blob: 900b367b5d0a926f1e296c0724b90df5d39d8bb1 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapCache.h"
#include "SkBitmapController.h"
#include "SkBitmapProcState.h"
#include "SkColorPriv.h"
#include "SkFilterProc.h"
#include "SkPaint.h"
#include "SkShader.h" // for tilemodes
#include "SkUtilsArm.h"
#include "SkBitmapScaler.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkImageEncoder.h"
#include "SkResourceCache.h"
#if defined(SK_ARM_HAS_NEON)
// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*);
extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int);
extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int);
extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*);
extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const void *, int, int, uint32_t*, int);
extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const void*, int, int, uint32_t*, int);
#endif
extern void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void*, int, int, uint32_t*, int);
#define NAME_WRAP(x) x
#include "SkBitmapProcState_filter.h"
#include "SkBitmapProcState_procs.h"
SkBitmapProcInfo::SkBitmapProcInfo(const SkBitmapProvider& provider,
SkShader::TileMode tmx, SkShader::TileMode tmy,
SkSourceGammaTreatment treatment)
: fProvider(provider)
, fTileModeX(tmx)
, fTileModeY(tmy)
, fSrcGammaTreatment(treatment)
, fBMState(nullptr)
{}
SkBitmapProcInfo::SkBitmapProcInfo(const SkBitmap& bm,
SkShader::TileMode tmx, SkShader::TileMode tmy,
SkSourceGammaTreatment treatment)
: fProvider(SkBitmapProvider(bm))
, fTileModeX(tmx)
, fTileModeY(tmy)
, fSrcGammaTreatment(treatment)
, fBMState(nullptr)
{}
SkBitmapProcInfo::~SkBitmapProcInfo() {
SkInPlaceDeleteCheck(fBMState, fBMStateStorage.get());
}
///////////////////////////////////////////////////////////////////////////////
// true iff the matrix contains, at most, scale and translate elements
static bool matrix_only_scale_translate(const SkMatrix& m) {
return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask);
}
/**
* For the purposes of drawing bitmaps, if a matrix is "almost" translate
* go ahead and treat it as if it were, so that subsequent code can go fast.
*/
static bool just_trans_clamp(const SkMatrix& matrix, const SkPixmap& pixmap) {
SkASSERT(matrix_only_scale_translate(matrix));
if (matrix.getType() & SkMatrix::kScale_Mask) {
SkRect dst;
SkRect src = SkRect::Make(pixmap.bounds());
// Can't call mapRect(), since that will fix up inverted rectangles,
// e.g. when scale is negative, and we don't want to return true for
// those.
matrix.mapPoints(SkTCast<SkPoint*>(&dst),
SkTCast<const SkPoint*>(&src),
2);
// Now round all 4 edges to device space, and then compare the device
// width/height to the original. Note: we must map all 4 and subtract
// rather than map the "width" and compare, since we care about the
// phase (in pixel space) that any translate in the matrix might impart.
SkIRect idst;
dst.round(&idst);
return idst.width() == pixmap.width() && idst.height() == pixmap.height();
}
// if we got here, we're either kTranslate_Mask or identity
return true;
}
static bool just_trans_general(const SkMatrix& matrix) {
SkASSERT(matrix_only_scale_translate(matrix));
if (matrix.getType() & SkMatrix::kScale_Mask) {
const SkScalar tol = SK_Scalar1 / 32768;
if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) {
return false;
}
if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) {
return false;
}
}
// if we got here, treat us as either kTranslate_Mask or identity
return true;
}
static bool valid_for_filtering(unsigned dimension) {
// for filtering, width and height must fit in 14bits, since we use steal
// 2 bits from each to store our 4bit subpixel data
return (dimension & ~0x3FFF) == 0;
}
bool SkBitmapProcInfo::init(const SkMatrix& inv, const SkPaint& paint) {
const int origW = fProvider.info().width();
const int origH = fProvider.info().height();
fPixmap.reset();
fInvMatrix = inv;
fFilterQuality = paint.getFilterQuality();
bool allow_ignore_fractional_translate = true; // historical default
if (kMedium_SkFilterQuality == fFilterQuality) {
allow_ignore_fractional_translate = false;
}
SkDefaultBitmapController controller(fSrcGammaTreatment);
fBMState = controller.requestBitmap(fProvider, inv, paint.getFilterQuality(),
fBMStateStorage.get(), fBMStateStorage.size());
// Note : we allow the controller to return an empty (zero-dimension) result. Should we?
