|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkMath.h" | 
|  | #include "SkMatrixPriv.h" | 
|  | #include "SkMatrixUtils.h" | 
|  | #include "SkPoint3.h" | 
|  | #include "SkRandom.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | static bool nearly_equal_scalar(SkScalar a, SkScalar b) { | 
|  | const SkScalar tolerance = SK_Scalar1 / 200000; | 
|  | return SkScalarAbs(a - b) <= tolerance; | 
|  | } | 
|  |  | 
|  | static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) { | 
|  | for (int i = 0; i < 9; i++) { | 
|  | if (!nearly_equal_scalar(a[i], b[i])) { | 
|  | SkDebugf("matrices not equal [%d] %g %g\n", i, (float)a[i], (float)b[i]); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int float_bits(float f) { | 
|  | int result; | 
|  | memcpy(&result, &f, 4); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static bool are_equal(skiatest::Reporter* reporter, | 
|  | const SkMatrix& a, | 
|  | const SkMatrix& b) { | 
|  | bool equal = a == b; | 
|  | bool cheapEqual = a.cheapEqualTo(b); | 
|  | if (equal != cheapEqual) { | 
|  | if (equal) { | 
|  | bool foundZeroSignDiff = false; | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | float aVal = a.get(i); | 
|  | float bVal = b.get(i); | 
|  | int aValI = float_bits(aVal); | 
|  | int bValI = float_bits(bVal); | 
|  | if (0 == aVal && 0 == bVal && aValI != bValI) { | 
|  | foundZeroSignDiff = true; | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); | 
|  | } | 
|  | } | 
|  | REPORTER_ASSERT(reporter, foundZeroSignDiff); | 
|  | } else { | 
|  | bool foundNaN = false; | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | float aVal = a.get(i); | 
|  | float bVal = b.get(i); | 
|  | int aValI = float_bits(aVal); | 
|  | int bValI = float_bits(bVal); | 
|  | if (sk_float_isnan(aVal) && aValI == bValI) { | 
|  | foundNaN = true; | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); | 
|  | } | 
|  | } | 
|  | REPORTER_ASSERT(reporter, foundNaN); | 
|  | } | 
|  | } | 
|  | return equal; | 
|  | } | 
|  |  | 
|  | static bool is_identity(const SkMatrix& m) { | 
|  | SkMatrix identity; | 
|  | identity.reset(); | 
|  | return nearly_equal(m, identity); | 
|  | } | 
|  |  | 
|  | static void assert9(skiatest::Reporter* reporter, const SkMatrix& m, | 
|  | SkScalar a, SkScalar b, SkScalar c, | 
|  | SkScalar d, SkScalar e, SkScalar f, | 
|  | SkScalar g, SkScalar h, SkScalar i) { | 
|  | SkScalar buffer[9]; | 
|  | m.get9(buffer); | 
|  | REPORTER_ASSERT(reporter, buffer[0] == a); | 
|  | REPORTER_ASSERT(reporter, buffer[1] == b); | 
|  | REPORTER_ASSERT(reporter, buffer[2] == c); | 
|  | REPORTER_ASSERT(reporter, buffer[3] == d); | 
|  | REPORTER_ASSERT(reporter, buffer[4] == e); | 
|  | REPORTER_ASSERT(reporter, buffer[5] == f); | 
|  | REPORTER_ASSERT(reporter, buffer[6] == g); | 
|  | REPORTER_ASSERT(reporter, buffer[7] == h); | 
|  | REPORTER_ASSERT(reporter, buffer[8] == i); | 
|  | } | 
|  |  | 
|  | static void test_set9(skiatest::Reporter* reporter) { | 
|  |  | 
|  | SkMatrix m; | 
|  | m.reset(); | 
|  | assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1); | 
|  |  | 
|  | m.setScale(2, 3); | 
|  | assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1); | 
|  |  | 
|  | m.postTranslate(4, 5); | 
|  | assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1); | 
|  |  | 
|  | SkScalar buffer[9]; | 
|  | sk_bzero(buffer, sizeof(buffer)); | 
|  | buffer[SkMatrix::kMScaleX] = 1; | 
|  | buffer[SkMatrix::kMScaleY] = 1; | 
|  | buffer[SkMatrix::kMPersp2] = 1; | 
|  | REPORTER_ASSERT(reporter, !m.isIdentity()); | 
|  | m.set9(buffer); | 
|  | REPORTER_ASSERT(reporter, m.isIdentity()); | 
|  | } | 
|  |  | 
|  | static void test_matrix_recttorect(skiatest::Reporter* reporter) { | 
|  | SkRect src, dst; | 
|  | SkMatrix matrix; | 
|  |  | 
|  | src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10); | 
|  | dst = src; | 
|  | matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); | 
|  | REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType()); | 
|  | REPORTER_ASSERT(reporter, matrix.rectStaysRect()); | 
|  |  | 
|  | dst.offset(SK_Scalar1, SK_Scalar1); | 
|  | matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); | 
|  | REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType()); | 
|  | REPORTER_ASSERT(reporter, matrix.rectStaysRect()); | 
|  |  | 
