "GrContextPriv.h" | 
|  | #include "GrGpuResource.h" | 
|  | #include "GrMemoryPool.h" | 
|  | #include "GrProxyProvider.h" | 
|  | #include "GrRenderTargetContext.h" | 
|  | #include "GrRenderTargetContextPriv.h" | 
|  | #include "GrResourceProvider.h" | 
|  | #include "glsl/GrGLSLFragmentProcessor.h" | 
|  | #include "glsl/GrGLSLFragmentShaderBuilder.h" | 
|  | #include "ops/GrMeshDrawOp.h" | 
|  | #include "ops/GrRectOpFactory.h" | 
|  | #include "TestUtils.h" | 
|  |  | 
|  | #include <random> | 
|  |  | 
|  | namespace { | 
|  | class TestOp : public GrMeshDrawOp { | 
|  | public: | 
|  | DEFINE_OP_CLASS_ID | 
|  | static std::unique_ptr<GrDrawOp> Make(GrContext* context, | 
|  | std::unique_ptr<GrFragmentProcessor> fp) { | 
|  | GrOpMemoryPool* pool = context->contextPriv().opMemoryPool(); | 
|  |  | 
|  | return pool->allocate<TestOp>(std::move(fp)); | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "TestOp"; } | 
|  |  | 
|  | void visitProxies(const VisitProxyFunc& func, VisitorType) const override { | 
|  | fProcessors.visitProxies(func); | 
|  | } | 
|  |  | 
|  | FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } | 
|  |  | 
|  | RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override { | 
|  | static constexpr GrProcessorAnalysisColor kUnknownColor; | 
|  | SkPMColor4f overrideColor; | 
|  | fProcessors.finalize(kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, false, caps, | 
|  | &overrideColor); | 
|  | return RequiresDstTexture::kNo; | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class ::GrOpMemoryPool; // for ctor | 
|  |  | 
|  | TestOp(std::unique_ptr<GrFragmentProcessor> fp) | 
|  | : INHERITED(ClassID()), fProcessors(std::move(fp)) { | 
|  | this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo); | 
|  | } | 
|  |  | 
|  | void onPrepareDraws(Target* target) override { return; } | 
|  |  | 
|  | GrProcessorSet fProcessors; | 
|  |  | 
|  | typedef GrMeshDrawOp INHERITED; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts | 
|  | * of resources owned by child FPs. | 
|  | */ | 
|  | class TestFP : public GrFragmentProcessor { | 
|  | public: | 
|  | static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child))); | 
|  | } | 
|  | static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies, | 
|  | const SkTArray<sk_sp<GrBuffer>>& buffers) { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers)); | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "test"; } | 
|  |  | 
|  | void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { | 
|  | // We don't really care about reusing these. | 
|  | static int32_t gKey = 0; | 
|  | b->add32(sk_atomic_inc(&gKey)); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> clone() const override { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies, const SkTArray<sk_sp<GrBuffer>>& buffers) | 
|  | : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { | 
|  | for (const auto& proxy : proxies) { | 
|  | fSamplers.emplace_back(proxy); | 
|  | } | 
|  | this->setTextureSamplerCnt(fSamplers.count()); | 
|  | } | 
|  |  | 
|  | TestFP(std::unique_ptr<GrFragmentProcessor> child) | 
|  | : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { | 
|  | this->registerChildProcessor(std::move(child)); | 
|  | } | 
|  |  | 
|  | explicit TestFP(const TestFP& that) | 
|  | : INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) { | 
|  | for (int i = 0; i < that.fSamplers.count(); ++i) { | 
|  | fSamplers.emplace_back(that.fSamplers[i]); | 
|  | } | 
|  | for (int i = 0; i < that.numChildProcessors(); ++i) { | 
|  | this->registerChildProcessor(that.childProcessor(i).clone()); | 
|  | } | 
|  | this->setTextureSamplerCnt(fSamplers.count()); | 
|  | } | 
|  |  | 
|  | virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { | 
|  | class TestGLSLFP : public GrGLSLFragmentProcessor { | 
|  | public: | 
|  | TestGLSLFP() {} | 
