blob: 2cc4b9c8a9ef62a646bb098714ce99ec4841037e [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTypes_DEFINED
#define SkTypes_DEFINED
// IWYU pragma: begin_exports
// In at least two known scenarios when using GCC with libc++:
// * GCC 4.8 targeting ARMv7 with NEON
// * GCC 4.9 targeting ARMv8 64 bit
// we need to typedef float float32_t (or include <arm_neon.h> which does that)
// before #including <memory>. This makes no sense. I'm not very interested in
// understanding why... these are old, bizarre platform configuration that we
// should just let die.
// See https://llvm.org/bugs/show_bug.cgi?id=25608 .
#include <ciso646> // Include something innocuous to define _LIBCPP_VERISON if it's libc++.
#if defined(__GNUC__) && __GNUC__ == 4 \
&& ((defined(__arm__) && (defined(__ARM_NEON__) || defined(__ARM_NEON))) || defined(__aarch64__)) \
&& defined(_LIBCPP_VERSION)
typedef float float32_t;
#include <memory>
#endif
#include "SkPreConfig.h"
#include "SkUserConfig.h"
#include "SkPostConfig.h"
#include <stddef.h>
#include <stdint.h>
// IWYU pragma: end_exports
#include <string.h>
/**
* sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior.
*
* It is undefined behavior to call memcpy() with null dst or src, even if len is 0.
* If an optimizer is "smart" enough, it can exploit this to do unexpected things.
* memcpy(dst, src, 0);
* if (src) {
* printf("%x\n", *src);
* }
* In this code the compiler can assume src is not null and omit the if (src) {...} check,
* unconditionally running the printf, crashing the program if src really is null.
* Of the compilers we pay attention to only GCC performs this optimization in practice.
*/
static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) {
// When we pass >0 len we had better already be passing valid pointers.
// So we just need to skip calling memcpy when len == 0.
if (len) {
memcpy(dst,src,len);
}
return dst;
}
/** \file SkTypes.h
*/
/** See SkGraphics::GetVersion() to retrieve these at runtime
*/
#define SKIA_VERSION_MAJOR 1
#define SKIA_VERSION_MINOR 0
#define SKIA_VERSION_PATCH 0
/*
memory wrappers to be implemented by the porting layer (platform)
*/
/** Called internally if we run out of memory. The platform implementation must
not return, but should either throw an exception or otherwise exit.
*/
SK_API extern void sk_out_of_memory(void);
/** Called internally if we hit an unrecoverable error.
The platform implementation must not return, but should either throw
an exception or otherwise exit.
*/
SK_API extern void sk_abort_no_print(void);
enum {
SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
};
/** Return a block of memory (at least 4-byte aligned) of at least the
specified size. If the requested memory cannot be returned, either
return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
(if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
*/
SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
*/
SK_API extern void* sk_malloc_throw(size_t size);
/** Same as standard realloc(), but this one never returns null on failure. It will throw
an exception if it fails.
*/
SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
/** Free memory returned by sk_malloc(). It is safe to pass null.
*/
SK_API extern void sk_free(void*);
/** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
*/
SK_API extern void* sk_calloc(size_t size);
/** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
*/
SK_API extern void* sk_calloc_throw(size_t size);
// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
static inline void sk_bzero(void* buffer, size_t size) {
// Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0).
