|  | /* | 
|  | * Copyright 2012 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkBitmapProcState_opts_SSSE3.h" | 
|  | #include "SkColorPriv.h" | 
|  | #include "SkPaint.h" | 
|  | #include "SkUtils.h" | 
|  |  | 
|  | #include <tmmintrin.h>  // SSSE3 | 
|  |  | 
|  | // adding anonymous namespace seemed to force gcc to inline directly the | 
|  | // instantiation, instead of creating the functions | 
|  | // S32_generic_D32_filter_DX_SSSE3<true> and | 
|  | // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the | 
|  | // external functions. | 
|  | namespace { | 
|  | // In this file, variations for alpha and non alpha versions are implemented | 
|  | // with a template, as it makes the code more compact and a bit easier to | 
|  | // maintain, while making the compiler generate the same exact code as with | 
|  | // two functions that only differ by a few lines. | 
|  |  | 
|  |  | 
|  | // Prepare all necessary constants for a round of processing for two pixel | 
|  | // pairs. | 
|  | // @param xy is the location where the xy parameters for four pixels should be | 
|  | //           read from. It is identical in concept with argument two of | 
|  | //           S32_{opaque}_D32_filter_DX methods. | 
|  | // @param mask_3FFF vector of 32 bit constants containing 3FFF, | 
|  | //                  suitable to mask the bottom 14 bits of a XY value. | 
|  | // @param mask_000F vector of 32 bit constants containing 000F, | 
|  | //                  suitable to mask the bottom 4 bits of a XY value. | 
|  | // @param sixteen_8bit vector of 8 bit components containing the value 16. | 
|  | // @param mask_dist_select vector of 8 bit components containing the shuffling | 
|  | //                         parameters to reorder x[0-3] parameters. | 
|  | // @param all_x_result vector of 8 bit components that will contain the | 
|  | //              (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. | 
|  | // @param sixteen_minus_x vector of 8 bit components, containing | 
|  | //              (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) | 
|  | inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, | 
|  | const __m128i& mask_3FFF, | 
|  | const __m128i& mask_000F, | 
|  | const __m128i& sixteen_8bit, | 
|  | const __m128i& mask_dist_select, | 
|  | __m128i* all_x_result, | 
|  | __m128i* sixteen_minus_x, | 
|  | int* x0, | 
|  | int* x1) { | 
|  | const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); | 
|  |  | 
|  | // 4 delta X | 
|  | // (x03, x02, x01, x00) | 
|  | const __m128i x0_wide = _mm_srli_epi32(xx, 18); | 
|  | // (x13, x12, x11, x10) | 
|  | const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); | 
|  |  | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); | 
|  |  | 
|  | __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); | 
|  |  | 
|  | // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) | 
|  | all_x = _mm_shuffle_epi8(all_x, mask_dist_select); | 
|  |  | 
|  | *all_x_result = all_x; | 
|  | // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) | 
|  | *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); | 
|  | } | 
|  |  | 
|  | // Prepare all necessary constants for a round of processing for two pixel | 
|  | // pairs. | 
|  | // @param xy is the location where the xy parameters for four pixels should be | 
|  | //           read from. It is identical in concept with argument two of | 
|  | //           S32_{opaque}_D32_filter_DXDY methods. | 
|  | // @param mask_3FFF vector of 32 bit constants containing 3FFF, | 
|  | //                  suitable to mask the bottom 14 bits of a XY value. | 
|  | // @param mask_000F vector of 32 bit constants containing 000F, | 
|  | //                  suitable to mask the bottom 4 bits of a XY value. | 
|  | // @param sixteen_8bit vector of 8 bit components containing the value 16. | 
|  | // @param mask_dist_select vector of 8 bit components containing the shuffling | 
|  | //                         parameters to reorder x[0-3] parameters. | 