|  | dst.fRight += SK_Scalar1; | 
|  | matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); | 
|  | REPORTER_ASSERT(reporter, | 
|  | (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType()); | 
|  | REPORTER_ASSERT(reporter, matrix.rectStaysRect()); | 
|  |  | 
|  | dst = src; | 
|  | dst.fRight = src.fRight * 2; | 
|  | matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); | 
|  | REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType()); | 
|  | REPORTER_ASSERT(reporter, matrix.rectStaysRect()); | 
|  | } | 
|  |  | 
|  | static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) { | 
|  | // add 100 in case we have a bug, I don't want to kill my stack in the test | 
|  | static const size_t kBufferSize = SkMatrixPriv::kMaxFlattenSize + 100; | 
|  | char buffer[kBufferSize]; | 
|  | size_t size1 = SkMatrixPriv::WriteToMemory(m, nullptr); | 
|  | size_t size2 = SkMatrixPriv::WriteToMemory(m, buffer); | 
|  | REPORTER_ASSERT(reporter, size1 == size2); | 
|  | REPORTER_ASSERT(reporter, size1 <= SkMatrixPriv::kMaxFlattenSize); | 
|  |  | 
|  | SkMatrix m2; | 
|  | size_t size3 = SkMatrixPriv::ReadFromMemory(&m2, buffer, kBufferSize); | 
|  | REPORTER_ASSERT(reporter, size1 == size3); | 
|  | REPORTER_ASSERT(reporter, are_equal(reporter, m, m2)); | 
|  |  | 
|  | char buffer2[kBufferSize]; | 
|  | size3 = SkMatrixPriv::WriteToMemory(m2, buffer2); | 
|  | REPORTER_ASSERT(reporter, size1 == size3); | 
|  | REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); | 
|  | } | 
|  |  | 
|  | static void test_matrix_min_max_scale(skiatest::Reporter* reporter) { | 
|  | SkScalar scales[2]; | 
|  | bool success; | 
|  |  | 
|  | SkMatrix identity; | 
|  | identity.reset(); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale()); | 
|  | success = identity.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]); | 
|  |  | 
|  | SkMatrix scale; | 
|  | scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale()); | 
|  | success = scale.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]); | 
|  |  | 
|  | SkMatrix rot90Scale; | 
|  | rot90Scale.setRotate(90 * SK_Scalar1); | 
|  | rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale()); | 
|  | success = rot90Scale.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4  == scales[0] && SK_Scalar1 / 2 == scales[1]); | 
|  |  | 
|  | SkMatrix rotate; | 
|  | rotate.setRotate(128 * SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero)); | 
|  | success = rotate.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero)); | 
|  |  | 
|  | SkMatrix translate; | 
|  | translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale()); | 
|  | success = translate.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]); | 
|  |  | 
|  | SkMatrix perspX; | 
|  | perspX.reset(); | 
|  | perspX.setPerspX(SK_Scalar1 / 1000); | 
|  | REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale()); | 
|  | success = perspX.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, !success); | 
|  |  | 
|  | // skbug.com/4718 | 
|  | SkMatrix big; | 
|  | big.setAll(2.39394089e+36f, 8.85347779e+36f, 9.26526204e+36f, | 
|  | 3.9159619e+36f, 1.44823453e+37f, 1.51559342e+37f, | 
|  | 0.f, 0.f, 1.f); | 
|  | success = big.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, !success); | 
|  |  | 
|  | // skbug.com/4718 | 
|  | SkMatrix givingNegativeNearlyZeros; | 
|  | givingNegativeNearlyZeros.setAll(0.00436534f, 0.114138f, 0.37141f, | 
|  | 0.00358857f, 0.0936228f, -0.0174198f, | 
|  | 0.f, 0.f, 1.f); | 
|  | success = givingNegativeNearlyZeros.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success && 0 == scales[0]); | 
|  |  | 
|  | SkMatrix perspY; | 
|  | perspY.reset(); | 
|  | perspY.setPerspY(-SK_Scalar1 / 500); | 
|  | REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale()); | 
|  | REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale()); | 
|  | scales[0] = -5; | 
|  | scales[1] = -5; | 
|  | success = perspY.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]); | 
|  |  | 
|  | SkMatrix baseMats[] = {scale, rot90Scale, rotate, | 
|  | translate, perspX, perspY}; | 
|  | SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { | 
|  | mats[i] = baseMats[i]; | 
|  | bool invertible = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); | 
|  | REPORTER_ASSERT(reporter, invertible); | 
|  | } | 