if (size) {
memset(buffer, 0, size);
}
}
///////////////////////////////////////////////////////////////////////////////
#ifdef override_GLOBAL_NEW
#include <new>
inline void* operator new(size_t size) {
return sk_malloc_throw(size);
}
inline void operator delete(void* p) {
sk_free(p);
}
#endif
///////////////////////////////////////////////////////////////////////////////
#define SK_INIT_TO_AVOID_WARNING = 0
#ifndef SkDebugf
SK_API void SkDebugf(const char format[], ...);
#endif
#define SkREQUIRE_SEMICOLON_AFTER(code) do { code } while (false)
#define SkASSERT_RELEASE(cond) \
SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { SK_ABORT(#cond); } )
#ifdef SK_DEBUG
#define SkASSERT(cond) \
SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { SK_ABORT("assert(" #cond ")"); })
#define SkASSERTF(cond, fmt, ...) \
SkREQUIRE_SEMICOLON_AFTER(if (!(cond)) { \
SkDebugf(fmt"\n", __VA_ARGS__); \
SK_ABORT("assert(" #cond ")"); \
})
#define SkDEBUGFAIL(message) SK_ABORT(message)
#define SkDEBUGFAILF(fmt, ...) SkASSERTF(false, fmt, ##__VA_ARGS__)
#define SkDEBUGCODE(...) __VA_ARGS__
#define SkDECLAREPARAM(type, var) , type var
#define SkPARAM(var) , var
#define SkDEBUGF(args ) SkDebugf args
#define SkAssertResult(cond) SkASSERT(cond)
#else
#define SkASSERT(cond)
#define SkASSERTF(cond, fmt, ...)
#define SkDEBUGFAIL(message)
#define SkDEBUGFAILF(fmt, ...)
#define SkDEBUGCODE(...)
#define SkDEBUGF(args)
#define SkDECLAREPARAM(type, var)
#define SkPARAM(var)
// unlike SkASSERT, this guy executes its condition in the non-debug build.
// The if is present so that this can be used with functions marked SK_WARN_UNUSED_RESULT.
#define SkAssertResult(cond) if (cond) {} do {} while(false)
#endif
// Legacy macro names for SK_ABORT
#define SkFAIL(message) SK_ABORT(message)
#define sk_throw() SK_ABORT("sk_throw")
#ifdef SK_IGNORE_TO_STRING
#define SK_TO_STRING_NONVIRT()
#define SK_TO_STRING_VIRT()
#define SK_TO_STRING_PUREVIRT()
#define SK_TO_STRING_OVERRIDE()
#else
class SkString;
// the 'toString' helper functions convert Sk* objects to human-readable
// form in developer mode
#define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
#define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
#define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
#define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override;
#endif
/*
* Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab
*
* SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
*
*/
#define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
#define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y
/*
* Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current
* line number. Easy way to construct
* unique names for local functions or
* variables.
*/
#define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__)
/**
* For some classes, it's almost always an error to instantiate one without a name, e.g.
* {
* SkAutoMutexAcquire(&mutex);
* <some code>
* }
* In this case, the writer meant to hold mutex while the rest of the code in the block runs,
* but instead the mutex is acquired and then immediately released. The correct usage is
* {
* SkAutoMutexAcquire lock(&mutex);
* <some code>
* }
*
* To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
* like this:
* class classname {
* <your class>
* };
* #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
*
* This won't work with templates, and you must inline the class' constructors and destructors.
* Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
*/
#define SK_REQUIRE_LOCAL_VAR(classname) \
static_assert(false, "missing name for " #classname)
///////////////////////////////////////////////////////////////////////
/**
* Fast type for signed 8 bits. Use for parameter passing and local variables,
* not for storage.