|  | // @param all_xy_result vector of 8 bit components that will contain the | 
|  | //              (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return. | 
|  | // @param sixteen_minus_x vector of 8 bit components, containing | 
|  | //              (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)). | 
|  | inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy, | 
|  | const __m128i& mask_3FFF, | 
|  | const __m128i& mask_000F, | 
|  | const __m128i& sixteen_8bit, | 
|  | const __m128i& mask_dist_select, | 
|  | __m128i* all_xy_result, | 
|  | __m128i* sixteen_minus_xy, | 
|  | int* xy0, int* xy1) { | 
|  | const __m128i xy_wide = | 
|  | _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); | 
|  |  | 
|  | // (x10, y10, x00, y00) | 
|  | __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18); | 
|  | // (y10, y00, x10, x00) | 
|  | xy0_wide =  _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1)); | 
|  | // (x11, y11, x01, y01) | 
|  | __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF); | 
|  | // (y11, y01, x11, x01) | 
|  | xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1)); | 
|  |  | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide); | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide); | 
|  |  | 
|  | // (x1, y1, x0, y0) | 
|  | __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F); | 
|  | // (y1, y0, x1, x0) | 
|  | all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1)); | 
|  | // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) | 
|  | all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select); | 
|  |  | 
|  | *all_xy_result = all_xy; | 
|  | // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)) | 
|  | *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy); | 
|  | } | 
|  |  | 
|  | // Helper function used when processing one pixel pair. | 
|  | // @param pixel0..3 are the four input pixels | 
|  | // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This | 
|  | //                will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) | 
|  | //                or (4x(x3, 16-x3), 4x(x2, 16-x2)) | 
|  | // @return a vector of 16 bit components containing: | 
|  | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) | 
|  | inline __m128i ProcessPixelPairHelper(uint32_t pixel0, | 
|  | uint32_t pixel1, | 
|  | uint32_t pixel2, | 
|  | uint32_t pixel3, | 
|  | const __m128i& scale_x) { | 
|  | __m128i a0, a1, a2, a3; | 
|  | // Load 2 pairs of pixels | 
|  | a0 = _mm_cvtsi32_si128(pixel0); | 
|  | a1 = _mm_cvtsi32_si128(pixel1); | 
|  |  | 
|  | // Interleave pixels. | 
|  | // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) | 
|  | a0 = _mm_unpacklo_epi8(a0, a1); | 
|  |  | 
|  | a2 = _mm_cvtsi32_si128(pixel2); | 
|  | a3 = _mm_cvtsi32_si128(pixel3); | 
|  | // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) | 
|  | a2 = _mm_unpacklo_epi8(a2, a3); | 
|  |  | 
|  | // two pairs of pixel pairs, interleaved. | 
|  | // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, | 
|  | //  Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) | 
|  | a0 = _mm_unpacklo_epi64(a0, a2); | 
|  |  | 
|  | // multiply and sum to 16 bit components. | 
|  | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) | 
|  | // At that point, we use up a bit less than 12 bits for each 16 bit | 
|  | // component: | 
|  | // All components are less than 255. So, | 
|  | // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. | 
|  | return _mm_maddubs_epi16(a0, scale_x); | 
|  | } | 
|  |  | 
|  | // Scale back the results after multiplications to the [0:255] range, and scale | 
|  | // by alpha when has_alpha is true. | 
|  | // Depending on whether one set or two sets of multiplications had been applied, | 
|  | // the results have to be shifted by four places (dividing by 16), or shifted | 
|  | // by eight places (dividing by 256), since each multiplication is by a quantity | 
|  | // in the range [0:16]. | 
|  | template<bool has_alpha, int scale> | 
|  | inline __m128i ScaleFourPixels(__m128i* pixels, | 