|  | SkRandom rand; | 
|  | for (int m = 0; m < 1000; ++m) { | 
|  | SkMatrix mat; | 
|  | mat.reset(); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | int x = rand.nextU() % SK_ARRAY_COUNT(mats); | 
|  | mat.postConcat(mats[x]); | 
|  | } | 
|  |  | 
|  | SkScalar minScale = mat.getMinScale(); | 
|  | SkScalar maxScale = mat.getMaxScale(); | 
|  | REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0)); | 
|  | REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective()); | 
|  |  | 
|  | SkScalar scales[2]; | 
|  | bool success = mat.getMinMaxScales(scales); | 
|  | REPORTER_ASSERT(reporter, success == !mat.hasPerspective()); | 
|  | REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale)); | 
|  |  | 
|  | if (mat.hasPerspective()) { | 
|  | m -= 1; // try another non-persp matrix | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // test a bunch of vectors. All should be scaled by between minScale and maxScale | 
|  | // (modulo some error) and we should find a vector that is scaled by almost each. | 
|  | static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100; | 
|  | static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100; | 
|  | SkScalar max = 0, min = SK_ScalarMax; | 
|  | SkVector vectors[1000]; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { | 
|  | vectors[i].fX = rand.nextSScalar1(); | 
|  | vectors[i].fY = rand.nextSScalar1(); | 
|  | if (!vectors[i].normalize()) { | 
|  | i -= 1; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { | 
|  | SkScalar d = vectors[i].length(); | 
|  | REPORTER_ASSERT(reporter, d / maxScale < gVectorScaleTol); | 
|  | REPORTER_ASSERT(reporter, minScale / d < gVectorScaleTol); | 
|  | if (max < d) { | 
|  | max = d; | 
|  | } | 
|  | if (min > d) { | 
|  | min = d; | 
|  | } | 
|  | } | 
|  | REPORTER_ASSERT(reporter, max / maxScale >= gCloseScaleTol); | 
|  | REPORTER_ASSERT(reporter, minScale / min >= gCloseScaleTol); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_matrix_preserve_shape(skiatest::Reporter* reporter) { | 
|  | SkMatrix mat; | 
|  |  | 
|  | // identity | 
|  | mat.setIdentity(); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // translation only | 
|  | mat.reset(); | 
|  | mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scale with same size | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scale with one negative | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scale with different size | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scale with same size at a pivot point | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(15), SkIntToScalar(15), | 
|  | SkIntToScalar(2), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scale with different size at a pivot point | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(15), SkIntToScalar(20), | 
|  | SkIntToScalar(2), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // skew with same size | 
|  | mat.reset(); | 
|  | mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // skew with different size | 
|  | mat.reset(); | 
|  | mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // skew with same size at a pivot point | 
|  | mat.reset(); | 
|  | mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), | 
|  | SkIntToScalar(2), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // skew with different size at a pivot point | 
|  | mat.reset(); | 
|  | mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), | 
|  | SkIntToScalar(2), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // perspective x | 
|  | mat.reset(); | 
|  | mat.setPerspX(SK_Scalar1 / 2); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // perspective y | 
|  | mat.reset(); | 
|  | mat.setPerspY(SK_Scalar1 / 2); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // rotate | 
|  | for (int angle = 0; angle < 360; ++angle) { | 
|  | mat.reset(); | 
|  | mat.setRotate(SkIntToScalar(angle)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  | } | 
|  |  | 
|  | // see if there are any accumulated precision issues | 
|  | mat.reset(); | 
|  | for (int i = 1; i < 360; i++) { | 
|  | mat.postRotate(SkIntToScalar(1)); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // rotate + translate | 
|  | mat.reset(); | 
|  | mat.setRotate(SkIntToScalar(30)); | 
|  | mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // rotate + uniform scale | 
