|  | /* | 
|  | * Copyright 2013 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkMipMap.h" | 
|  | #include "SkBitmap.h" | 
|  | #include "SkColorData.h" | 
|  | #include "SkHalf.h" | 
|  | #include "SkMathPriv.h" | 
|  | #include "SkNx.h" | 
|  | #include "SkPM4fPriv.h" | 
|  | #include "SkSRGB.h" | 
|  | #include "SkTypes.h" | 
|  |  | 
|  | // | 
|  | // ColorTypeFilter is the "Type" we pass to some downsample template functions. | 
|  | // It controls how we expand a pixel into a large type, with space between each component, | 
|  | // so we can then perform our simple filter (either box or triangle) and store the intermediates | 
|  | // in the expanded type. | 
|  | // | 
|  |  | 
|  | struct ColorTypeFilter_8888 { | 
|  | typedef uint32_t Type; | 
|  | static Sk4h Expand(uint32_t x) { | 
|  | return SkNx_cast<uint16_t>(Sk4b::Load(&x)); | 
|  | } | 
|  | static uint32_t Compact(const Sk4h& x) { | 
|  | uint32_t r; | 
|  | SkNx_cast<uint8_t>(x).store(&r); | 
|  | return r; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ColorTypeFilter_S32 { | 
|  | typedef uint32_t Type; | 
|  | static Sk4h Expand(uint32_t x) { | 
|  | return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF], | 
|  | sk_linear12_from_srgb[(x >>  8) & 0xFF], | 
|  | sk_linear12_from_srgb[(x >> 16) & 0xFF], | 
|  | (x >> 24) <<   4); | 
|  | } | 
|  | static uint32_t Compact(const Sk4h& x) { | 
|  | return sk_linear12_to_srgb[x[0]]       | | 
|  | sk_linear12_to_srgb[x[1]] <<  8 | | 
|  | sk_linear12_to_srgb[x[2]] << 16 | | 
|  | (x[3] >> 4)               << 24; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ColorTypeFilter_565 { | 
|  | typedef uint16_t Type; | 
|  | static uint32_t Expand(uint16_t x) { | 
|  | return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); | 
|  | } | 
|  | static uint16_t Compact(uint32_t x) { | 
|  | return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ColorTypeFilter_4444 { | 
|  | typedef uint16_t Type; | 
|  | static uint32_t Expand(uint16_t x) { | 
|  | return (x & 0xF0F) | ((x & ~0xF0F) << 12); | 
|  | } | 
|  | static uint16_t Compact(uint32_t x) { | 
|  | return (x & 0xF0F) | ((x >> 12) & ~0xF0F); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ColorTypeFilter_8 { | 
|  | typedef uint8_t Type; | 
|  | static unsigned Expand(unsigned x) { | 
|  | return x; | 
|  | } | 
|  | static uint8_t Compact(unsigned x) { | 
|  | return (uint8_t)x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ColorTypeFilter_F16 { | 
|  | typedef uint64_t Type; // SkHalf x4 | 
|  | static Sk4f Expand(uint64_t x) { | 
|  | return SkHalfToFloat_finite_ftz(x); | 
|  | } | 
|  | static uint64_t Compact(const Sk4f& x) { | 
|  | uint64_t r; | 
|  | SkFloatToHalf_finite_ftz(x).store(&r); | 
|  | return r; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> T add_121(const T& a, const T& b, const T& c) { | 
|  | return a + b + b + c; | 
|  | } | 
|  |  | 
|  | template <typename T> T shift_right(const T& x, int bits) { | 
|  | return x >> bits; | 
|  | } | 
|  |  | 
|  | Sk4f shift_right(const Sk4f& x, int bits) { | 
|  | return x * (1.0f / (1 << bits)); | 
|  | } | 
|  |  | 
|  | template <typename T> T shift_left(const T& x, int bits) { | 
|  | return x << bits; | 
|  | } | 
|  |  | 
|  | Sk4f shift_left(const Sk4f& x, int bits) { | 
|  | return x * (1 << bits); | 
|  | } | 
|  |  | 
|  | // | 
|  | //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) | 
|  | //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) | 
|  | //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, | 
|  | //  else for even cases, we just use a 2x box filter. | 