|  | const __m128i& alpha) { | 
|  | // Divide each 16 bit component by 16 (or 256 depending on scale). | 
|  | *pixels = _mm_srli_epi16(*pixels, scale); | 
|  |  | 
|  | if (has_alpha) { | 
|  | // Multiply by alpha. | 
|  | *pixels = _mm_mullo_epi16(*pixels, alpha); | 
|  |  | 
|  | // Divide each 16 bit component by 256. | 
|  | *pixels = _mm_srli_epi16(*pixels, 8); | 
|  | } | 
|  | return *pixels; | 
|  | } | 
|  |  | 
|  | // Wrapper to calculate two output pixels from four input pixels. The | 
|  | // arguments are the same as ProcessPixelPairHelper. Technically, there are | 
|  | // eight input pixels, but since sub_y == 0, the factors applied to half of the | 
|  | // pixels is zero (sub_y), and are therefore omitted here to save on some | 
|  | // processing. | 
|  | // @param alpha when has_alpha is true, scale all resulting components by this | 
|  | //              value. | 
|  | // @return a vector of 16 bit components containing: | 
|  | // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., | 
|  | // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) | 
|  | // otherwise | 
|  | // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) | 
|  | // In both cases, the results are renormalized (divided by 16) to match the | 
|  | // expected formats when storing back the results into memory. | 
|  | template<bool has_alpha> | 
|  | inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, | 
|  | uint32_t pixel1, | 
|  | uint32_t pixel2, | 
|  | uint32_t pixel3, | 
|  | const __m128i& scale_x, | 
|  | const __m128i& alpha) { | 
|  | __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, | 
|  | scale_x); | 
|  | return ScaleFourPixels<has_alpha, 4>(&sum, alpha); | 
|  | } | 
|  |  | 
|  | // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a | 
|  | // time instead of two. As in the above function, only two pixels are needed | 
|  | // to generate a single pixel since sub_y == 0. | 
|  | // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 | 
|  | // 16 bit components are set. | 
|  | template<bool has_alpha> | 
|  | inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, | 
|  | uint32_t pixel1, | 
|  | __m128i scale_x, | 
|  | __m128i alpha) { | 
|  | __m128i a0 = _mm_cvtsi32_si128(pixel0); | 
|  | __m128i a1 = _mm_cvtsi32_si128(pixel1); | 
|  |  | 
|  | // Interleave | 
|  | a0 = _mm_unpacklo_epi8(a0, a1); | 
|  |  | 
|  | // (a0 * (16-x) + a1 * x) | 
|  | __m128i sum = _mm_maddubs_epi16(a0, scale_x); | 
|  |  | 
|  | return ScaleFourPixels<has_alpha, 4>(&sum, alpha); | 
|  | } | 
|  |  | 
|  | // Methods when sub_y != 0 | 
|  |  | 
|  |  | 
|  | // Same as ProcessPixelPairHelper, except that the values are scaled by y. | 
|  | // @param y vector of 16 bit components containing 'y' values. There are two | 
|  | //        cases in practice, where y will contain the sub_y constant, or will | 
|  | //        contain the 16 - sub_y constant. | 
|  | // @return vector of 16 bit components containing: | 
|  | // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) | 
|  | inline __m128i ProcessPixelPair(uint32_t pixel0, | 
|  | uint32_t pixel1, | 
|  | uint32_t pixel2, | 
|  | uint32_t pixel3, | 
|  | const __m128i& scale_x, | 
|  | const __m128i& y) { | 
|  | __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, | 
|  | scale_x); | 
|  |  | 
|  | // first row times 16-y or y depending on whether 'y' represents one or | 
|  | // the other. | 
|  | // Values will be up to 255 * 16 * 16 = 65280. | 
|  | // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , | 
|  | //  y * (Ra0 * (16 - x0) + Ra1 * x0)) | 
|  | sum = _mm_mullo_epi16(sum, y); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | // Process two pixel pairs out of eight input pixels. | 
|  | // In other methods, the distinct pixels are passed one by one, but in this | 
|  | // case, the rows, and index offsets to the pixels into the row are passed | 
|  | // to generate the 8 pixels. | 
|  | // @param row0..1 top and bottom row where to find input pixels. | 