|  | mat.reset(); | 
|  | mat.setRotate(SkIntToScalar(30)); | 
|  | mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // rotate + non-uniform scale | 
|  | mat.reset(); | 
|  | mat.setRotate(SkIntToScalar(30)); | 
|  | mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // non-uniform scale + rotate | 
|  | mat.reset(); | 
|  | mat.setScale(SkIntToScalar(3), SkIntToScalar(2)); | 
|  | mat.postRotate(SkIntToScalar(30)); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // all zero | 
|  | mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // all zero except perspective | 
|  | mat.reset(); | 
|  | mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, !mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); | 
|  |  | 
|  | // scales zero, only skews (rotation) | 
|  | mat.setAll(0, SK_Scalar1, 0, | 
|  | -SK_Scalar1, 0, 0, | 
|  | 0, 0, SkMatrix::I()[8]); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  |  | 
|  | // scales zero, only skews (reflection) | 
|  | mat.setAll(0, SK_Scalar1, 0, | 
|  | SK_Scalar1, 0, 0, | 
|  | 0, 0, SkMatrix::I()[8]); | 
|  | REPORTER_ASSERT(reporter, mat.isSimilarity()); | 
|  | REPORTER_ASSERT(reporter, mat.preservesRightAngles()); | 
|  | } | 
|  |  | 
|  | // For test_matrix_decomposition, below. | 
|  | static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, | 
|  | SkScalar tolerance = SK_ScalarNearlyZero) { | 
|  | // from Bruce Dawson | 
|  | // absolute check | 
|  | SkScalar diff = SkScalarAbs(a - b); | 
|  | if (diff < tolerance) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // relative check | 
|  | a = SkScalarAbs(a); | 
|  | b = SkScalarAbs(b); | 
|  | SkScalar largest = (b > a) ? b : a; | 
|  |  | 
|  | if (diff <= largest*tolerance) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool check_matrix_recomposition(const SkMatrix& mat, | 
|  | const SkPoint& rotation1, | 
|  | const SkPoint& scale, | 
|  | const SkPoint& rotation2) { | 
|  | SkScalar c1 = rotation1.fX; | 
|  | SkScalar s1 = rotation1.fY; | 
|  | SkScalar scaleX = scale.fX; | 
|  | SkScalar scaleY = scale.fY; | 
|  | SkScalar c2 = rotation2.fX; | 
|  | SkScalar s2 = rotation2.fY; | 
|  |  | 
|  | // We do a relative check here because large scale factors cause problems with an absolute check | 
|  | bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], | 
|  | scaleX*c1*c2 - scaleY*s1*s2) && | 
|  | scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], | 
|  | -scaleX*s1*c2 - scaleY*c1*s2) && | 
|  | scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], | 
|  | scaleX*c1*s2 + scaleY*s1*c2) && | 
|  | scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], | 
|  | -scaleX*s1*s2 + scaleY*c1*c2); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void test_matrix_decomposition(skiatest::Reporter* reporter) { | 
|  | SkMatrix mat; | 
|  | SkPoint rotation1, scale, rotation2; | 
|  |  | 
|  | const float kRotation0 = 15.5f; | 
|  | const float kRotation1 = -50.f; | 
|  | const float kScale0 = 5000.f; | 
|  | const float kScale1 = 0.001f; | 
|  |  | 
|  | // identity | 
|  | mat.reset(); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  | // make sure it doesn't crash if we pass in NULLs | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, nullptr, nullptr, nullptr)); | 
|  |  | 
|  | // rotation only | 
|  | mat.setRotate(kRotation0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // uniform scale only | 
|  | mat.setScale(kScale0, kScale0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // anisotropic scale only | 
|  | mat.setScale(kScale1, kScale0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation then uniform scale | 
|  | mat.setRotate(kRotation1); | 
|  | mat.postScale(kScale0, kScale0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // uniform scale then rotation | 
|  | mat.setScale(kScale0, kScale0); | 
|  | mat.postRotate(kRotation1); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation then uniform scale+reflection | 
|  | mat.setRotate(kRotation0); | 
|  | mat.postScale(kScale1, -kScale1); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // uniform scale+reflection, then rotate | 
|  | mat.setScale(kScale0, -kScale0); | 
|  | mat.postRotate(kRotation1); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation then anisotropic scale | 
|  | mat.setRotate(kRotation1); | 
