blob: dc553e03772329aa4f03e9d75970a4acfd34ef4c [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkGpuCommandBuffer.h"
#include "GrMesh.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrTextureAccess.h"
#include "GrTexturePriv.h"
#include "GrVkCommandBuffer.h"
#include "GrVkGpu.h"
#include "GrVkPipeline.h"
#include "GrVkRenderPass.h"
#include "GrVkRenderTarget.h"
#include "GrVkResourceProvider.h"
#include "GrVkTexture.h"
void get_vk_load_store_ops(const GrGpuCommandBuffer::LoadAndStoreInfo& info,
VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) {
switch (info.fLoadOp) {
case GrGpuCommandBuffer::LoadOp::kLoad:
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case GrGpuCommandBuffer::LoadOp::kClear:
*loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case GrGpuCommandBuffer::LoadOp::kDiscard:
*loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid LoadOp");
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
}
switch (info.fStoreOp) {
case GrGpuCommandBuffer::StoreOp::kStore:
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
break;
case GrGpuCommandBuffer::StoreOp::kDiscard:
*storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid StoreOp");
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
}
}
GrVkGpuCommandBuffer::GrVkGpuCommandBuffer(GrVkGpu* gpu,
GrVkRenderTarget* target,
const LoadAndStoreInfo& colorInfo,
const LoadAndStoreInfo& stencilInfo)
: fGpu(gpu)
, fRenderTarget(target)
, fIsEmpty(true) {
VkAttachmentLoadOp vkLoadOp;
VkAttachmentStoreOp vkStoreOp;
get_vk_load_store_ops(colorInfo, &vkLoadOp, &vkStoreOp);
GrVkRenderPass::LoadStoreOps vkColorOps(vkLoadOp, vkStoreOp);
get_vk_load_store_ops(stencilInfo, &vkLoadOp, &vkStoreOp);
GrVkRenderPass::LoadStoreOps vkStencilOps(vkLoadOp, vkStoreOp);
GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle = target->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkResolveOps,
vkStencilOps);
} else {
fRenderPass = fGpu->resourceProvider().findRenderPass(*target,
vkColorOps,
vkResolveOps,
vkStencilOps);
}
GrColorToRGBAFloat(colorInfo.fClearColor, fColorClearValue.color.float32);
fCommandBuffer = GrVkSecondaryCommandBuffer::Create(gpu, gpu->cmdPool(), fRenderPass);
fCommandBuffer->begin(gpu, target->framebuffer());
}
GrVkGpuCommandBuffer::~GrVkGpuCommandBuffer() {
fCommandBuffer->unref(fGpu);
fRenderPass->unref(fGpu);
}
GrGpu* GrVkGpuCommandBuffer::gpu() { return fGpu; }
void GrVkGpuCommandBuffer::end() {
fCommandBuffer->end(fGpu);
}
void GrVkGpuCommandBuffer::onSubmit(const SkIRect& bounds) {
// Change layout of our render target so it can be used as the color attachment
fRenderTarget->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
false);
// If we are using a stencil attachment we also need to update its layout
if (GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment()) {
GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil;
vkStencil->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
false);
}
for (int i = 0; i < fSampledImages.count(); ++i) {
fSampledImages[i]->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
false);
}
fGpu->submitSecondaryCommandBuffer(fCommandBuffer, fRenderPass, &fColorClearValue,
fRenderTarget, bounds);
}
void GrVkGpuCommandBuffer::onClearStencilClip(GrRenderTarget* target,
const SkIRect& rect,
bool insideClip) {
SkASSERT(target);
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(target);
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
int stencilBitCount = sb->bits();
// The contract with the callers does not guarantee that we preserve all bits in the stencil
// during this clear. Thus we will clear the entire stencil to the desired value.
VkClearDepthStencilValue vkStencilColor;
memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue));
if (insideClip) {
vkStencilColor.stencil = (1 << (stencilBitCount - 1));
} else {
vkStencilColor.stencil = 0;
}
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect = rect;
if (kBottomLeft_GrSurfaceOrigin == vkRT->origin()) {
vkRect.fTop = vkRT->height() - rect.fBottom;
vkRect.fBottom = vkRT->height() - rect.fTop;
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t stencilIndex;
SkAssertResult(fRenderPass->stencilAttachmentIndex(&stencilIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
attachment.colorAttachment = 0; // this value shouldn't matter
attachment.clearValue.depthStencil = vkStencilColor;
fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
fIsEmpty = false;
}
void GrVkGpuCommandBuffer::onClear(GrRenderTarget* target, const SkIRect& rect, GrColor color) {
// parent class should never let us get here with no RT
SkASSERT(target);
VkClearColorValue vkColor;
GrColorToRGBAFloat(color, vkColor.float32);
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(target);
if (fIsEmpty && rect.width() == target->width() && rect.height() == target->height()) {
// We will change the render pass to do a clear load instead
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkRenderPass* oldRP = fRenderPass;
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkResolveOps,
vkStencilOps);
} else {
fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkResolveOps,
vkStencilOps);
}
SkASSERT(fRenderPass->isCompatible(*oldRP));
oldRP->unref(fGpu);
GrColorToRGBAFloat(color, fColorClearValue.color.float32);
return;
}
// We always do a sub rect clear with clearAttachments since we are inside a render pass
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect = rect;
if (kBottomLeft_GrSurfaceOrigin == vkRT->origin()) {
vkRect.fTop = vkRT->height() - rect.fBottom;
vkRect.fBottom = vkRT->height() - rect.fTop;
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t colorIndex;
SkAssertResult(fRenderPass->colorAttachmentIndex(&colorIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = colorIndex;
attachment.clearValue.color = vkColor;
fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
fIsEmpty = false;
return;
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuCommandBuffer::bindGeometry(const GrPrimitiveProcessor& primProc,
const GrNonInstancedMesh& mesh) {
// There is no need to put any memory barriers to make sure host writes have finished here.