|  | // @param x0..1 offsets into the row for all eight input pixels. | 
|  | // @param all_y vector of 16 bit components containing the constant sub_y | 
|  | // @param neg_y vector of 16 bit components containing the constant 16 - sub_y | 
|  | // @param alpha vector of 16 bit components containing the alpha value to scale | 
|  | //        the results by, when has_alpha is true. | 
|  | // @return | 
|  | // (alpha * ((16-y) * (Aa2  * (16-x1) + Aa3  * x1) + | 
|  | //             y    * (Aa2' * (16-x1) + Aa3' * x1)), | 
|  | // ... | 
|  | //  alpha * ((16-y) * (Ra0  * (16-x0) + Ra1 * x0) + | 
|  | //             y    * (Ra0' * (16-x0) + Ra1' * x0)) | 
|  | // With the factor alpha removed when has_alpha is false. | 
|  | // The values are scaled back to 16 bit components, but with only the bottom | 
|  | // 8 bits being set. | 
|  | template<bool has_alpha> | 
|  | inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, | 
|  | const uint32_t* row1, | 
|  | const int* x0, | 
|  | const int* x1, | 
|  | const __m128i& scale_x, | 
|  | const __m128i& all_y, | 
|  | const __m128i& neg_y, | 
|  | const __m128i& alpha) { | 
|  | __m128i sum0 = ProcessPixelPair( | 
|  | row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], | 
|  | scale_x, neg_y); | 
|  | __m128i sum1 = ProcessPixelPair( | 
|  | row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], | 
|  | scale_x, all_y); | 
|  |  | 
|  | // 2 samples fully summed. | 
|  | // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + | 
|  | //  y * (Aa2' * (16-x1) + Aa3' * x1), | 
|  | // ... | 
|  | //  (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + | 
|  | //  y * (Ra0' * (16-x0) + Ra1' * x0)) | 
|  | // Each component, again can be at most 256 * 255 = 65280, so no overflow. | 
|  | sum0 = _mm_add_epi16(sum0, sum1); | 
|  |  | 
|  | return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); | 
|  | } | 
|  |  | 
|  | // Similar to ProcessTwoPixelPairs except the pixel indexes. | 
|  | template<bool has_alpha> | 
|  | inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00, | 
|  | const uint32_t* row01, | 
|  | const uint32_t* row10, | 
|  | const uint32_t* row11, | 
|  | const int* xy0, | 
|  | const int* xy1, | 
|  | const __m128i& scale_x, | 
|  | const __m128i& all_y, | 
|  | const __m128i& neg_y, | 
|  | const __m128i& alpha) { | 
|  | // first row | 
|  | __m128i sum0 = ProcessPixelPair( | 
|  | row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]], | 
|  | scale_x, neg_y); | 
|  | // second row | 
|  | __m128i sum1 = ProcessPixelPair( | 
|  | row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]], | 
|  | scale_x, all_y); | 
|  |  | 
|  | // 2 samples fully summed. | 
|  | // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) + | 
|  | //  y0 * (Aa2' * (16-x1) + Aa3' * x1), | 
|  | // ... | 
|  | //  (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) + | 
|  | //  y0 * (Ra0' * (16-x0) + Ra1' * x0)) | 
|  | // Each component, again can be at most 256 * 255 = 65280, so no overflow. | 
|  | sum0 = _mm_add_epi16(sum0, sum1); | 
|  |  | 
|  | return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Same as ProcessPixelPair, except that performing the math one output pixel | 
|  | // at a time. This means that only the bottom four 16 bit components are set. | 
|  | inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, | 
|  | const __m128i& scale_x, const __m128i& y) { | 
|  | __m128i a0 = _mm_cvtsi32_si128(pixel0); | 
|  | __m128i a1 = _mm_cvtsi32_si128(pixel1); | 
|  |  | 
|  | // Interleave | 
|  | // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) | 
|  | a0 = _mm_unpacklo_epi8(a0, a1); | 
|  |  | 
|  | // (a0 * (16-x) + a1 * x) | 
|  | a0 = _mm_maddubs_epi16(a0, scale_x); | 
|  |  | 
|  | // scale row by y | 
|  | return _mm_mullo_epi16(a0, y); | 
|  | } | 
|  |  | 
|  | // Notes about the various tricks that are used in this implementation: | 
|  | // - specialization for sub_y == 0. | 
|  | // Statistically, 1/16th of the samples will have sub_y == 0. When this | 
|  | // happens, the math goes from: | 