|  | mat.postScale(kScale1, kScale0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation then anisotropic scale | 
|  | mat.setRotate(90); | 
|  | mat.postScale(kScale1, kScale0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // anisotropic scale then rotation | 
|  | mat.setScale(kScale1, kScale0); | 
|  | mat.postRotate(kRotation0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // anisotropic scale then rotation | 
|  | mat.setScale(kScale1, kScale0); | 
|  | mat.postRotate(90); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation, uniform scale, then different rotation | 
|  | mat.setRotate(kRotation1); | 
|  | mat.postScale(kScale0, kScale0); | 
|  | mat.postRotate(kRotation0); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation, anisotropic scale, then different rotation | 
|  | mat.setRotate(kRotation0); | 
|  | mat.postScale(kScale1, kScale0); | 
|  | mat.postRotate(kRotation1); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // rotation, anisotropic scale + reflection, then different rotation | 
|  | mat.setRotate(kRotation0); | 
|  | mat.postScale(-kScale1, kScale0); | 
|  | mat.postRotate(kRotation1); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // try some random matrices | 
|  | SkRandom rand; | 
|  | for (int m = 0; m < 1000; ++m) { | 
|  | SkScalar rot0 = rand.nextRangeF(-180, 180); | 
|  | SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); | 
|  | SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); | 
|  | SkScalar rot1 = rand.nextRangeF(-180, 180); | 
|  | mat.setRotate(rot0); | 
|  | mat.postScale(sx, sy); | 
|  | mat.postRotate(rot1); | 
|  |  | 
|  | if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  | } else { | 
|  | // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero | 
|  | SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - | 
|  | mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // translation shouldn't affect this | 
|  | mat.postTranslate(-1000.f, 1000.f); | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // perspective shouldn't affect this | 
|  | mat[SkMatrix::kMPersp0] = 12.f; | 
|  | mat[SkMatrix::kMPersp1] = 4.f; | 
|  | mat[SkMatrix::kMPersp2] = 1872.f; | 
|  | REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); | 
|  |  | 
|  | // degenerate matrices | 
|  | // mostly zero entries | 
|  | mat.reset(); | 
|  | mat[SkMatrix::kMScaleX] = 0.f; | 
|  | REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | mat.reset(); | 
|  | mat[SkMatrix::kMScaleY] = 0.f; | 
|  | REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | mat.reset(); | 
|  | // linearly dependent entries | 
|  | mat[SkMatrix::kMScaleX] = 1.f; | 
|  | mat[SkMatrix::kMSkewX] = 2.f; | 
|  | mat[SkMatrix::kMSkewY] = 4.f; | 
|  | mat[SkMatrix::kMScaleY] = 8.f; | 
|  | REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); | 
|  | } | 
|  |  | 
|  | // For test_matrix_homogeneous, below. | 
|  | static bool point3_array_nearly_equal_relative(const SkPoint3 a[], const SkPoint3 b[], int count) { | 
|  | for (int i = 0; i < count; ++i) { | 
|  | if (!scalar_nearly_equal_relative(a[i].fX, b[i].fX)) { | 
|  | return false; | 
|  | } | 
|  | if (!scalar_nearly_equal_relative(a[i].fY, b[i].fY)) { | 
|  | return false; | 
|  | } | 
|  | if (!scalar_nearly_equal_relative(a[i].fZ, b[i].fZ)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For test_matrix_homogeneous, below. | 
|  | // Maps a single triple in src using m and compares results to those in dst | 
|  | static bool naive_homogeneous_mapping(const SkMatrix& m, const SkPoint3& src, | 
|  | const SkPoint3& dst) { | 
|  | SkPoint3 res; | 
|  | SkScalar ms[9] = {m[0], m[1], m[2], | 
|  | m[3], m[4], m[5], | 
|  | m[6], m[7], m[8]}; | 
|  | res.fX = src.fX * ms[0] + src.fY * ms[1] + src.fZ * ms[2]; | 
|  | res.fY = src.fX * ms[3] + src.fY * ms[4] + src.fZ * ms[5]; | 
|  | res.fZ = src.fX * ms[6] + src.fY * ms[7] + src.fZ * ms[8]; | 
|  | return point3_array_nearly_equal_relative(&res, &dst, 1); | 
|  | } | 
|  |  | 
|  | static void test_matrix_homogeneous(skiatest::Reporter* reporter) { | 
|  | SkMatrix mat; | 
|  |  | 
|  | const float kRotation0 = 15.5f; | 
|  | const float kRotation1 = -50.f; | 
|  | const float kScale0 = 5000.f; | 
|  |  | 
|  | #if defined(SK_BUILD_FOR_GOOGLE3) | 
|  | // Stack frame size is limited in SK_BUILD_FOR_GOOGLE3. | 
|  | const int kTripleCount = 100; | 