|  | void emitCode(EmitArgs& args) override { | 
|  | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; | 
|  | fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); | 
|  | } | 
|  |  | 
|  | private: | 
|  | }; | 
|  | return new TestGLSLFP(); | 
|  | } | 
|  |  | 
|  | bool onIsEqual(const GrFragmentProcessor&) const override { return false; } | 
|  | const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; } | 
|  |  | 
|  | GrTAllocator<TextureSampler> fSamplers; | 
|  | typedef GrFragmentProcessor INHERITED; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) { | 
|  | *refCnt = resource->fRefCnt; | 
|  | *readCnt = resource->fPendingReads; | 
|  | *writeCnt = resource->fPendingWrites; | 
|  | } | 
|  |  | 
|  | void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) { | 
|  | *refCnt = proxy->getBackingRefCnt_TestOnly(); | 
|  | *readCnt = proxy->getPendingReadCnt_TestOnly(); | 
|  | *writeCnt = proxy->getPendingWriteCnt_TestOnly(); | 
|  | } | 
|  |  | 
|  | DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { | 
|  | GrContext* context = ctxInfo.grContext(); | 
|  | GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); | 
|  |  | 
|  | GrSurfaceDesc desc; | 
|  | desc.fWidth = 10; | 
|  | desc.fHeight = 10; | 
|  | desc.fConfig = kRGBA_8888_GrPixelConfig; | 
|  |  | 
|  | const GrBackendFormat format = | 
|  | context->contextPriv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); | 
|  |  | 
|  | for (bool makeClone : {false, true}) { | 
|  | for (int parentCnt = 0; parentCnt < 2; parentCnt++) { | 
|  | sk_sp<GrRenderTargetContext> renderTargetContext( | 
|  | context->contextPriv().makeDeferredRenderTargetContext( | 
|  | format, SkBackingFit::kApprox, 1, 1, | 
|  | kRGBA_8888_GrPixelConfig, nullptr)); | 
|  | { | 
|  | sk_sp<GrTextureProxy> proxy1 = proxyProvider->createProxy( | 
|  | format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, | 
|  | SkBudgeted::kYes); | 
|  | sk_sp<GrTextureProxy> proxy2 = proxyProvider->createProxy( | 
|  | format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, | 
|  | SkBudgeted::kYes); | 
|  | sk_sp<GrTextureProxy> proxy3 = proxyProvider->createProxy( | 
|  | format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, | 
|  | SkBudgeted::kYes); | 
|  | sk_sp<GrTextureProxy> proxy4 = proxyProvider->createProxy( | 
|  | format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact, | 
|  | SkBudgeted::kYes); | 
|  | { | 
|  | SkTArray<sk_sp<GrTextureProxy>> proxies; | 
|  | SkTArray<sk_sp<GrBuffer>> buffers; | 
|  | proxies.push_back(proxy1); | 
|  | auto fp = TestFP::Make(std::move(proxies), std::move(buffers)); | 
|  | for (int i = 0; i < parentCnt; ++i) { | 
|  | fp = TestFP::Make(std::move(fp)); | 
|  | } | 
|  | std::unique_ptr<GrFragmentProcessor> clone; | 
|  | if (makeClone) { | 
|  | clone = fp->clone(); | 
|  | } | 
|  | std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp))); | 
|  | renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); | 
|  | if (clone) { | 
|  | op = TestOp::Make(context, std::move(clone)); | 
|  | renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); | 
|  | } | 
|  | } | 
|  | int refCnt, readCnt, writeCnt; | 
|  |  | 
|  | testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); | 
|  | // IO counts should be double if there is a clone of the FP. | 
|  | int ioRefMul = makeClone ? 2 : 1; | 
|  | REPORTER_ASSERT(reporter, -1 == refCnt); | 
|  | REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt); | 
|  | REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); | 
|  |  | 
|  | context->flush(); | 
|  |  | 
|  | testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt); | 
|  | REPORTER_ASSERT(reporter, 1 == refCnt); | 
|  | REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt); | 
|  | REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This test uses the random GrFragmentProcessor test factory, which relies on static initializers. | 