*/
typedef int S8CPU;
/**
* Fast type for unsigned 8 bits. Use for parameter passing and local
* variables, not for storage
*/
typedef unsigned U8CPU;
/**
* Fast type for signed 16 bits. Use for parameter passing and local variables,
* not for storage
*/
typedef int S16CPU;
/**
* Fast type for unsigned 16 bits. Use for parameter passing and local
* variables, not for storage
*/
typedef unsigned U16CPU;
/**
* Meant to be a small version of bool, for storage purposes. Will be 0 or 1
*/
typedef uint8_t SkBool8;
#include "../private/SkTFitsIn.h"
template <typename D, typename S> D SkTo(S s) {
SkASSERT(SkTFitsIn<D>(s));
return static_cast<D>(s);
}
#define SkToS8(x) SkTo<int8_t>(x)
#define SkToU8(x) SkTo<uint8_t>(x)
#define SkToS16(x) SkTo<int16_t>(x)
#define SkToU16(x) SkTo<uint16_t>(x)
#define SkToS32(x) SkTo<int32_t>(x)
#define SkToU32(x) SkTo<uint32_t>(x)
#define SkToInt(x) SkTo<int>(x)
#define SkToUInt(x) SkTo<unsigned>(x)
#define SkToSizeT(x) SkTo<size_t>(x)
/** Returns 0 or 1 based on the condition
*/
#define SkToBool(cond) ((cond) != 0)
#define SK_MaxS16 32767
#define SK_MinS16 -32767
#define SK_MaxU16 0xFFFF
#define SK_MinU16 0
#define SK_MaxS32 0x7FFFFFFF
#define SK_MinS32 -SK_MaxS32
#define SK_MaxU32 0xFFFFFFFF
#define SK_MinU32 0
#define SK_NaN32 ((int) (1U << 31))
/** Returns true if the value can be represented with signed 16bits
*/
static inline bool SkIsS16(long x) {
return (int16_t)x == x;
}
/** Returns true if the value can be represented with unsigned 16bits
*/
static inline bool SkIsU16(long x) {
return (uint16_t)x == x;
}
static inline int32_t SkLeftShift(int32_t value, int32_t shift) {
return (int32_t) ((uint32_t) value << shift);
}
static inline int64_t SkLeftShift(int64_t value, int32_t shift) {
return (int64_t) ((uint64_t) value << shift);
}
//////////////////////////////////////////////////////////////////////////////
/** Returns the number of entries in an array (not a pointer) */
template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N];
#define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array)))
// Can be used to bracket data types that must be dense, e.g. hash keys.
#if defined(__clang__) // This should work on GCC too, but GCC diagnostic pop didn't seem to work!
#define SK_BEGIN_REQUIRE_DENSE _Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic error \"-Wpadded\"")
#define SK_END_REQUIRE_DENSE _Pragma("GCC diagnostic pop")
#else
#define SK_BEGIN_REQUIRE_DENSE
#define SK_END_REQUIRE_DENSE
#endif
#define SkAlign2(x) (((x) + 1) >> 1 << 1)
#define SkIsAlign2(x) (0 == ((x) & 1))
#define SkAlign4(x) (((x) + 3) >> 2 << 2)
#define SkIsAlign4(x) (0 == ((x) & 3))
#define SkAlign8(x) (((x) + 7) >> 3 << 3)
#define SkIsAlign8(x) (0 == ((x) & 7))
#define SkAlign16(x) (((x) + 15) >> 4 << 4)
#define SkIsAlign16(x) (0 == ((x) & 15))
#define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x))
#define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
typedef uint32_t SkFourByteTag;
#define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
/** 32 bit integer to hold a unicode value
*/
typedef int32_t SkUnichar;
/** 16 bit unsigned integer to hold a glyph index
*/
typedef uint16_t SkGlyphID;
/** 32 bit value to hold a millisecond duration
* Note that SK_MSecMax is about 25 days.
*/
typedef uint32_t SkMSec;
/** 1 second measured in milliseconds
*/
#define SK_MSec1 1000
/** maximum representable milliseconds; 24d 20h 31m 23.647s.
*/
#define SK_MSecMax 0x7FFFFFFF
/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
/** The generation IDs in Skia reserve 0 has an invalid marker.
*/
#define SK_InvalidGenID 0
/** The unique IDs in Skia reserve 0 has an invalid marker.
*/
#define SK_InvalidUniqueID 0
/****************************************************************************
The rest of these only build with C++
*/
#ifdef __cplusplus
/** Faster than SkToBool for integral conditions. Returns 0 or 1
*/
static inline constexpr int Sk32ToBool(uint32_t n) {
return (n | (0-n)) >> 31;
}
/** Generic swap function. Classes with efficient swaps should specialize this function to take
their fast path. This function is used by SkTSort. */
template <typename T> static inline void SkTSwap(T& a, T& b) {
T c(std::move(a));
a = std::move(b);
b = std::move(c);
}
static inline int32_t SkAbs32(int32_t value) {
SkASSERT(value != SK_NaN32); // The most negative int32_t can't be negated.