|  | const int kMatrixCount = 100; | 
|  | #else | 
|  | const int kTripleCount = 1000; | 
|  | const int kMatrixCount = 1000; | 
|  | #endif | 
|  | SkRandom rand; | 
|  |  | 
|  | SkPoint3 randTriples[kTripleCount]; | 
|  | for (int i = 0; i < kTripleCount; ++i) { | 
|  | randTriples[i].fX = rand.nextRangeF(-3000.f, 3000.f); | 
|  | randTriples[i].fY = rand.nextRangeF(-3000.f, 3000.f); | 
|  | randTriples[i].fZ = rand.nextRangeF(-3000.f, 3000.f); | 
|  | } | 
|  |  | 
|  | SkMatrix mats[kMatrixCount]; | 
|  | for (int i = 0; i < kMatrixCount; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // identity | 
|  | { | 
|  | mat.reset(); | 
|  | SkPoint3 dst[kTripleCount]; | 
|  | mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); | 
|  | REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(randTriples, dst, kTripleCount)); | 
|  | } | 
|  |  | 
|  | const SkPoint3 zeros = {0.f, 0.f, 0.f}; | 
|  | // zero matrix | 
|  | { | 
|  | mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); | 
|  | SkPoint3 dst[kTripleCount]; | 
|  | mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); | 
|  | for (int i = 0; i < kTripleCount; ++i) { | 
|  | REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst[i], &zeros, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zero point | 
|  | { | 
|  | for (int i = 0; i < kMatrixCount; ++i) { | 
|  | SkPoint3 dst; | 
|  | mats[i].mapHomogeneousPoints(&dst, &zeros, 1); | 
|  | REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst, &zeros, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // doesn't crash with null dst, src, count == 0 | 
|  | { | 
|  | mats[0].mapHomogeneousPoints(nullptr, nullptr, 0); | 
|  | } | 
|  |  | 
|  | // uniform scale of point | 
|  | { | 
|  | mat.setScale(kScale0, kScale0); | 
|  | SkPoint3 dst; | 
|  | SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; | 
|  | SkPoint pnt; | 
|  | pnt.set(src.fX, src.fY); | 
|  | mat.mapHomogeneousPoints(&dst, &src, 1); | 
|  | mat.mapPoints(&pnt, &pnt, 1); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1)); | 
|  | } | 
|  |  | 
|  | // rotation of point | 
|  | { | 
|  | mat.setRotate(kRotation0); | 
|  | SkPoint3 dst; | 
|  | SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; | 
|  | SkPoint pnt; | 
|  | pnt.set(src.fX, src.fY); | 
|  | mat.mapHomogeneousPoints(&dst, &src, 1); | 
|  | mat.mapPoints(&pnt, &pnt, 1); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1)); | 
|  | } | 
|  |  | 
|  | // rotation, scale, rotation of point | 
|  | { | 
|  | mat.setRotate(kRotation1); | 
|  | mat.postScale(kScale0, kScale0); | 
|  | mat.postRotate(kRotation0); | 
|  | SkPoint3 dst; | 
|  | SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; | 
|  | SkPoint pnt; | 
|  | pnt.set(src.fX, src.fY); | 
|  | mat.mapHomogeneousPoints(&dst, &src, 1); | 
|  | mat.mapPoints(&pnt, &pnt, 1); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1)); | 
|  | } | 
|  |  | 
|  | // compare with naive approach | 
|  | { | 
|  | for (int i = 0; i < kMatrixCount; ++i) { | 
|  | for (int j = 0; j < kTripleCount; ++j) { | 
|  | SkPoint3 dst; | 
|  | mats[i].mapHomogeneousPoints(&dst, &randTriples[j], 1); | 
|  | REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], randTriples[j], dst)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool check_decompScale(const SkMatrix& original) { | 
|  | SkSize scale; | 
|  | SkMatrix remaining; | 
|  |  | 
|  | if (!original.decomposeScale(&scale, &remaining)) { | 
|  | return false; | 
|  | } | 
|  | if (scale.width() <= 0 || scale.height() <= 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // First ensure that the decomposition reconstitutes back to the original | 
|  | { | 
|  | SkMatrix reconstituted = remaining; | 
|  |  | 
|  | // This should be 'preScale' but, due to skbug.com/7211, it is reversed! | 
|  | reconstituted.postScale(scale.width(), scale.height()); | 
|  | if (!nearly_equal(original, reconstituted)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Then push some points through both paths and make sure they are the same. | 
|  | static const int kNumPoints = 5; | 
|  | const SkPoint testPts[kNumPoints] = { | 
|  | {  0.0f,  0.0f }, | 
|  | {  1.0f,  1.0f }, | 
|  | {  1.0f,  0.5f }, | 
|  | { -1.0f, -0.5f }, | 
|  | { -1.0f,  2.0f } | 
|  | }; | 
|  |  | 
|  | SkPoint v1[kNumPoints]; | 