if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) {
return false;
}
fPixmap = fBMState->pixmap();
fInvMatrix = fBMState->invMatrix();
fRealInvMatrix = fBMState->invMatrix();
fPaintColor = paint.getColor();
fFilterQuality = fBMState->quality();
SkASSERT(fPixmap.addr());
bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
SkShader::kClamp_TileMode == fTileModeY;
// Most of the scanline procs deal with "unit" texture coordinates, as this
// makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate
// those, we divide the matrix by its dimensions here.
//
// We don't do this if we're either trivial (can ignore the matrix) or clamping
// in both X and Y since clamping to width,height is just as easy as to 0xFFFF.
if (!(clampClamp || trivialMatrix)) {
fInvMatrix.postIDiv(fPixmap.width(), fPixmap.height());
}
// Now that all possible changes to the matrix have taken place, check
// to see if we're really close to a no-scale matrix. If so, explicitly
// set it to be so. Subsequent code may inspect this matrix to choose
// a faster path in this case.
// This code will only execute if the matrix has some scale component;
// if it's already pure translate then we won't do this inversion.
if (matrix_only_scale_translate(fInvMatrix)) {
SkMatrix forward;
if (fInvMatrix.invert(&forward)) {
if ((clampClamp && allow_ignore_fractional_translate)
? just_trans_clamp(forward, fPixmap)
: just_trans_general(forward)) {
fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY());
}
}
}
fInvType = fInvMatrix.getType();
// If our target pixmap is the same as the original, then we revert back to legacy behavior
// and allow the code to ignore fractional translate.
//
// The width/height check allows allow_ignore_fractional_translate to stay false if we
// previously set it that way (e.g. we started in kMedium).
//
if (fPixmap.width() == origW && fPixmap.height() == origH) {
allow_ignore_fractional_translate = true;
}
if (kLow_SkFilterQuality == fFilterQuality && allow_ignore_fractional_translate) {
// Only try bilerp if the matrix is "interesting" and
// the image has a suitable size.
if (fInvType <= SkMatrix::kTranslate_Mask ||
!valid_for_filtering(fPixmap.width() | fPixmap.height()))
{
fFilterQuality = kNone_SkFilterQuality;
}
}
return true;
}
/*
* Analyze filter-quality and matrix, and decide how to implement that.
*
* In general, we cascade down the request level [ High ... None ]
* - for a given level, if we can fulfill it, fine, else
* - else we downgrade to the next lower level and try again.
* We can always fulfill requests for Low and None
* - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack
* and may be removed.
*/
bool SkBitmapProcState::chooseProcs() {
fInvProc = fInvMatrix.getMapXYProc();
fInvSx = SkScalarToFixed(fInvMatrix.getScaleX());
fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
fInvKy = SkScalarToFixed(fInvMatrix.getSkewY());
fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY());
fAlphaScale = SkAlpha255To256(SkColorGetA(fPaintColor));
fShaderProc32 = nullptr;
fShaderProc16 = nullptr;
fSampleProc32 = nullptr;
const bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
const bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
SkShader::kClamp_TileMode == fTileModeY;
return this->chooseScanlineProcs(trivialMatrix, clampClamp);
}
bool SkBitmapProcState::chooseScanlineProcs(bool trivialMatrix, bool clampClamp) {
fMatrixProc = this->chooseMatrixProc(trivialMatrix);
// TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns nullptr.
if (nullptr == fMatrixProc) {
return false;
}
///////////////////////////////////////////////////////////////////////
const SkAlphaType at = fPixmap.alphaType();
// No need to do this if we're doing HQ sampling; if filter quality is
// still set to HQ by the time we get here, then we must have installed
// the shader procs above and can skip all this.