|  | #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS | 
|  |  | 
|  | #include "SkCommandLineFlags.h" | 
|  | DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?"); | 
|  | DEFINE_uint32(processorSeed, 0, "Use specific seed for processor tests. Overridden by " \ | 
|  | "--randomProcessorTest."); | 
|  |  | 
|  | #if GR_TEST_UTILS | 
|  |  | 
|  | static GrColor input_texel_color(int i, int j, SkScalar delta) { | 
|  | // Delta must be less than 0.5 to prevent over/underflow issues with the input color | 
|  | SkASSERT(delta <= 0.5); | 
|  |  | 
|  | SkColor color = SkColorSetARGB((uint8_t)i, (uint8_t)j, (uint8_t)(i + j), (uint8_t)(2 * j - i)); | 
|  | SkColor4f color4f = SkColor4f::FromColor(color); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (color4f[i] > 0.5) { | 
|  | color4f[i] -= delta; | 
|  | } else { | 
|  | color4f[i] += delta; | 
|  | } | 
|  | } | 
|  | return color4f.premul().toBytes_RGBA(); | 
|  | } | 
|  |  | 
|  | void test_draw_op(GrContext* context, | 
|  | GrRenderTargetContext* rtc, | 
|  | std::unique_ptr<GrFragmentProcessor> fp, | 
|  | sk_sp<GrTextureProxy> inputDataProxy) { | 
|  | GrPaint paint; | 
|  | paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I()); | 
|  | paint.addColorFragmentProcessor(std::move(fp)); | 
|  | paint.setPorterDuffXPFactory(SkBlendMode::kSrc); | 
|  |  | 
|  | auto op = GrRectOpFactory::MakeNonAAFill(context, std::move(paint), SkMatrix::I(), | 
|  | SkRect::MakeWH(rtc->width(), rtc->height()), | 
|  | GrAAType::kNone); | 
|  | rtc->addDrawOp(GrNoClip(), std::move(op)); | 
|  | } | 
|  |  | 
|  | // This assumes that the output buffer will be the same size as inputDataProxy | 
|  | void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp, | 
|  | sk_sp<GrTextureProxy> inputDataProxy, GrColor* buffer) { | 
|  | int width = inputDataProxy->width(); | 
|  | int height = inputDataProxy->height(); | 
|  |  | 
|  | // test_draw_op needs to take ownership of an FP, so give it a clone that it can own | 
|  | test_draw_op(context, rtc, fp->clone(), inputDataProxy); | 
|  | memset(buffer, 0x0, sizeof(GrColor) * width * height); | 
|  | rtc->readPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, | 
|  | kPremul_SkAlphaType), | 
|  | buffer, 0, 0, 0); | 
|  | } | 
|  |  | 
|  | /** Initializes the two test texture proxies that are available to the FP test factories. */ | 
|  | bool init_test_textures(GrProxyProvider* proxyProvider, SkRandom* random, | 
|  | sk_sp<GrTextureProxy> proxies[2]) { | 
|  | static const int kTestTextureSize = 256; | 
|  |  | 
|  | { | 
|  | // Put premul data into the RGBA texture that the test FPs can optionally use. | 
|  | std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]); | 
|  | for (int y = 0; y < kTestTextureSize; ++y) { | 
|  | for (int x = 0; x < kTestTextureSize; ++x) { | 
|  | rgbaData[kTestTextureSize * y + x] = input_texel_color( | 
|  | random->nextULessThan(256), random->nextULessThan(256), 0.0f); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, | 
|  | kRGBA_8888_SkColorType, kPremul_SkAlphaType); | 
|  | SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes()); | 
|  | sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); | 
|  | proxies[0] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, | 
|  | SkBudgeted::kYes, SkBackingFit::kExact); | 
|  | } | 
|  |  | 
|  | { | 
|  | // Put random values into the alpha texture that the test FPs can optionally use. | 
|  | std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]); | 
|  | for (int y = 0; y < kTestTextureSize; ++y) { | 
|  | for (int x = 0; x < kTestTextureSize; ++x) { | 
|  | alphaData[kTestTextureSize * y + x] = random->nextULessThan(256); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, | 
|  | kAlpha_8_SkColorType, kPremul_SkAlphaType); | 