|  | original.mapPoints(v1, testPts, kNumPoints); | 
|  |  | 
|  | SkPoint v2[kNumPoints]; | 
|  | SkMatrix scaleMat = SkMatrix::MakeScale(scale.width(), scale.height()); | 
|  |  | 
|  | // Note, we intend the decomposition to be applied in the order scale and then remainder but, | 
|  | // due to skbug.com/7211, the order is reversed! | 
|  | remaining.mapPoints(v2, testPts, kNumPoints); | 
|  | scaleMat.mapPoints(v2, kNumPoints); | 
|  |  | 
|  | for (int i = 0; i < kNumPoints; ++i) { | 
|  | if (!SkPointPriv::EqualsWithinTolerance(v1[i], v2[i], 0.00001f)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void test_decompScale(skiatest::Reporter* reporter) { | 
|  | SkMatrix m; | 
|  |  | 
|  | m.reset(); | 
|  | REPORTER_ASSERT(reporter, check_decompScale(m)); | 
|  | m.setScale(2, 3); | 
|  | REPORTER_ASSERT(reporter, check_decompScale(m)); | 
|  | m.setRotate(35, 0, 0); | 
|  | REPORTER_ASSERT(reporter, check_decompScale(m)); | 
|  |  | 
|  | m.setScale(1, 0); | 
|  | REPORTER_ASSERT(reporter, !check_decompScale(m)); | 
|  |  | 
|  | m.setRotate(35, 0, 0); | 
|  | m.preScale(2, 3); | 
|  | REPORTER_ASSERT(reporter, check_decompScale(m)); | 
|  |  | 
|  | m.setRotate(35, 0, 0); | 
|  | m.postScale(2, 3); | 
|  | REPORTER_ASSERT(reporter, check_decompScale(m)); | 
|  | } | 
|  |  | 
|  | DEF_TEST(Matrix, reporter) { | 
|  | SkMatrix    mat, inverse, iden1, iden2; | 
|  |  | 
|  | mat.reset(); | 
|  | mat.setTranslate(SK_Scalar1, SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, mat.invert(&inverse)); | 
|  | iden1.setConcat(mat, inverse); | 
|  | REPORTER_ASSERT(reporter, is_identity(iden1)); | 
|  |  | 
|  | mat.setScale(SkIntToScalar(2), SkIntToScalar(4)); | 
|  | REPORTER_ASSERT(reporter, mat.invert(&inverse)); | 
|  | iden1.setConcat(mat, inverse); | 
|  | REPORTER_ASSERT(reporter, is_identity(iden1)); | 
|  | test_flatten(reporter, mat); | 
|  |  | 
|  | mat.setScale(SK_Scalar1/2, SkIntToScalar(2)); | 
|  | REPORTER_ASSERT(reporter, mat.invert(&inverse)); | 
|  | iden1.setConcat(mat, inverse); | 
|  | REPORTER_ASSERT(reporter, is_identity(iden1)); | 
|  | test_flatten(reporter, mat); | 
|  |  | 
|  | mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0); | 
|  | mat.postRotate(SkIntToScalar(25)); | 
|  | REPORTER_ASSERT(reporter, mat.invert(nullptr)); | 
|  | REPORTER_ASSERT(reporter, mat.invert(&inverse)); | 
|  | iden1.setConcat(mat, inverse); | 
|  | REPORTER_ASSERT(reporter, is_identity(iden1)); | 
|  | iden2.setConcat(inverse, mat); | 
|  | REPORTER_ASSERT(reporter, is_identity(iden2)); | 
|  | test_flatten(reporter, mat); | 
|  | test_flatten(reporter, iden2); | 
|  |  | 
|  | mat.setScale(0, SK_Scalar1); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(nullptr)); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(&inverse)); | 
|  | mat.setScale(SK_Scalar1, 0); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(nullptr)); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(&inverse)); | 
|  |  | 
|  | // Inverting this matrix results in a non-finite matrix | 
|  | mat.setAll(0.0f, 1.0f, 2.0f, | 
|  | 0.0f, 1.0f, -3.40277175e+38f, | 
|  | 1.00003040f, 1.0f, 0.0f); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(nullptr)); | 
|  | REPORTER_ASSERT(reporter, !mat.invert(&inverse)); | 
|  |  | 
|  | // rectStaysRect test | 
|  | { | 
|  | static const struct { | 
|  | SkScalar    m00, m01, m10, m11; | 
|  | bool        mStaysRect; | 
|  | } | 
|  | gRectStaysRectSamples[] = { | 
|  | {          0,          0,          0,           0, false }, | 
|  | {          0,          0,          0,  SK_Scalar1, false }, | 
|  | {          0,          0, SK_Scalar1,           0, false }, | 
|  | {          0,          0, SK_Scalar1,  SK_Scalar1, false }, | 
|  | {          0, SK_Scalar1,          0,           0, false }, | 
|  | {          0, SK_Scalar1,          0,  SK_Scalar1, false }, | 
|  | {          0, SK_Scalar1, SK_Scalar1,           0, true }, | 
|  | {          0, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false }, | 
|  | { SK_Scalar1,          0,          0,           0, false }, | 
|  | { SK_Scalar1,          0,          0,  SK_Scalar1, true }, | 
|  | { SK_Scalar1,          0, SK_Scalar1,           0, false }, | 
|  | { SK_Scalar1,          0, SK_Scalar1,  SK_Scalar1, false }, | 
|  | { SK_Scalar1, SK_Scalar1,          0,           0, false }, | 