if (value < 0) {
value = -value;
}
return value;
}
template <typename T> static inline T SkTAbs(T value) {
if (value < 0) {
value = -value;
}
return value;
}
static inline int32_t SkMax32(int32_t a, int32_t b) {
if (a < b)
a = b;
return a;
}
static inline int32_t SkMin32(int32_t a, int32_t b) {
if (a > b)
a = b;
return a;
}
template <typename T> constexpr const T& SkTMin(const T& a, const T& b) {
return (a < b) ? a : b;
}
template <typename T> constexpr const T& SkTMax(const T& a, const T& b) {
return (b < a) ? a : b;
}
static inline int32_t SkSign32(int32_t a) {
return (a >> 31) | ((unsigned) -a >> 31);
}
static inline int32_t SkFastMin32(int32_t value, int32_t max) {
if (value > max) {
value = max;
}
return value;
}
/** Returns value pinned between min and max, inclusively. */
template <typename T> static constexpr const T& SkTPin(const T& value, const T& min, const T& max) {
return SkTMax(SkTMin(value, max), min);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Indicates whether an allocation should count against a cache budget.
*/
enum class SkBudgeted : bool {
kNo = false,
kYes = true
};
/**
* Indicates whether a backing store needs to be an exact match or can be larger
* than is strictly necessary
*/
enum class SkBackingFit {
kApprox,
kExact
};
///////////////////////////////////////////////////////////////////////////////
/** Use to combine multiple bits in a bitmask in a type safe way.
*/
template <typename T>
T SkTBitOr(T a, T b) {
return (T)(a | b);
}
/**
* Use to cast a pointer to a different type, and maintaining strict-aliasing
*/
template <typename Dst> Dst SkTCast(const void* ptr) {
union {
const void* src;
Dst dst;
} data;
data.src = ptr;
return data.dst;
}
//////////////////////////////////////////////////////////////////////////////
/** \class SkNoncopyable
SkNoncopyable is the base class for objects that do not want to
be copied. It hides its copy-constructor and its assignment-operator.
*/
class SK_API SkNoncopyable {
public:
SkNoncopyable() {}
private:
SkNoncopyable(const SkNoncopyable&);
SkNoncopyable& operator=(const SkNoncopyable&);
};
class SkAutoFree : SkNoncopyable {
public:
SkAutoFree() : fPtr(NULL) {}
explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree() { sk_free(fPtr); }
/** Return the currently allocate buffer, or null
*/
void* get() const { return fPtr; }
/** Assign a new ptr allocated with sk_malloc (or null), and return the
previous ptr. Note it is the caller's responsibility to sk_free the
returned ptr.
*/
void* set(void* ptr) {
void* prev = fPtr;
fPtr = ptr;
return prev;
}
/** Transfer ownership of the current ptr to the caller, setting the
internal reference to null. Note the caller is reponsible for calling
sk_free on the returned address.
*/
void* release() { return this->set(NULL); }
/** Free the current buffer, and set the internal reference to NULL. Same
as calling sk_free(release())
*/
void reset() {
sk_free(fPtr);
fPtr = NULL;
}
private:
void* fPtr;
// illegal
SkAutoFree(const SkAutoFree&);
SkAutoFree& operator=(const SkAutoFree&);
};
#define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
/**
* Manage an allocated block of heap memory. This object is the sole manager of
* the lifetime of the block, so the caller must not call sk_free() or delete
* on the block, unless release() was called.
*/
class SkAutoMalloc : SkNoncopyable {
public:
explicit SkAutoMalloc(size_t size = 0) {
fPtr = size ? sk_malloc_throw(size) : NULL;
fSize = size;
}
~SkAutoMalloc() {
sk_free(fPtr);
}
/**
* Passed to reset to specify what happens if the requested size is smaller
* than the current size (and the current block was dynamically allocated).
*/
enum OnShrink {
/**
* If the requested size is smaller than the current size, and the
* current block is dynamically allocated, free the old block and
* malloc a new block of the smaller size.
*/
kAlloc_OnShrink,
/**
* If the requested size is smaller than the current size, and the
* current block is dynamically allocated, just return the old
* block.
*/
kReuse_OnShrink
};
/**
* Reallocates the block to a new size. The ptr may or may not change.
*/
void* reset(size_t size = 0, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) {
if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
if (didChangeAlloc) {
*didChangeAlloc = false;
}
return fPtr;
}
sk_free(fPtr);
fPtr = size ? sk_malloc_throw(size) : NULL;
fSize = size;
if (didChangeAlloc) {
*didChangeAlloc = true;
}
return fPtr;
}
/**
* Return the allocated block.
*/
void* get() { return fPtr; }
const void* get() const { return fPtr; }
/** Transfer ownership of the current ptr to the caller, setting the
internal reference to null. Note the caller is reponsible for calling
sk_free on the returned address.
*/
void* release() {
void* ptr = fPtr;
fPtr = NULL;
fSize = 0;
return ptr;
}
private:
void* fPtr;
size_t fSize; // can be larger than the requested size (see kReuse)
};
#define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
/**
* Manage an allocated block of memory. If the requested size is <= kSizeRequested (or slightly
* more), then the allocation will come from the stack rather than the heap. This object is the
* sole manager of the lifetime of the block, so the caller must not call sk_free() or delete on
* the block.
*/
template <size_t kSizeRequested> class SkAutoSMalloc : SkNoncopyable {
public:
/**
* Creates initially empty storage. get() returns a ptr, but it is to a zero-byte allocation.
* Must call reset(size) to return an allocated block.
*/
SkAutoSMalloc() {
fPtr = fStorage;
fSize = kSize;
}
/**
* Allocate a block of the specified size. If size <= kSizeRequested (or slightly more), then
* the allocation will come from the stack, otherwise it will be dynamically allocated.
*/
explicit SkAutoSMalloc(size_t size) {
fPtr = fStorage;
fSize = kSize;
this->reset(size);
}
/**
* Free the allocated block (if any). If the block was small enough to have been allocated on
* the stack, then this does nothing.
*/
~SkAutoSMalloc() {
if (fPtr != (void*)fStorage) {
sk_free(fPtr);
}
}
/**
* Return the allocated block. May return non-null even if the block is of zero size. Since
* this may be on the stack or dynamically allocated, the caller must not call sk_free() on it,
* but must rely on SkAutoSMalloc to manage it.
*/
void* get() const { return fPtr; }
/**
* Return a new block of the requested size, freeing (as necessary) any previously allocated
* block. As with the constructor, if size <= kSizeRequested (or slightly more) then the return
* block may be allocated locally, rather than from the heap.
*/
void* reset(size_t size,
SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
bool* didChangeAlloc = NULL) {
size = (size < kSize) ? kSize : size;
bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
if (didChangeAlloc) {
*didChangeAlloc = alloc;
}
if (alloc) {
if (fPtr != (void*)fStorage) {
sk_free(fPtr);
}
if (size == kSize) {
SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
fPtr = fStorage;
} else {
fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
fSize = size;
}
SkASSERT(fSize >= size && fSize >= kSize);
SkASSERT((fPtr == fStorage) || fSize > kSize);
return fPtr;
}
private:
// Align up to 32 bits.
static const size_t kSizeAlign4 = SkAlign4(kSizeRequested);
#if defined(GOOGLE3)
// Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions
// have multiple large stack allocations.
static const size_t kMaxBytes = 4 * 1024;
static const size_t kSize = kSizeRequested > kMaxBytes ? kMaxBytes : kSizeAlign4;
#else
static const size_t kSize = kSizeAlign4;
#endif
void* fPtr;
size_t fSize; // can be larger than the requested size (see kReuse)
uint32_t fStorage[kSize >> 2];
};
// Can't guard the constructor because it's a template class.
#endif /* C++ */
#endif