if (fFilterQuality < kHigh_SkFilterQuality) {
int index = 0;
if (fAlphaScale < 256) { // note: this distinction is not used for D16
index |= 1;
}
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
index |= 2;
}
if (fFilterQuality > kNone_SkFilterQuality) {
index |= 4;
}
// bits 3,4,5 encoding the source bitmap format
switch (fPixmap.colorType()) {
case kN32_SkColorType:
if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
return false;
}
index |= 0;
break;
case kRGB_565_SkColorType:
index |= 8;
break;
case kIndex_8_SkColorType:
if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
return false;
}
index |= 16;
break;
case kARGB_4444_SkColorType:
if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
return false;
}
index |= 24;
break;
case kAlpha_8_SkColorType:
index |= 32;
fPaintPMColor = SkPreMultiplyColor(fPaintColor);
break;
case kGray_8_SkColorType:
index |= 40;
fPaintPMColor = SkPreMultiplyColor(fPaintColor);
break;
default:
// TODO(dominikg): Should we ever get here? SkASSERT(false) instead?
return false;
}
#if !defined(SK_ARM_HAS_NEON)
static const SampleProc32 gSkBitmapProcStateSample32[] = {
S32_opaque_D32_nofilter_DXDY,
S32_alpha_D32_nofilter_DXDY,
S32_opaque_D32_nofilter_DX,
S32_alpha_D32_nofilter_DX,
S32_opaque_D32_filter_DXDY,
S32_alpha_D32_filter_DXDY,
S32_opaque_D32_filter_DX,
S32_alpha_D32_filter_DX,
S16_opaque_D32_nofilter_DXDY,
S16_alpha_D32_nofilter_DXDY,
S16_opaque_D32_nofilter_DX,
S16_alpha_D32_nofilter_DX,
S16_opaque_D32_filter_DXDY,
S16_alpha_D32_filter_DXDY,
S16_opaque_D32_filter_DX,
S16_alpha_D32_filter_DX,
SI8_opaque_D32_nofilter_DXDY,
SI8_alpha_D32_nofilter_DXDY,
SI8_opaque_D32_nofilter_DX,
SI8_alpha_D32_nofilter_DX,
SI8_opaque_D32_filter_DXDY,
SI8_alpha_D32_filter_DXDY,
SI8_opaque_D32_filter_DX,
SI8_alpha_D32_filter_DX,
S4444_opaque_D32_nofilter_DXDY,
S4444_alpha_D32_nofilter_DXDY,
S4444_opaque_D32_nofilter_DX,
S4444_alpha_D32_nofilter_DX,
S4444_opaque_D32_filter_DXDY,
S4444_alpha_D32_filter_DXDY,
S4444_opaque_D32_filter_DX,
S4444_alpha_D32_filter_DX,
// A8 treats alpha/opaque the same (equally efficient)
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DX,
SA8_alpha_D32_filter_DX,
// todo: possibly specialize on opaqueness
SG8_alpha_D32_nofilter_DXDY,
SG8_alpha_D32_nofilter_DXDY,
SG8_alpha_D32_nofilter_DX,
SG8_alpha_D32_nofilter_DX,
SG8_alpha_D32_filter_DXDY,
SG8_alpha_D32_filter_DXDY,
SG8_alpha_D32_filter_DX,
SG8_alpha_D32_filter_DX
};
#endif
fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];
index >>= 1; // shift away any opaque/alpha distinction
// our special-case shaderprocs
if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) {
fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc);
} else if (S32_opaque_D32_nofilter_DX == fSampleProc32 && clampClamp) {
fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc;
}
if (nullptr == fShaderProc32) {
fShaderProc32 = this->chooseShaderProc32();
}
}
// see if our platform has any accelerated overrides
this->platformProcs();
return true;
}
static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(kNone_SkFilterQuality == s.fFilterQuality);
const int maxX = s.fPixmap.width() - 1;
const int maxY = s.fPixmap.height() - 1;
int ix = s.fFilterOneX + x;
int iy = SkClampMax(s.fFilterOneY + y, maxY);
const SkPMColor* row = s.fPixmap.addr32(0, iy);
// clamp to the left
if (ix < 0) {
int n = SkMin32(-ix, count);
sk_memset32(colors, row[0], n);
count -= n;
if (0 == count) {
return;
}
colors += n;
SkASSERT(-ix == n);
ix = 0;
}
// copy the middle
if (ix <= maxX) {