|  | { SK_Scalar1, SK_Scalar1,          0,  SK_Scalar1, false }, | 
|  | { SK_Scalar1, SK_Scalar1, SK_Scalar1,           0, false }, | 
|  | { SK_Scalar1, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false } | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) { | 
|  | SkMatrix    m; | 
|  |  | 
|  | m.reset(); | 
|  | m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00); | 
|  | m.set(SkMatrix::kMSkewX,  gRectStaysRectSamples[i].m01); | 
|  | m.set(SkMatrix::kMSkewY,  gRectStaysRectSamples[i].m10); | 
|  | m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11); | 
|  | REPORTER_ASSERT(reporter, | 
|  | m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect); | 
|  | } | 
|  | } | 
|  |  | 
|  | mat.reset(); | 
|  | mat.set(SkMatrix::kMScaleX, SkIntToScalar(1)); | 
|  | mat.set(SkMatrix::kMSkewX,  SkIntToScalar(2)); | 
|  | mat.set(SkMatrix::kMTransX, SkIntToScalar(3)); | 
|  | mat.set(SkMatrix::kMSkewY,  SkIntToScalar(4)); | 
|  | mat.set(SkMatrix::kMScaleY, SkIntToScalar(5)); | 
|  | mat.set(SkMatrix::kMTransY, SkIntToScalar(6)); | 
|  | SkScalar affine[6]; | 
|  | REPORTER_ASSERT(reporter, mat.asAffine(affine)); | 
|  |  | 
|  | #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e) | 
|  | REPORTER_ASSERT(reporter, affineEqual(ScaleX)); | 
|  | REPORTER_ASSERT(reporter, affineEqual(SkewY)); | 
|  | REPORTER_ASSERT(reporter, affineEqual(SkewX)); | 
|  | REPORTER_ASSERT(reporter, affineEqual(ScaleY)); | 
|  | REPORTER_ASSERT(reporter, affineEqual(TransX)); | 
|  | REPORTER_ASSERT(reporter, affineEqual(TransY)); | 
|  | #undef affineEqual | 
|  |  | 
|  | mat.set(SkMatrix::kMPersp1, SK_Scalar1 / 2); | 
|  | REPORTER_ASSERT(reporter, !mat.asAffine(affine)); | 
|  |  | 
|  | SkMatrix mat2; | 
|  | mat2.reset(); | 
|  | mat.reset(); | 
|  | SkScalar zero = 0; | 
|  | mat.set(SkMatrix::kMSkewX, -zero); | 
|  | REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); | 
|  |  | 
|  | mat2.reset(); | 
|  | mat.reset(); | 
|  | mat.set(SkMatrix::kMSkewX, SK_ScalarNaN); | 
|  | mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN); | 
|  | REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2)); | 
|  |  | 
|  | test_matrix_min_max_scale(reporter); | 
|  | test_matrix_preserve_shape(reporter); | 
|  | test_matrix_recttorect(reporter); | 
|  | test_matrix_decomposition(reporter); | 
|  | test_matrix_homogeneous(reporter); | 
|  | test_set9(reporter); | 
|  |  | 
|  | test_decompScale(reporter); | 
|  |  | 
|  | mat.setScaleTranslate(2, 3, 1, 4); | 
|  | mat2.setScale(2, 3); | 
|  | mat2.postTranslate(1, 4); | 
|  | REPORTER_ASSERT(reporter, mat == mat2); | 
|  | } | 
|  |  | 
|  | DEF_TEST(Matrix_Concat, r) { | 
|  | SkMatrix a; | 
|  | a.setTranslate(10, 20); | 
|  |  | 
|  | SkMatrix b; | 
|  | b.setScale(3, 5); | 
|  |  | 
|  | SkMatrix expected; | 
|  | expected.setConcat(a,b); | 
|  |  | 
|  | REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b)); | 
|  | } | 
|  |  | 
|  | // Test that all variants of maprect are correct. | 
|  | DEF_TEST(Matrix_maprects, r) { | 
|  | const SkScalar scale = 1000; | 
|  |  | 
|  | SkMatrix mat; | 
|  | mat.setScale(2, 3); | 
|  | mat.postTranslate(1, 4); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 10000; ++i) { | 
|  | SkRect src = SkRect::MakeLTRB(rand.nextSScalar1() * scale, | 
|  | rand.nextSScalar1() * scale, | 
|  | rand.nextSScalar1() * scale, | 
|  | rand.nextSScalar1() * scale); | 
|  | SkRect dst[4]; | 
|  |  | 
|  | mat.mapPoints((SkPoint*)&dst[0].fLeft, (SkPoint*)&src.fLeft, 2); | 
|  | dst[0].sort(); | 
|  | mat.mapRect(&dst[1], src); | 
|  | mat.mapRectScaleTranslate(&dst[2], src); | 
|  | dst[3] = mat.mapRect(src); | 
|  |  | 
|  | REPORTER_ASSERT(r, dst[0] == dst[1]); | 
|  | REPORTER_ASSERT(r, dst[0] == dst[2]); | 
|  | REPORTER_ASSERT(r, dst[0] == dst[3]); | 
|  | } | 
|  |  | 
|  | // We should report nonfinite-ness after a mapping | 
|  | { | 
|  | // We have special-cases in mapRect for different matrix types | 
|  | SkMatrix m0 = SkMatrix::MakeScale(1e20f, 1e20f); | 
|  | SkMatrix m1; m1.setRotate(30); m1.postScale(1e20f, 1e20f); | 
|  |  | 
|  | for (const auto& m : { m0, m1 }) { | 
|  | SkRect rect = { 0, 0, 1e20f, 1e20f }; | 
|  | REPORTER_ASSERT(r, rect.isFinite()); | 
|  | rect = m.mapRect(rect); | 
|  | REPORTER_ASSERT(r, !rect.isFinite()); | 
|  | } | 
|  | } | 
|  | } |