|  | SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes()); | 
|  | sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); | 
|  | proxies[1] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, | 
|  | SkBudgeted::kYes, SkBackingFit::kExact); | 
|  | } | 
|  |  | 
|  | return proxies[0] && proxies[1]; | 
|  | } | 
|  |  | 
|  | // Creates a texture of premul colors used as the output of the fragment processor that precedes | 
|  | // the fragment processor under test. Color values are those provided by input_texel_color(). | 
|  | sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height, | 
|  | SkScalar delta) { | 
|  | std::unique_ptr<GrColor[]> data(new GrColor[width * height]); | 
|  | for (int y = 0; y < width; ++y) { | 
|  | for (int x = 0; x < height; ++x) { | 
|  | data.get()[width * y + x] = input_texel_color(x, y, delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); | 
|  | SkPixmap pixmap(ii, data.get(), ii.minRowBytes()); | 
|  | sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); | 
|  | return proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1, | 
|  | SkBudgeted::kYes, SkBackingFit::kExact); | 
|  | } | 
|  |  | 
|  | bool log_surface_context(sk_sp<GrSurfaceContext> src, SkString* dst) { | 
|  | SkImageInfo ii = SkImageInfo::Make(src->width(), src->height(), kRGBA_8888_SkColorType, | 
|  | kPremul_SkAlphaType); | 
|  | SkBitmap bm; | 
|  | SkAssertResult(bm.tryAllocPixels(ii)); | 
|  | SkAssertResult(src->readPixels(ii, bm.getPixels(), bm.rowBytes(), 0, 0)); | 
|  |  | 
|  | return bitmap_to_base64_data_uri(bm, dst); | 
|  | } | 
|  |  | 
|  | bool log_surface_proxy(GrContext* context, sk_sp<GrSurfaceProxy> src, SkString* dst) { | 
|  | sk_sp<GrSurfaceContext> sContext(context->contextPriv().makeWrappedSurfaceContext(src)); | 
|  | return log_surface_context(sContext, dst); | 
|  | } | 
|  |  | 
|  | bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { | 
|  | // With the loss of precision of rendering into 32-bit color, then estimating the FP's output | 
|  | // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 | 
|  | // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little | 
|  | // too unforgiving). | 
|  | static constexpr SkScalar kTolerance = 0.01f; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int modulation_index(int channelIndex, bool alphaModulation) { | 
|  | return alphaModulation ? 3 : channelIndex; | 
|  | } | 
|  |  | 
|  | // Given three input colors (color preceding the FP being tested), and the output of the FP, this | 
|  | // ensures that the out1 = fp * in1.a, out2 = fp * in2.a, and out3 = fp * in3.a, where fp is the | 
|  | // pre-modulated color that should not be changing across frames (FP's state doesn't change). | 
|  | // | 
|  | // When alphaModulation is false, this tests the very similar conditions that out1 = fp * in1, | 
|  | // etc. using per-channel modulation instead of modulation by just the input alpha channel. | 
|  | // - This estimates the pre-modulated fp color from one of the input/output pairs and confirms the | 
|  | //   conditions hold for the other two pairs. | 
|  | bool legal_modulation(const GrColor& in1, const GrColor& in2, const GrColor& in3, | 
|  | const GrColor& out1, const GrColor& out2, const GrColor& out3, | 
|  | bool alphaModulation) { | 
|  | // Convert to floating point, which is the number space the FP operates in (more or less) | 
|  | SkPMColor4f in1f = SkPMColor4f::FromBytes_RGBA(in1); | 
|  | SkPMColor4f in2f = SkPMColor4f::FromBytes_RGBA(in2); | 
|  | SkPMColor4f in3f = SkPMColor4f::FromBytes_RGBA(in3); | 
|  | SkPMColor4f out1f = SkPMColor4f::FromBytes_RGBA(out1); | 
|  | SkPMColor4f out2f = SkPMColor4f::FromBytes_RGBA(out2); | 
|  | SkPMColor4f out3f = SkPMColor4f::FromBytes_RGBA(out3); | 
|  |  | 
|  | // Reconstruct the output of the FP before the shader modulated its color with the input value. | 