|  | // | 
|  | //  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of | 
|  | //  src pixels we need to sample in each dimension to produce 1 dst pixel. | 
|  | // | 
|  | //  OpenGL expects a full mipmap stack to contain anisotropic space as well. | 
|  | //  This means a 100x1 image would continue down to a 50x1 image, 25x1 image... | 
|  | //  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. | 
|  |  | 
|  | template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = F::Expand(p0[0]); | 
|  | auto c10 = F::Expand(p1[0]); | 
|  |  | 
|  | auto c = c00 + c10; | 
|  | d[i] = F::Compact(shift_right(c, 1)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = F::Expand(p0[0]); | 
|  | auto c10 = F::Expand(p1[0]); | 
|  | auto c20 = F::Expand(p2[0]); | 
|  |  | 
|  | auto c = add_121(c00, c10, c20); | 
|  | d[i] = F::Compact(shift_right(c, 2)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | p2 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = F::Expand(p0[0]); | 
|  | auto c01 = F::Expand(p0[1]); | 
|  |  | 
|  | auto c = c00 + c01; | 
|  | d[i] = F::Compact(shift_right(c, 1)); | 
|  | p0 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = F::Expand(p0[0]); | 
|  | auto c01 = F::Expand(p0[1]); | 
|  | auto c10 = F::Expand(p1[0]); | 
|  | auto c11 = F::Expand(p1[1]); | 
|  |  | 
|  | auto c = c00 + c10 + c01 + c11; | 
|  | d[i] = F::Compact(shift_right(c, 2)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = F::Expand(p0[0]); | 
|  | auto c01 = F::Expand(p0[1]); | 
|  | auto c10 = F::Expand(p1[0]); | 
|  | auto c11 = F::Expand(p1[1]); | 
|  | auto c20 = F::Expand(p2[0]); | 
|  | auto c21 = F::Expand(p2[1]); | 
|  |  | 
|  | auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); | 
|  | d[i] = F::Compact(shift_right(c, 3)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | p2 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | auto c02 = F::Expand(p0[0]); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto c00 = c02; | 
|  | auto c01 = F::Expand(p0[1]); | 
|  | c02 = F::Expand(p0[2]); | 
|  |  | 
|  | auto c = add_121(c00, c01, c02); | 
|  | d[i] = F::Compact(shift_right(c, 2)); | 
|  | p0 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | // Given pixels: | 
|  | // a0 b0 c0 d0 e0 ... | 
|  | // a1 b1 c1 d1 e1 ... | 
|  | // We want: | 
|  | // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 | 
|  | // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 | 
|  | // ... | 
|  |  | 
|  | auto c0 = F::Expand(p0[0]); | 
|  | auto c1 = F::Expand(p1[0]); | 
|  | auto c = c0 + c1; | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto a = c; | 
|  |  | 
|  | auto b0 = F::Expand(p0[1]); | 
|  | auto b1 = F::Expand(p1[1]); | 
|  | auto b = b0 + b0 + b1 + b1; | 
|  |  | 
|  | c0 = F::Expand(p0[2]); | 
|  | c1 = F::Expand(p1[2]); | 
|  | c = c0 + c1; | 
|  |  | 
|  | auto sum = a + b + c; | 
|  | d[i] = F::Compact(shift_right(sum, 3)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { | 
|  | SkASSERT(count > 0); | 
|  | auto p0 = static_cast<const typename F::Type*>(src); | 
|  | auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); | 
|  | auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); | 
|  | auto d = static_cast<typename F::Type*>(dst); | 
|  |  | 
|  | // Given pixels: | 
|  | // a0 b0 c0 d0 e0 ... | 
|  | // a1 b1 c1 d1 e1 ... | 
|  | // a2 b2 c2 d2 e2 ... | 
|  | // We want: | 
|  | // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 | 
|  | // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 | 
|  | // ... | 
|  |  | 
|  | auto c0 = F::Expand(p0[0]); | 
|  | auto c1 = F::Expand(p1[0]); | 