|  | // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 | 
|  | // to: | 
|  | // (16 - x)*a00 + 16*x*a01 | 
|  | // much simpler. The simplification makes for an easy boost in performance. | 
|  | // - calculating 4 output pixels at a time. | 
|  | //  This allows loading the coefficients x0 and x1 and shuffling them to the | 
|  | // optimum location only once per loop, instead of twice per loop. | 
|  | // This also allows us to store the four pixels with a single store. | 
|  | // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction | 
|  | // version): | 
|  | // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded | 
|  | // in 32 bit values to 8 bit values repeated four times. | 
|  | // _mm_maddubs_epi16 : this allows us to perform multiplications and additions | 
|  | // in one swoop of 8bit values storing the results in 16 bit values. This | 
|  | // instruction is actually crucial for the speed of the implementation since | 
|  | // as one can see in the SSE2 implementation, all inputs have to be used as | 
|  | // 16 bits because the results are 16 bits. This basically allows us to process | 
|  | // twice as many pixel components per iteration. | 
|  | // | 
|  | // As a result, this method behaves faster than the traditional SSE2. The actual | 
|  | // boost varies greatly on the underlying architecture. | 
|  | template<bool has_alpha> | 
|  | void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | SkASSERT(count > 0 && colors != nullptr); | 
|  | SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); | 
|  | SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); | 
|  | if (has_alpha) { | 
|  | SkASSERT(s.fAlphaScale < 256); | 
|  | } else { | 
|  | SkASSERT(s.fAlphaScale == 256); | 
|  | } | 
|  |  | 
|  | const uint8_t* src_addr = | 
|  | static_cast<const uint8_t*>(s.fPixmap.addr()); | 
|  | const size_t rb = s.fPixmap.rowBytes(); | 
|  | const uint32_t XY = *xy++; | 
|  | const unsigned y0 = XY >> 14; | 
|  | const uint32_t* row0 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); | 
|  | const uint32_t* row1 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); | 
|  | const unsigned sub_y = y0 & 0xF; | 
|  |  | 
|  | // vector constants | 
|  | const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, | 
|  | 8,  8,  8,  8, | 
|  | 4,  4,  4,  4, | 
|  | 0,  0,  0,  0); | 
|  | const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); | 
|  | const __m128i mask_000F = _mm_set1_epi32(0x000F); | 
|  | const __m128i sixteen_8bit = _mm_set1_epi8(16); | 
|  | // (0, 0, 0, 0, 0, 0, 0, 0) | 
|  | const __m128i zero = _mm_setzero_si128(); | 
|  |  | 
|  | __m128i alpha = _mm_setzero_si128(); | 
|  | if (has_alpha) { | 
|  | // 8x(alpha) | 
|  | alpha = _mm_set1_epi16(s.fAlphaScale); | 
|  | } | 
|  |  | 
|  | if (sub_y == 0) { | 
|  | // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) | 
|  | while (count > 3) { | 
|  | count -= 4; | 
|  |  | 
|  | int x0[4]; | 
|  | int x1[4]; | 
|  | __m128i all_x, sixteen_minus_x; | 
|  | PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, | 
|  | sixteen_8bit, mask_dist_select, | 
|  | &all_x, &sixteen_minus_x, x0, x1); | 
|  | xy += 4; | 
|  |  | 
|  | // First pair of pixel pairs. | 
|  | // (4x(x1, 16-x1), 4x(x0, 16-x0)) | 
|  | __m128i scale_x; | 
|  | scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); | 
|  |  | 
|  | __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( | 
|  | row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], | 
|  | scale_x, alpha); | 
|  |  | 
|  | // second pair of pixel pairs | 
|  | // (4x (x3, 16-x3), 4x (16-x2, x2)) | 
|  | scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); | 
|  |  | 
|  | __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( | 
|  | row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], | 
|  | scale_x, alpha); | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum0 = _mm_packus_epi16(sum0, sum1); | 
|  |  | 
|  | // Extract low int and store. | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); | 