|  | // When the original input is very small, it may cause the final output color to round | 
|  | // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that | 
|  | // will then have a guaranteed larger channel value (since the offset will be added to it). | 
|  | SkPMColor4f fpPreModulation; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | int modulationIndex = modulation_index(i, alphaModulation); | 
|  | if (in1f[modulationIndex] < 0.2f) { | 
|  | // Use the stepped frame | 
|  | fpPreModulation[i] = out2f[i] / in2f[modulationIndex]; | 
|  | } else { | 
|  | fpPreModulation[i] = out1f[i] / in1f[modulationIndex]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each | 
|  | // of the transformed input colors. | 
|  | SkPMColor4f expected1 = alphaModulation ? (fpPreModulation * in1f.fA) | 
|  | : (fpPreModulation * in1f); | 
|  | SkPMColor4f expected2 = alphaModulation ? (fpPreModulation * in2f.fA) | 
|  | : (fpPreModulation * in2f); | 
|  | SkPMColor4f expected3 = alphaModulation ? (fpPreModulation * in3f.fA) | 
|  | : (fpPreModulation * in3f); | 
|  |  | 
|  | return fuzzy_color_equals(out1f, expected1) && | 
|  | fuzzy_color_equals(out2f, expected2) && | 
|  | fuzzy_color_equals(out3f, expected3); | 
|  | } | 
|  |  | 
|  | DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { | 
|  | GrContext* context = ctxInfo.grContext(); | 
|  | GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); | 
|  | auto resourceProvider = context->contextPriv().resourceProvider(); | 
|  | using FPFactory = GrFragmentProcessorTestFactory; | 
|  |  | 
|  | uint32_t seed = FLAGS_processorSeed; | 
|  | if (FLAGS_randomProcessorTest) { | 
|  | std::random_device rd; | 
|  | seed = rd(); | 
|  | } | 
|  | // If a non-deterministic bot fails this test, check the output to see what seed it used, then | 
|  | // use --processorSeed <seed> (without --randomProcessorTest) to reproduce. | 
|  | SkRandom random(seed); | 
|  |  | 
|  | const GrBackendFormat format = | 
|  | context->contextPriv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); | 
|  |  | 
|  | // Make the destination context for the test. | 
|  | static constexpr int kRenderSize = 256; | 
|  | sk_sp<GrRenderTargetContext> rtc = context->contextPriv().makeDeferredRenderTargetContext( | 
|  | format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, | 
|  | nullptr); | 
|  |  | 
|  | sk_sp<GrTextureProxy> proxies[2]; | 
|  | if (!init_test_textures(proxyProvider, &random, proxies)) { | 
|  | ERRORF(reporter, "Could not create test textures"); | 
|  | return; | 
|  | } | 
|  | GrProcessorTestData testData(&random, context, rtc.get(), proxies); | 
|  |  | 
|  | // Coverage optimization uses three frames with a linearly transformed input texture.  The first | 
|  | // frame has no offset, second frames add .2 and .4, which should then be present as a fixed | 
|  | // difference between the frame outputs if the FP is properly following the modulation | 
|  | // requirements of the coverage optimization. | 
|  | static constexpr SkScalar kInputDelta = 0.2f; | 
|  | auto inputTexture1 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); | 
|  | auto inputTexture2 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, kInputDelta); | 
|  | auto inputTexture3 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 2*kInputDelta); | 
|  |  | 
|  | // Encoded images are very verbose and this tests many potential images, so only export the | 
|  | // first failure (subsequent failures have a reasonable chance of being related). | 
|  | bool loggedFirstFailure = false; | 
|  | bool loggedFirstWarning = false; | 
|  |  | 
|  | // Storage for the three frames required for coverage compatibility optimization. Each frame | 
|  | // uses the correspondingly numbered inputTextureX. | 
|  | std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); | 