|  | auto c2 = F::Expand(p2[0]); | 
|  | auto c = add_121(c0, c1, c2); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | auto a = c; | 
|  |  | 
|  | auto b0 = F::Expand(p0[1]); | 
|  | auto b1 = F::Expand(p1[1]); | 
|  | auto b2 = F::Expand(p2[1]); | 
|  | auto b = shift_left(add_121(b0, b1, b2), 1); | 
|  |  | 
|  | c0 = F::Expand(p0[2]); | 
|  | c1 = F::Expand(p1[2]); | 
|  | c2 = F::Expand(p2[2]); | 
|  | c = add_121(c0, c1, c2); | 
|  |  | 
|  | auto sum = a + b + c; | 
|  | d[i] = F::Compact(shift_right(sum, 4)); | 
|  | p0 += 2; | 
|  | p1 += 2; | 
|  | p2 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // Some sRGB specific performance optimizations. | 
|  |  | 
|  | void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) { | 
|  | const uint8_t* p0 = ((const uint8_t*) src); | 
|  | const uint8_t* p1 = ((const uint8_t*) src) + srcRB; | 
|  | uint8_t* d = (uint8_t*) dst; | 
|  |  | 
|  | // Given pixels: | 
|  | // a0 b0 c0 d0 ... | 
|  | // a1 b1 c1 d1 ... | 
|  | // We want: | 
|  | // (a0 + b0 + a1 + b1) / 4 | 
|  | // (c0 + d0 + c1 + d1) / 4 | 
|  | // ... | 
|  | while (count >= 2) { | 
|  | Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], | 
|  | sk_linear12_from_srgb[p0[ 1]], | 
|  | sk_linear12_from_srgb[p0[ 2]], | 
|  | p0[ 3] << 4                  , | 
|  | sk_linear12_from_srgb[p0[ 8]], | 
|  | sk_linear12_from_srgb[p0[ 9]], | 
|  | sk_linear12_from_srgb[p0[10]], | 
|  | p0[11] << 4                 ); | 
|  | Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], | 
|  | sk_linear12_from_srgb[p0[ 5]], | 
|  | sk_linear12_from_srgb[p0[ 6]], | 
|  | p0[ 7] << 4                  , | 
|  | sk_linear12_from_srgb[p0[12]], | 
|  | sk_linear12_from_srgb[p0[13]], | 
|  | sk_linear12_from_srgb[p0[14]], | 
|  | p0[15] << 4                 ); | 
|  | Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], | 
|  | sk_linear12_from_srgb[p1[ 1]], | 
|  | sk_linear12_from_srgb[p1[ 2]], | 
|  | p1[ 3] << 4                  , | 
|  | sk_linear12_from_srgb[p1[ 8]], | 
|  | sk_linear12_from_srgb[p1[ 9]], | 
|  | sk_linear12_from_srgb[p1[10]], | 
|  | p1[11] << 4                 ); | 
|  | Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], | 
|  | sk_linear12_from_srgb[p1[ 5]], | 
|  | sk_linear12_from_srgb[p1[ 6]], | 
|  | p1[ 7] << 4                  , | 
|  | sk_linear12_from_srgb[p1[12]], | 
|  | sk_linear12_from_srgb[p1[13]], | 
|  | sk_linear12_from_srgb[p1[14]], | 
|  | p1[15] << 4                 ); | 
|  |  | 
|  | Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2; | 
|  | d[0] = sk_linear12_to_srgb[avg[0]]; | 
|  | d[1] = sk_linear12_to_srgb[avg[1]]; | 
|  | d[2] = sk_linear12_to_srgb[avg[2]]; | 
|  | d[3] = avg[3] >> 4; | 
|  | d[4] = sk_linear12_to_srgb[avg[4]]; | 
|  | d[5] = sk_linear12_to_srgb[avg[5]]; | 
|  | d[6] = sk_linear12_to_srgb[avg[6]]; | 
|  | d[7] = avg[7] >> 4; | 
|  |  | 
|  | p0 += 16; | 
|  | p1 += 16; | 
|  | d += 8; | 
|  | count -= 2; | 
|  | } | 
|  |  | 
|  | if (count) { | 
|  | downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) { | 
|  | const uint8_t* p0 = ((const uint8_t*) src); | 
|  | const uint8_t* p1 = p0 + srcRB; | 
|  | const uint8_t* p2 = p1 + srcRB; | 
|  | uint8_t* d = (uint8_t*) dst; | 
|  |  | 
|  | // Given pixels: | 
|  | // a0 b0 c0 d0 ... | 
|  | // a1 b1 c1 d1 ... | 
|  | // a2 b2 c2 d2 ... | 
|  | // We want: | 
|  | // (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8 | 
|  | // (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8 | 
|  | // ... | 
|  | while (count >= 2) { | 
|  | Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]], | 