|  |  | 
|  | colors += 4; | 
|  | } | 
|  |  | 
|  | // handle remainder | 
|  | while (count-- > 0) { | 
|  | uint32_t xx = *xy++;  // x0:14 | 4 | x1:14 | 
|  | unsigned x0 = xx >> 18; | 
|  | unsigned x1 = xx & 0x3FFF; | 
|  |  | 
|  | // 16x(x) | 
|  | const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); | 
|  |  | 
|  | // (16x(16-x)) | 
|  | __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); | 
|  |  | 
|  | scale_x = _mm_unpacklo_epi8(scale_x, all_x); | 
|  |  | 
|  | __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( | 
|  | row0[x0], row0[x1], | 
|  | scale_x, alpha); | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum = _mm_packus_epi16(sum, zero); | 
|  |  | 
|  | // Extract low int and store. | 
|  | *colors++ = _mm_cvtsi128_si32(sum); | 
|  | } | 
|  | } else {  // more general case, y != 0 | 
|  | // 8x(16) | 
|  | const __m128i sixteen_16bit = _mm_set1_epi16(16); | 
|  |  | 
|  | // 8x (y) | 
|  | const __m128i all_y = _mm_set1_epi16(sub_y); | 
|  |  | 
|  | // 8x (16-y) | 
|  | const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); | 
|  |  | 
|  | // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) | 
|  | while (count > 3) { | 
|  | count -= 4; | 
|  |  | 
|  | int x0[4]; | 
|  | int x1[4]; | 
|  | __m128i all_x, sixteen_minus_x; | 
|  | PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, | 
|  | sixteen_8bit, mask_dist_select, | 
|  | &all_x, &sixteen_minus_x, x0, x1); | 
|  | xy += 4; | 
|  |  | 
|  | // First pair of pixel pairs | 
|  | // (4x(x1, 16-x1), 4x(x0, 16-x0)) | 
|  | __m128i scale_x; | 
|  | scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); | 
|  |  | 
|  | __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( | 
|  | row0, row1, x0, x1, | 
|  | scale_x, all_y, neg_y, alpha); | 
|  |  | 
|  | // second pair of pixel pairs | 
|  | // (4x (x3, 16-x3), 4x (16-x2, x2)) | 
|  | scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); | 
|  |  | 
|  | __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( | 
|  | row0, row1, x0 + 2, x1 + 2, | 
|  | scale_x, all_y, neg_y, alpha); | 
|  |  | 
|  | // Do the final packing of the two results | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum0 = _mm_packus_epi16(sum0, sum1); | 
|  |  | 
|  | // Extract low int and store. | 
|  | _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); | 
|  |  | 
|  | colors += 4; | 
|  | } | 
|  |  | 
|  | // Left over. | 
|  | while (count-- > 0) { | 
|  | const uint32_t xx = *xy++;  // x0:14 | 4 | x1:14 | 
|  | const unsigned x0 = xx >> 18; | 
|  | const unsigned x1 = xx & 0x3FFF; | 
|  |  | 
|  | // 16x(x) | 
|  | const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); | 
|  |  | 
|  | // 16x (16-x) | 
|  | __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); | 
|  |  | 
|  | // (8x (x, 16-x)) | 
|  | scale_x = _mm_unpacklo_epi8(scale_x, all_x); | 
|  |  | 
|  | // first row. | 
|  | __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); | 
|  | // second row. | 
|  | __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); | 
|  |  | 
|  | // Add both rows for full sample | 
|  | sum0 = _mm_add_epi16(sum0, sum1); | 
|  |  | 
|  | sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum0 = _mm_packus_epi16(sum0, zero); | 
|  |  | 
|  | // Extract low int and store. | 
|  | *colors++ = _mm_cvtsi128_si32(sum0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the | 
|  | * special case suby == 0 as suby is changing in every loop. | 
|  | */ | 
|  | template<bool has_alpha> | 
|  | void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | SkASSERT(count > 0 && colors != nullptr); | 
|  | SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); | 
|  | SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); | 
|  | if (has_alpha) { | 
|  | SkASSERT(s.fAlphaScale < 256); | 
|  | } else { | 
|  | SkASSERT(s.fAlphaScale == 256); | 
|  | } | 
|  |  | 
|  | const uint8_t* src_addr = | 
|  | static_cast<const uint8_t*>(s.fPixmap.addr()); | 
|  | const size_t rb = s.fPixmap.rowBytes(); | 