|  | std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); | 
|  | std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]); | 
|  |  | 
|  | // Because processor factories configure themselves in random ways, this is not exhaustive. | 
|  | for (int i = 0; i < FPFactory::Count(); ++i) { | 
|  | int timesToInvokeFactory = 5; | 
|  | // Increase the number of attempts if the FP has child FPs since optimizations likely depend | 
|  | // on child optimizations being present. | 
|  | std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData); | 
|  | for (int j = 0; j < fp->numChildProcessors(); ++j) { | 
|  | // This value made a reasonable trade off between time and coverage when this test was | 
|  | // written. | 
|  | timesToInvokeFactory *= FPFactory::Count() / 2; | 
|  | } | 
|  | for (int j = 0; j < timesToInvokeFactory; ++j) { | 
|  | fp = FPFactory::MakeIdx(i, &testData); | 
|  | if (!fp->instantiate(resourceProvider)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && | 
|  | !fp->compatibleWithCoverageAsAlpha()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (fp->compatibleWithCoverageAsAlpha()) { | 
|  | // 2nd and 3rd frames are only used when checking coverage optimization | 
|  | render_fp(context, rtc.get(), fp.get(), inputTexture2, readData2.get()); | 
|  | render_fp(context, rtc.get(), fp.get(), inputTexture3, readData3.get()); | 
|  | } | 
|  | // Draw base frame last so that rtc holds the original FP behavior if we need to | 
|  | // dump the image to the log. | 
|  | render_fp(context, rtc.get(), fp.get(), inputTexture1, readData1.get()); | 
|  |  | 
|  | if (0) {  // Useful to see what FPs are being tested. | 
|  | SkString children; | 
|  | for (int c = 0; c < fp->numChildProcessors(); ++c) { | 
|  | if (!c) { | 
|  | children.append("("); | 
|  | } | 
|  | children.append(fp->childProcessor(c).name()); | 
|  | children.append(c == fp->numChildProcessors() - 1 ? ")" : ", "); | 
|  | } | 
|  | SkDebugf("%s %s\n", fp->name(), children.c_str()); | 
|  | } | 
|  |  | 
|  | // This test has a history of being flaky on a number of devices. If an FP is logically | 
|  | // violating the optimizations, it's reasonable to expect it to violate requirements on | 
|  | // a large number of pixels in the image. Sporadic pixel violations are more indicative | 
|  | // of device errors and represents a separate problem. | 
|  | #if defined(SK_SKQP_GLOBAL_ERROR_TOLERANCE) | 
|  | static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP | 
|  | #else | 
|  | static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image | 
|  | #endif | 
|  |  | 
|  | int failedPixelCount = 0; | 
|  | // Collect first optimization failure message, to be output later as a warning or an | 
|  | // error depending on whether the rendering "passed" or failed. | 
|  | SkString coverageMessage; | 
|  | SkString opaqueMessage; | 
|  | SkString constMessage; | 
|  | for (int y = 0; y < kRenderSize; ++y) { | 
|  | for (int x = 0; x < kRenderSize; ++x) { | 
|  | bool passing = true; | 
|  | GrColor input = input_texel_color(x, y, 0.0f); | 
|  | GrColor output = readData1.get()[y * kRenderSize + x]; | 
|  |  | 
|  | if (fp->compatibleWithCoverageAsAlpha()) { | 
|  | GrColor i2 = input_texel_color(x, y, kInputDelta); | 
|  | GrColor i3 = input_texel_color(x, y, 2 * kInputDelta); | 
|  |  | 
|  | GrColor o2 = readData2.get()[y * kRenderSize + x]; | 
|  | GrColor o3 = readData3.get()[y * kRenderSize + x]; | 
|  |  | 
|  | // A compatible processor is allowed to modulate either the input color or | 
|  | // just the input alpha. | 
|  | bool legalAlphaModulation = legal_modulation(input, i2, i3, output, o2, o3, | 
|  | /* alpha */ true); | 
|  | bool legalColorModulation = legal_modulation(input, i2, i3, output, o2, o3, | 
|  | /* alpha */ false); | 
|  |  | 
|  | if (!legalColorModulation && !legalAlphaModulation) { | 
|  | passing = false; | 