int n = SkMin32(maxX - ix + 1, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
}
SkASSERT(count > 0);
// clamp to the right
sk_memset32(colors, row[maxX], count);
}
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
static inline int sk_int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(kNone_SkFilterQuality == s.fFilterQuality);
const int stopX = s.fPixmap.width();
const int stopY = s.fPixmap.height();
int ix = s.fFilterOneX + x;
int iy = sk_int_mod(s.fFilterOneY + y, stopY);
const SkPMColor* row = s.fPixmap.addr32(0, iy);
ix = sk_int_mod(ix, stopX);
for (;;) {
int n = SkMin32(stopX - ix, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
ix = 0;
}
}
static void S32_D32_constX_shaderproc(const void* sIn,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(1 == s.fPixmap.width());
int iY0;
int iY1 SK_INIT_TO_AVOID_WARNING;
int iSubY SK_INIT_TO_AVOID_WARNING;
if (kNone_SkFilterQuality != s.fFilterQuality) {
SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
uint32_t xy[2];
mproc(s, xy, 1, x, y);
iY0 = xy[0] >> 18;
iY1 = xy[0] & 0x3FFF;
iSubY = (xy[0] >> 14) & 0xF;
} else {
int yTemp;
if (s.fInvType > SkMatrix::kTranslate_Mask) {
const SkBitmapProcStateAutoMapper mapper(s, x, y);
// When the matrix has a scale component the setup code in
// chooseProcs multiples the inverse matrix by the inverse of the
// bitmap's width and height. Since this method is going to do
// its own tiling and sampling we need to undo that here.
if (SkShader::kClamp_TileMode != s.fTileModeX ||
SkShader::kClamp_TileMode != s.fTileModeY) {
yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
} else {
yTemp = mapper.intY();
}
} else {
yTemp = s.fFilterOneY + y;
}
const int stopY = s.fPixmap.height();
switch (s.fTileModeY) {
case SkShader::kClamp_TileMode:
iY0 = SkClampMax(yTemp, stopY-1);
break;
case SkShader::kRepeat_TileMode:
iY0 = sk_int_mod(yTemp, stopY);
break;
case SkShader::kMirror_TileMode:
default:
iY0 = sk_int_mirror(yTemp, stopY);
break;
}
#ifdef SK_DEBUG
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
int iY2;
if (s.fInvType > SkMatrix::kTranslate_Mask &&
(SkShader::kClamp_TileMode != s.fTileModeX ||
SkShader::kClamp_TileMode != s.fTileModeY)) {
iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
} else {
iY2 = mapper.intY();
}
switch (s.fTileModeY) {
case SkShader::kClamp_TileMode:
iY2 = SkClampMax(iY2, stopY-1);
break;
case SkShader::kRepeat_TileMode:
iY2 = sk_int_mod(iY2, stopY);
break;
case SkShader::kMirror_TileMode:
default:
iY2 = sk_int_mirror(iY2, stopY);
break;
}
SkASSERT(iY0 == iY2);
}
#endif
}
const SkPMColor* row0 = s.fPixmap.addr32(0, iY0);
SkPMColor color;
if (kNone_SkFilterQuality != s.fFilterQuality) {
const SkPMColor* row1 = s.fPixmap.addr32(0, iY1);
if (s.fAlphaScale < 256) {
Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
} else {
Filter_32_opaque(iSubY, *row0, *row1, &color);
}
} else {
if (s.fAlphaScale < 256) {
color = SkAlphaMulQ(*row0, s.fAlphaScale);
} else {
color = *row0;
}
}
sk_memset32(colors, color, count);
}
static void DoNothing_shaderproc(const void*, int x, int y,
SkPMColor* SK_RESTRICT colors, int count) {
// if we get called, the matrix is too tricky, so we just draw nothing
sk_memset32(colors, 0, count);
}
bool SkBitmapProcState::setupForTranslate() {
SkPoint pt;
const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt);
/*
* if the translate is larger than our ints, we can get random results, or
* worse, we might get 0x80000000, which wreaks havoc on us, since we can't
* negate it.
*/
const SkScalar too_big = SkIntToScalar(1 << 30);
if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
return false;
}
// Since we know we're not filtered, we re-purpose these fields allow
// us to go from device -> src coordinates w/ just an integer add,
// rather than running through the inverse-matrix
fFilterOneX = mapper.intX();
fFilterOneY = mapper.intY();
return true;
}
SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {
if (kN32_SkColorType != fPixmap.colorType()) {
return nullptr;
}
static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
if (1 == fPixmap.width() && 0 == (fInvType & ~kMask)) {
if (kNone_SkFilterQuality == fFilterQuality &&
fInvType <= SkMatrix::kTranslate_Mask &&
!this->setupForTranslate()) {
return DoNothing_shaderproc;
}
return S32_D32_constX_shaderproc;
}
if (fAlphaScale < 256) {
return nullptr;
}
if (fInvType > SkMatrix::kTranslate_Mask) {
return nullptr;
}
if (kNone_SkFilterQuality != fFilterQuality) {
return nullptr;
}
SkShader::TileMode tx = (SkShader::TileMode)fTileModeX;
SkShader::TileMode ty = (SkShader::TileMode)fTileModeY;
if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) {
if (this->setupForTranslate()) {
return Clamp_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) {
if (this->setupForTranslate()) {
return Repeat_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
static void check_scale_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
unsigned y = *bitmapXY++;
SkASSERT(y < my);
const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
for (int i = 0; i < count; ++i) {
SkASSERT(xptr[i] < mx);
}
}
static void check_scale_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
for (int i = 0; i < count; ++i) {
uint32_t XX = bitmapXY[i];
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
static void check_affine_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t XY = bitmapXY[i];
unsigned x = XY & 0xFFFF;
unsigned y = XY >> 16;
SkASSERT(x < mx);
SkASSERT(y < my);
}
}
static void check_affine_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
uint32_t XX = *bitmapXY++;
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
uint32_t bitmapXY[], int count,
int x, int y) {
SkASSERT(bitmapXY);
SkASSERT(count > 0);
state.fMatrixProc(state, bitmapXY, count, x, y);
void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);
// There are four formats possible:
// scale -vs- affine
// filter -vs- nofilter
if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
proc = state.fFilterQuality != kNone_SkFilterQuality ?
check_scale_filter : check_scale_nofilter;
} else {
proc = state.fFilterQuality != kNone_SkFilterQuality ?
check_affine_filter : check_affine_nofilter;
}
proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height());
}
SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
return DebugMatrixProc;
}
#endif
///////////////////////////////////////////////////////////////////////////////
/*
The storage requirements for the different matrix procs are as follows,
where each X or Y is 2 bytes, and N is the number of pixels/elements:
scale/translate nofilter Y(4bytes) + N * X
affine/perspective nofilter N * (X Y)
scale/translate filter Y Y + N * (X X)
affine/perspective filter N * (Y Y X X)
*/
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
int32_t size = static_cast<int32_t>(bufferSize);
size &= ~3; // only care about 4-byte aligned chunks
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
size -= 4; // the shared Y (or YY) coordinate
if (size < 0) {
size = 0;
}
size >>= 1;
} else {
size >>= 2;
}
if (fFilterQuality != kNone_SkFilterQuality) {
size >>= 1;
}
return size;
}
///////////////////////
void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y,
SkPMColor* SK_RESTRICT dst, int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
const unsigned maxX = s.fPixmap.width() - 1;
SkFractionalInt fx;
int dstY;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const unsigned maxY = s.fPixmap.height() - 1;
dstY = SkClampMax(mapper.intY(), maxY);
fx = mapper.fractionalIntX();
}
const SkPMColor* SK_RESTRICT src = s.fPixmap.addr32(0, dstY);
const SkFractionalInt dx = s.fInvSxFractionalInt;
// Check if we're safely inside [0...maxX] so no need to clamp each computed index.
//
if ((uint64_t)SkFractionalIntToInt(fx) <= maxX &&
(uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX)
{
int count4 = count >> 2;
for (int i = 0; i < count4; ++i) {
SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx;
dst[0] = src0;
dst[1] = src1;
dst[2] = src2;
dst[3] = src3;
dst += 4;
}
for (int i = (count4 << 2); i < count; ++i) {
unsigned index = SkFractionalIntToInt(fx);
SkASSERT(index <= maxX);
*dst++ = src[index];
fx += dx;
}
} else {
for (int i = 0; i < count; ++i) {
dst[i] = src[SkClampMax(SkFractionalIntToInt(fx), maxX)];
fx += dx;
}
}
}