|  |  | 
|  | // vector constants | 
|  | const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, | 
|  | 8,  8,  8,  8, | 
|  | 4,  4,  4,  4, | 
|  | 0,  0,  0,  0); | 
|  | const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); | 
|  | const __m128i mask_000F = _mm_set1_epi32(0x000F); | 
|  | const __m128i sixteen_8bit = _mm_set1_epi8(16); | 
|  |  | 
|  | __m128i alpha; | 
|  | if (has_alpha) { | 
|  | // 8x(alpha) | 
|  | alpha = _mm_set1_epi16(s.fAlphaScale); | 
|  | } | 
|  |  | 
|  | // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small) | 
|  | while (count >= 2) { | 
|  | int xy0[4]; | 
|  | int xy1[4]; | 
|  | __m128i all_xy, sixteen_minus_xy; | 
|  | PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F, | 
|  | sixteen_8bit, mask_dist_select, | 
|  | &all_xy, &sixteen_minus_xy, xy0, xy1); | 
|  |  | 
|  | // (4x(x1, 16-x1), 4x(x0, 16-x0)) | 
|  | __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy); | 
|  | // (4x(0, y1), 4x(0, y0)) | 
|  | __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128()); | 
|  | __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y); | 
|  |  | 
|  | const uint32_t* row00 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb); | 
|  | const uint32_t* row01 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb); | 
|  | const uint32_t* row10 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb); | 
|  | const uint32_t* row11 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb); | 
|  |  | 
|  | __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>( | 
|  | row00, row01, row10, row11, xy0, xy1, | 
|  | scale_x, all_y, neg_y, alpha); | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); | 
|  |  | 
|  | // Extract low int and store. | 
|  | _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0); | 
|  |  | 
|  | xy += 4; | 
|  | colors += 2; | 
|  | count -= 2; | 
|  | } | 
|  |  | 
|  | // Handle the remainder | 
|  | while (count-- > 0) { | 
|  | uint32_t data = *xy++; | 
|  | unsigned y0 = data >> 14; | 
|  | unsigned y1 = data & 0x3FFF; | 
|  | unsigned subY = y0 & 0xF; | 
|  | y0 >>= 4; | 
|  |  | 
|  | data = *xy++; | 
|  | unsigned x0 = data >> 14; | 
|  | unsigned x1 = data & 0x3FFF; | 
|  | unsigned subX = x0 & 0xF; | 
|  | x0 >>= 4; | 
|  |  | 
|  | const uint32_t* row0 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + y0 * rb); | 
|  | const uint32_t* row1 = | 
|  | reinterpret_cast<const uint32_t*>(src_addr + y1 * rb); | 
|  |  | 
|  | // 16x(x) | 
|  | const __m128i all_x = _mm_set1_epi8(subX); | 
|  |  | 
|  | // 16x (16-x) | 
|  | __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); | 
|  |  | 
|  | // (8x (x, 16-x)) | 
|  | scale_x = _mm_unpacklo_epi8(scale_x, all_x); | 
|  |  | 
|  | // 8x(16) | 
|  | const __m128i sixteen_16bit = _mm_set1_epi16(16); | 
|  |  | 
|  | // 8x (y) | 
|  | const __m128i all_y = _mm_set1_epi16(subY); | 
|  |  | 
|  | // 8x (16-y) | 
|  | const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); | 
|  |  | 
|  | // first row. | 
|  | __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); | 
|  | // second row. | 
|  | __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); | 
|  |  | 
|  | // Add both rows for full sample | 
|  | sum0 = _mm_add_epi16(sum0, sum1); | 
|  |  | 
|  | sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); | 
|  |  | 
|  | // Pack lower 4 16 bit values of sum into lower 4 bytes. | 
|  | sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); | 
|  |  | 
|  | // Extract low int and store. | 
|  | *colors++ = _mm_cvtsi128_si32(sum0); | 
|  | } | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); | 
|  | } | 
|  |  | 
|  | void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); | 
|  | } | 
|  |  | 
|  | void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors); | 
|  | } | 
|  |  | 
|  | void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, | 
|  | const uint32_t* xy, | 
|  | int count, uint32_t* colors) { | 
|  | S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors); | 
|  | } |