|  |  | 
|  | if (coverageMessage.isEmpty()) { | 
|  | coverageMessage.printf("\"Modulating\" processor %s did not match " | 
|  | "alpha-modulation nor color-modulation rules. " | 
|  | "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", | 
|  | fp->name(), input, output, x, y); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); | 
|  | SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); | 
|  | SkPMColor4f expected4f; | 
|  | if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { | 
|  | float rDiff = fabsf(output4f.fR - expected4f.fR); | 
|  | float gDiff = fabsf(output4f.fG - expected4f.fG); | 
|  | float bDiff = fabsf(output4f.fB - expected4f.fB); | 
|  | float aDiff = fabsf(output4f.fA - expected4f.fA); | 
|  | static constexpr float kTol = 4 / 255.f; | 
|  | if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { | 
|  | if (constMessage.isEmpty()) { | 
|  | passing = false; | 
|  |  | 
|  | constMessage.printf("Processor %s claimed output for const input " | 
|  | "doesn't match actual output. Error: %f, Tolerance: %f, " | 
|  | "input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), " | 
|  | "expected(%f, %f, %f, %f)", fp->name(), | 
|  | SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol, | 
|  | input4f.fR, input4f.fG, input4f.fB, input4f.fA, | 
|  | output4f.fR, output4f.fG, output4f.fB, output4f.fA, | 
|  | expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { | 
|  | passing = false; | 
|  |  | 
|  | if (opaqueMessage.isEmpty()) { | 
|  | opaqueMessage.printf("Processor %s claimed opaqueness is preserved but " | 
|  | "it is not. Input: 0x%08x, Output: 0x%08x.", | 
|  | fp->name(), input, output); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!passing) { | 
|  | // Regardless of how many optimizations the pixel violates, count it as a | 
|  | // single bad pixel. | 
|  | failedPixelCount++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finished analyzing the entire image, see if the number of pixel failures meets the | 
|  | // threshold for an FP violating the optimization requirements. | 
|  | if (failedPixelCount > kMaxAcceptableFailedPixels) { | 
|  | ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s" | 
|  | ", first failing pixel details are below:", | 
|  | failedPixelCount, kRenderSize * kRenderSize, seed, | 
|  | fp->dumpInfo().c_str()); | 
|  |  | 
|  | // Print first failing pixel's details. | 
|  | if (!coverageMessage.isEmpty()) { | 
|  | ERRORF(reporter, coverageMessage.c_str()); | 
|  | } | 
|  | if (!constMessage.isEmpty()) { | 
|  | ERRORF(reporter, constMessage.c_str()); | 
|  | } | 
|  | if (!opaqueMessage.isEmpty()) { | 
|  | ERRORF(reporter, opaqueMessage.c_str()); | 
|  | } | 
|  |  | 
|  | if (!loggedFirstFailure) { | 
|  | // Print with ERRORF to make sure the encoded image is output | 
|  | SkString input; | 
|  | log_surface_proxy(context, inputTexture1, &input); | 
|  | SkString output; | 
|  | log_surface_context(rtc, &output); | 
|  | ERRORF(reporter, "Input image: %s\n\n" | 
|  | "===========================================================\n\n" | 
|  | "Output image: %s\n", input.c_str(), output.c_str()); | 
|  | loggedFirstFailure = true; | 
|  | } | 
|  | } else if(failedPixelCount > 0) { | 
|  | // Don't trigger an error, but don't just hide the failures either. | 
|  | INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " | 
|  | "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, | 
|  | seed, fp->dumpInfo().c_str()); | 
|  | if (!coverageMessage.isEmpty()) { | 
|  | INFOF(reporter, coverageMessage.c_str()); | 
|  | } | 
|  | if (!constMessage.isEmpty()) { | 
|  | INFOF(reporter, constMessage.c_str()); | 
|  | } | 
|  | if (!opaqueMessage.isEmpty()) { | 
|  | INFOF(reporter, opaqueMessage.c_str()); | 
|  | } | 
|  | if (!loggedFirstWarning) { | 
|  | SkString input; | 
|  | log_surface_proxy(context, inputTexture1, &input); | 