|  | sk_linear12_from_srgb[p0[ 1]], | 
|  | sk_linear12_from_srgb[p0[ 2]], | 
|  | p0[ 3] << 4                  , | 
|  | sk_linear12_from_srgb[p0[ 8]], | 
|  | sk_linear12_from_srgb[p0[ 9]], | 
|  | sk_linear12_from_srgb[p0[10]], | 
|  | p0[11] << 4                 ); | 
|  | Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]], | 
|  | sk_linear12_from_srgb[p0[ 5]], | 
|  | sk_linear12_from_srgb[p0[ 6]], | 
|  | p0[ 7] << 4                  , | 
|  | sk_linear12_from_srgb[p0[12]], | 
|  | sk_linear12_from_srgb[p0[13]], | 
|  | sk_linear12_from_srgb[p0[14]], | 
|  | p0[15] << 4                 ); | 
|  | Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]], | 
|  | sk_linear12_from_srgb[p1[ 1]], | 
|  | sk_linear12_from_srgb[p1[ 2]], | 
|  | p1[ 3] << 4                  , | 
|  | sk_linear12_from_srgb[p1[ 8]], | 
|  | sk_linear12_from_srgb[p1[ 9]], | 
|  | sk_linear12_from_srgb[p1[10]], | 
|  | p1[11] << 4                 ); | 
|  | Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]], | 
|  | sk_linear12_from_srgb[p1[ 5]], | 
|  | sk_linear12_from_srgb[p1[ 6]], | 
|  | p1[ 7] << 4                  , | 
|  | sk_linear12_from_srgb[p1[12]], | 
|  | sk_linear12_from_srgb[p1[13]], | 
|  | sk_linear12_from_srgb[p1[14]], | 
|  | p1[15] << 4                 ); | 
|  | Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]], | 
|  | sk_linear12_from_srgb[p2[ 1]], | 
|  | sk_linear12_from_srgb[p2[ 2]], | 
|  | p2[ 3] << 4                  , | 
|  | sk_linear12_from_srgb[p2[ 8]], | 
|  | sk_linear12_from_srgb[p2[ 9]], | 
|  | sk_linear12_from_srgb[p2[10]], | 
|  | p2[11] << 4                 ); | 
|  | Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]], | 
|  | sk_linear12_from_srgb[p2[ 5]], | 
|  | sk_linear12_from_srgb[p2[ 6]], | 
|  | p2[ 7] << 4                  , | 
|  | sk_linear12_from_srgb[p2[12]], | 
|  | sk_linear12_from_srgb[p2[13]], | 
|  | sk_linear12_from_srgb[p2[14]], | 
|  | p2[15] << 4                 ); | 
|  |  | 
|  | Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3; | 
|  | d[0] = sk_linear12_to_srgb[avg[0]]; | 
|  | d[1] = sk_linear12_to_srgb[avg[1]]; | 
|  | d[2] = sk_linear12_to_srgb[avg[2]]; | 
|  | d[3] = avg[3] >> 4; | 
|  | d[4] = sk_linear12_to_srgb[avg[4]]; | 
|  | d[5] = sk_linear12_to_srgb[avg[5]]; | 
|  | d[6] = sk_linear12_to_srgb[avg[6]]; | 
|  | d[7] = avg[7] >> 4; | 
|  |  | 
|  | p0 += 16; | 
|  | p1 += 16; | 
|  | p2 += 16; | 
|  | d += 8; | 
|  | count -= 2; | 
|  | } | 
|  |  | 
|  | if (count) { | 
|  | downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) { | 
|  | if (levelCount < 0) { | 
|  | return 0; | 
|  | } | 
|  | int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; | 
|  | if (!sk_64_isS32(size)) { | 
|  | return 0; | 
|  | } | 
|  | return sk_64_asS32(size); | 
|  | } | 
|  |  | 
|  | SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode, | 
|  | SkDiscardableFactoryProc fact) { | 
|  | typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); | 
|  |  | 
|  | FilterProc* proc_1_2 = nullptr; | 
|  | FilterProc* proc_1_3 = nullptr; | 
|  | FilterProc* proc_2_1 = nullptr; | 
|  | FilterProc* proc_2_2 = nullptr; | 
|  | FilterProc* proc_2_3 = nullptr; | 
|  | FilterProc* proc_3_1 = nullptr; | 
|  | FilterProc* proc_3_2 = nullptr; | 
|  | FilterProc* proc_3_3 = nullptr; | 
|  |  | 
|  | const SkColorType ct = src.colorType(); | 
|  | const SkAlphaType at = src.alphaType(); | 
|  | const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode) | 
|  | && src.info().gammaCloseToSRGB(); | 
|  |  | 
|  | switch (ct) { | 
|  | case kRGBA_8888_SkColorType: | 
|  | case kBGRA_8888_SkColorType: | 
|  | if (srgbGamma) { | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_S32>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_S32>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_S32>; | 
|  | proc_2_2 = downsample_2_2_srgb; | 
|  | proc_2_3 = downsample_2_3_srgb; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_S32>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_S32>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_S32>; | 
|  | } else { | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; | 
|  | proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; | 
|  | proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; | 
|  | } | 
|  | break; | 
|  | case kRGB_565_SkColorType: | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_565>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_565>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_565>; | 
|  | proc_2_2 = downsample_2_2<ColorTypeFilter_565>; | 
|  | proc_2_3 = downsample_2_3<ColorTypeFilter_565>; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_565>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_565>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_565>; | 
|  | break; | 
|  | case kARGB_4444_SkColorType: | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; | 
|  | proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; | 
|  | proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; | 
|  | break; | 
|  | case kAlpha_8_SkColorType: | 
|  | case kGray_8_SkColorType: | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_8>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_8>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_8>; | 
|  | proc_2_2 = downsample_2_2<ColorTypeFilter_8>; | 
|  | proc_2_3 = downsample_2_3<ColorTypeFilter_8>; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_8>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_8>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_8>; | 
|  | break; | 
|  | case kRGBA_F16_SkColorType: | 
|  | proc_1_2 = downsample_1_2<ColorTypeFilter_F16>; | 
|  | proc_1_3 = downsample_1_3<ColorTypeFilter_F16>; | 
|  | proc_2_1 = downsample_2_1<ColorTypeFilter_F16>; | 
|  | proc_2_2 = downsample_2_2<ColorTypeFilter_F16>; | 
|  | proc_2_3 = downsample_2_3<ColorTypeFilter_F16>; | 
|  | proc_3_1 = downsample_3_1<ColorTypeFilter_F16>; | 
|  | proc_3_2 = downsample_3_2<ColorTypeFilter_F16>; | 
|  | proc_3_3 = downsample_3_3<ColorTypeFilter_F16>; | 
|  | break; | 
|  | default: | 
|  | // TODO: We could build miplevels for kIndex8 if the levels were in 8888. | 
|  | //       Means using more ram, but the quality would be fine. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (src.width() <= 1 && src.height() <= 1) { | 
|  | return nullptr; | 
|  | } | 
|  | // whip through our loop to compute the exact size needed | 
|  | size_t size = 0; | 
|  | int countLevels = ComputeLevelCount(src.width(), src.height()); | 
|  | for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { | 
|  | SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); | 
|  | size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; | 
|  | } | 
|  |  | 
|  | size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size); | 
|  | if (0 == storageSize) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SkMipMap* mipmap; | 
|  | if (fact) { | 
|  | SkDiscardableMemory* dm = fact(storageSize); | 
|  | if (nullptr == dm) { | 
|  | return nullptr; | 
|  | } | 
|  | mipmap = new SkMipMap(storageSize, dm); | 
|  | } else { | 
|  | mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize); | 
|  | } | 
|  |  | 
|  | // init | 
|  | mipmap->fCS = sk_ref_sp(src.info().colorSpace()); | 
|  | mipmap->fCount = countLevels; | 
|  | mipmap->fLevels = (Level*)mipmap->writable_data(); | 
|  | SkASSERT(mipmap->fLevels); | 
|  |  | 
|  | Level* levels = mipmap->fLevels; | 
|  | uint8_t*    baseAddr = (uint8_t*)&levels[countLevels]; | 
|  | uint8_t*    addr = baseAddr; | 
|  | int         width = src.width(); | 
|  | int         height = src.height(); | 
|  | uint32_t    rowBytes; | 
|  | SkPixmap    srcPM(src); | 
|  |  | 
|  | for (int i = 0; i < countLevels; ++i) { | 
|  | FilterProc* proc; | 
|  | if (height & 1) { | 
|  | if (height == 1) {        // src-height is 1 | 
|  | if (width & 1) {      // src-width is 3 | 
|  | proc = proc_3_1; | 
|  | } else {              // src-width is 2 | 
|  | proc = proc_2_1; | 
|  | } | 
|  | } else {                  // src-height is 3 | 
|  | if (width & 1) { | 
|  | if (width == 1) { // src-width is 1 | 
|  | proc = proc_1_3; | 
|  | } else {          // src-width is 3 | 
|  | proc = proc_3_3; | 
|  | } | 
|  | } else {              // src-width is 2 | 
|  | proc = proc_2_3; | 
|  | } | 
|  | } | 
|  | } else {                      // src-height is 2 | 
|  | if (width & 1) { | 
|  | if (width == 1) {     // src-width is 1 | 
|  | proc = proc_1_2; | 
|  | } else {              // src-width is 3 | 
|  | proc = proc_3_2; | 
|  | } | 
|  | } else {                  // src-width is 2 | 
|  | proc = proc_2_2; | 
|  | } | 
|  | } | 
|  | width = SkTMax(1, width >> 1); | 
|  | height = SkTMax(1, height >> 1); | 
|  | rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); | 
|  |  | 
|  | // We make the Info w/o any colorspace, since that storage is not under our control, and | 
|  | // will not be deleted in a controlled fashion. When the caller is given the pixmap for | 
|  | // a given level, we augment this pixmap with fCS (which we do manage). | 
|  | new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); | 
|  | levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(), | 
|  | SkIntToScalar(height) / src.height()); | 
|  |  | 
|  | const SkPixmap& dstPM = levels[i].fPixmap; | 
|  | const void* srcBasePtr = srcPM.addr(); | 
|  | void* dstBasePtr = dstPM.writable_addr(); | 
|  |  | 
|  | const size_t srcRB = srcPM.rowBytes(); | 
|  | for (int y = 0; y < height; y++) { | 
|  | proc(dstBasePtr, srcBasePtr, srcRB, width); | 
|  | srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows | 
|  | dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); | 
|  | } | 
|  | srcPM = dstPM; | 
|  | addr += height * rowBytes; | 
|  | } | 
|  | SkASSERT(addr == baseAddr + size); | 
|  |  | 
|  | SkASSERT(mipmap->fLevels); | 
|  | return mipmap; | 
|  | } | 
|  |  | 
|  | int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) { | 
|  | if (baseWidth < 1 || baseHeight < 1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // OpenGL's spec requires that each mipmap level have height/width equal to | 
|  | // max(1, floor(original_height / 2^i) | 
|  | // (or original_width) where i is the mipmap level. | 
|  | // Continue scaling down until both axes are size 1. | 
|  |  | 
|  | const int largestAxis = SkTMax(baseWidth, baseHeight); | 
|  | if (largestAxis < 2) { | 
|  | // SkMipMap::Build requires a minimum size of 2. | 
|  | return 0; | 
|  | } | 
|  | const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); | 
|  | // If the value 00011010 has 3 leading 0s then it has 5 significant bits | 
|  | // (the bits which are not leading zeros) | 
|  | const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; | 
|  | // This is making the assumption that the size of a byte is 8 bits | 
|  | // and that sizeof(uint32_t)'s implementation-defined behavior is 4. | 
|  | int mipLevelCount = significantBits; | 
|  |  | 
|  | // SkMipMap does not include the base mip level. | 
|  | // For example, it contains levels 1-x instead of 0-x. | 
|  | // This is because the image used to create SkMipMap is the base level. | 
|  | // So subtract 1 from the mip level count. | 
|  | if (mipLevelCount > 0) { | 
|  | --mipLevelCount; | 
|  | } | 
|  |  | 
|  | return mipLevelCount; | 
|  | } | 
|  |  | 
|  | SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { | 
|  | if (baseWidth < 1 || baseHeight < 1) { | 
|  | return SkISize::Make(0, 0); | 
|  | } | 
|  |  | 
|  | int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); | 
|  | if (level >= maxLevelCount || level < 0) { | 
|  | return SkISize::Make(0, 0); | 
|  | } | 
|  | // OpenGL's spec requires that each mipmap level have height/width equal to | 
|  | // max(1, floor(original_height / 2^i) | 
|  | // (or original_width) where i is the mipmap level. | 
|  |  | 
|  | // SkMipMap does not include the base mip level. | 
|  | // For example, it contains levels 1-x instead of 0-x. | 
|  | // This is because the image used to create SkMipMap is the base level. | 
|  | // So subtract 1 from the mip level to get the index stored by SkMipMap. | 
|  | int width = SkTMax(1, baseWidth >> (level + 1)); | 
|  | int height = SkTMax(1, baseHeight >> (level + 1)); | 
|  |  | 
|  | return SkISize::Make(width, height); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const { | 
|  | if (nullptr == fLevels) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); | 
|  |  | 
|  | #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE | 
|  | // Use the smallest scale to match the GPU impl. | 
|  | const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height()); | 
|  | #else | 
|  | // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the | 
|  | // scales can produce some atrocious results, so for now we use the geometric mean. | 
|  | // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) | 
|  | const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height()); | 
|  | #endif | 
|  |  | 
|  | if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar L = -SkScalarLog2(scale); | 
|  | if (!SkScalarIsFinite(L)) { | 
|  | return false; | 
|  | } | 
|  | SkASSERT(L >= 0); | 
|  | int level = SkScalarFloorToInt(L); | 
|  |  | 
|  | SkASSERT(level >= 0); | 
|  | if (level <= 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (level > fCount) { | 
|  | level = fCount; | 
|  | } | 
|  | if (levelPtr) { | 
|  | *levelPtr = fLevels[level - 1]; | 
|  | // need to augment with our colorspace | 
|  | levelPtr->fPixmap.setColorSpace(fCS); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper which extracts a pixmap from the src bitmap | 
|  | // | 
|  | SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode, | 
|  | SkDiscardableFactoryProc fact) { | 
|  | SkPixmap srcPixmap; | 
|  | if (!src.peekPixels(&srcPixmap)) { | 
|  | return nullptr; | 
|  | } | 
|  | return Build(srcPixmap, colorMode, fact); | 
|  | } | 
|  |  | 
|  | int SkMipMap::countLevels() const { | 
|  | return fCount; | 
|  | } | 
|  |  | 
|  | bool SkMipMap::getLevel(int index, Level* levelPtr) const { | 
|  | if (nullptr == fLevels) { | 
|  | return false; | 
|  | } | 
|  | if (index < 0) { | 
|  | return false; | 
|  | } | 
|  | if (index > fCount - 1) { | 
|  | return false; | 
|  | } | 
|  | if (levelPtr) { | 
|  | *levelPtr = fLevels[index]; | 
|  | } | 
|  | return true; | 
|  | } |