// When a command buffer is submitted to a queue, there is an implicit memory barrier that
// occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of
// an active RenderPass.
GrVkVertexBuffer* vbuf;
vbuf = (GrVkVertexBuffer*)mesh.vertexBuffer();
SkASSERT(vbuf);
SkASSERT(!vbuf->isMapped());
fCommandBuffer->bindVertexBuffer(fGpu, vbuf);
if (mesh.isIndexed()) {
GrVkIndexBuffer* ibuf = (GrVkIndexBuffer*)mesh.indexBuffer();
SkASSERT(ibuf);
SkASSERT(!ibuf->isMapped());
fCommandBuffer->bindIndexBuffer(fGpu, ibuf);
}
}
sk_sp<GrVkPipelineState> GrVkGpuCommandBuffer::prepareDrawState(
const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
GrPrimitiveType primitiveType,
const GrVkRenderPass& renderPass) {
sk_sp<GrVkPipelineState> pipelineState =
fGpu->resourceProvider().findOrCreateCompatiblePipelineState(pipeline,
primProc,
primitiveType,
renderPass);
if (!pipelineState) {
return pipelineState;
}
pipelineState->setData(fGpu, primProc, pipeline);
pipelineState->bind(fGpu, fCommandBuffer);
GrVkPipeline::SetDynamicState(fGpu, fCommandBuffer, pipeline);
return pipelineState;
}
static void append_sampled_images(const GrProcessor& processor,
const GrVkGpu* gpu,
SkTArray<GrVkImage*>* sampledImages) {
if (int numTextures = processor.numTextures()) {
GrVkImage** images = sampledImages->push_back_n(numTextures);
int i = 0;
do {
const GrTextureAccess& texAccess = processor.textureAccess(i);
GrVkTexture* vkTexture = static_cast<GrVkTexture*>(processor.texture(i));
SkASSERT(vkTexture);
const GrTextureParams& params = texAccess.getParams();
// Check if we need to regenerate any mip maps
if (GrTextureParams::kMipMap_FilterMode == params.filterMode()) {
if (vkTexture->texturePriv().mipMapsAreDirty()) {
gpu->generateMipmap(vkTexture);
vkTexture->texturePriv().dirtyMipMaps(false);
}
}
images[i] = vkTexture;
} while (++i < numTextures);
}
}
void GrVkGpuCommandBuffer::onDraw(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrMesh* meshes,
int meshCount) {
if (!meshCount) {
return;
}
GrRenderTarget* rt = pipeline.getRenderTarget();
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
const GrVkRenderPass* renderPass = vkRT->simpleRenderPass();
SkASSERT(renderPass);
GrPrimitiveType primitiveType = meshes[0].primitiveType();
sk_sp<GrVkPipelineState> pipelineState = this->prepareDrawState(pipeline,
primProc,
primitiveType,
*renderPass);
if (!pipelineState) {
return;
}
append_sampled_images(primProc, fGpu, &fSampledImages);
for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) {
append_sampled_images(pipeline.getFragmentProcessor(i), fGpu, &fSampledImages);
}
append_sampled_images(pipeline.getXferProcessor(), fGpu, &fSampledImages);
for (int i = 0; i < meshCount; ++i) {
const GrMesh& mesh = meshes[i];
GrMesh::Iterator iter;
const GrNonInstancedMesh* nonIdxMesh = iter.init(mesh);
do {
if (nonIdxMesh->primitiveType() != primitiveType) {
// Technically we don't have to call this here (since there is a safety check in
// pipelineState:setData but this will allow for quicker freeing of resources if the
// pipelineState sits in a cache for a while.
pipelineState->freeTempResources(fGpu);
SkDEBUGCODE(pipelineState = nullptr);
primitiveType = nonIdxMesh->primitiveType();
pipelineState = this->prepareDrawState(pipeline,
primProc,
primitiveType,
*renderPass);
if (!pipelineState) {
return;
}
}
SkASSERT(pipelineState);
this->bindGeometry(primProc, *nonIdxMesh);
if (nonIdxMesh->isIndexed()) {
fCommandBuffer->drawIndexed(fGpu,
nonIdxMesh->indexCount(),
1,
nonIdxMesh->startIndex(),
nonIdxMesh->startVertex(),
0);
} else {
fCommandBuffer->draw(fGpu,
nonIdxMesh->vertexCount(),
1,
nonIdxMesh->startVertex(),
0);
}
fIsEmpty = false;
fGpu->stats()->incNumDraws();
} while ((nonIdxMesh = iter.next()));
}
// Technically we don't have to call this here (since there is a safety check in
// pipelineState:setData but this will allow for quicker freeing of resources if the
// pipelineState sits in a cache for a while.
pipelineState->freeTempResources(fGpu);
}