|  | SkString output; | 
|  | log_surface_context(rtc, &output); | 
|  | INFOF(reporter, "Input image: %s\n\n" | 
|  | "===========================================================\n\n" | 
|  | "Output image: %s\n", input.c_str(), output.c_str()); | 
|  | loggedFirstWarning = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their | 
|  | // progenitors. | 
|  | DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { | 
|  | GrContext* context = ctxInfo.grContext(); | 
|  | GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); | 
|  | auto resourceProvider = context->contextPriv().resourceProvider(); | 
|  |  | 
|  | SkRandom random; | 
|  |  | 
|  | const GrBackendFormat format = | 
|  | context->contextPriv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); | 
|  |  | 
|  | // Make the destination context for the test. | 
|  | static constexpr int kRenderSize = 1024; | 
|  | sk_sp<GrRenderTargetContext> rtc = context->contextPriv().makeDeferredRenderTargetContext( | 
|  | format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, | 
|  | nullptr); | 
|  |  | 
|  | sk_sp<GrTextureProxy> proxies[2]; | 
|  | if (!init_test_textures(proxyProvider, &random, proxies)) { | 
|  | ERRORF(reporter, "Could not create test textures"); | 
|  | return; | 
|  | } | 
|  | GrProcessorTestData testData(&random, context, rtc.get(), proxies); | 
|  |  | 
|  | auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); | 
|  | std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); | 
|  | std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); | 
|  | auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType, | 
|  | kPremul_SkAlphaType); | 
|  |  | 
|  | // Because processor factories configure themselves in random ways, this is not exhaustive. | 
|  | for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { | 
|  | static constexpr int kTimesToInvokeFactory = 10; | 
|  | for (int j = 0; j < kTimesToInvokeFactory; ++j) { | 
|  | auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData); | 
|  | auto clone = fp->clone(); | 
|  | if (!clone) { | 
|  | ERRORF(reporter, "Clone of processor %s failed.", fp->name()); | 
|  | continue; | 
|  | } | 
|  | const char* name = fp->name(); | 
|  | if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) { | 
|  | continue; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name())); | 
|  | REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() == | 
|  | clone->compatibleWithCoverageAsAlpha()); | 
|  | REPORTER_ASSERT(reporter, fp->isEqual(*clone)); | 
|  | REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput()); | 
|  | REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() == | 
|  | clone->hasConstantOutputForConstantInput()); | 
|  | REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors()); | 
|  | REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords()); | 
|  | // Draw with original and read back the results. | 
|  | render_fp(context, rtc.get(), fp.get(), inputTexture, readData1.get()); | 
|  |  | 
|  | // Draw with clone and read back the results. | 
|  | render_fp(context, rtc.get(), clone.get(), inputTexture, readData2.get()); | 
|  |  | 
|  | // Check that the results are the same. | 
|  | bool passing = true; | 
|  | for (int y = 0; y < kRenderSize && passing; ++y) { | 
|  | for (int x = 0; x < kRenderSize && passing; ++x) { | 
|  | int idx = y * kRenderSize + x; | 
|  | if (readData1[idx] != readData2[idx]) { | 
|  | ERRORF(reporter, | 
|  | "Processor %s made clone produced different output. " | 
|  | "Input color: 0x%08x, Original Output Color: 0x%08x, " | 
|  | "Clone Output Color: 0x%08x..", | 
|  | name, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]); | 
|  | passing = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // GR_TEST_UTILS | 
|  | #endif  // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS |