blob: 743dc2ad1afaf08685a27b45c7a609c23fdeb262 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImageFilter.h"
#include "SkImageFilterCacheKey.h"
#include "SkBitmap.h"
#include "SkBitmapDevice.h"
#include "SkChecksum.h"
#include "SkDevice.h"
#include "SkLocalMatrixImageFilter.h"
#include "SkMatrixImageFilter.h"
#include "SkOncePtr.h"
#include "SkReadBuffer.h"
#include "SkRect.h"
#include "SkSpecialImage.h"
#include "SkSpecialSurface.h"
#include "SkTDynamicHash.h"
#include "SkTInternalLList.h"
#include "SkValidationUtils.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrDrawContext.h"
#include "SkGrPixelRef.h"
#include "SkGr.h"
#endif
#ifdef SK_BUILD_FOR_IOS
enum { kDefaultCacheSize = 2 * 1024 * 1024 };
#else
enum { kDefaultCacheSize = 128 * 1024 * 1024 };
#endif
#ifndef SK_IGNORE_TO_STRING
void SkImageFilter::CropRect::toString(SkString* str) const {
if (!fFlags) {
return;
}
str->appendf("cropRect (");
if (fFlags & CropRect::kHasLeft_CropEdge) {
str->appendf("%.2f, ", fRect.fLeft);
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasTop_CropEdge) {
str->appendf("%.2f, ", fRect.fTop);
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasWidth_CropEdge) {
str->appendf("%.2f, ", fRect.width());
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasHeight_CropEdge) {
str->appendf("%.2f", fRect.height());
} else {
str->appendf("X");
}
str->appendf(") ");
}
#endif
void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds,
const SkMatrix& ctm,
bool embiggen,
SkIRect* cropped) const {
*cropped = imageBounds;
if (fFlags) {
SkRect devCropR;
ctm.mapRect(&devCropR, fRect);
SkIRect devICropR = devCropR.roundOut();
// Compute the left/top first, in case we need to modify the right/bottom for a missing edge
if (fFlags & kHasLeft_CropEdge) {
if (embiggen || devICropR.fLeft > cropped->fLeft) {
cropped->fLeft = devICropR.fLeft;
}
} else {
devICropR.fRight = cropped->fLeft + devICropR.width();
}
if (fFlags & kHasTop_CropEdge) {
if (embiggen || devICropR.fTop > cropped->fTop) {
cropped->fTop = devICropR.fTop;
}
} else {
devICropR.fBottom = cropped->fTop + devICropR.height();
}
if (fFlags & kHasWidth_CropEdge) {
if (embiggen || devICropR.fRight < cropped->fRight) {
cropped->fRight = devICropR.fRight;
}
}
if (fFlags & kHasHeight_CropEdge) {
if (embiggen || devICropR.fBottom < cropped->fBottom) {
cropped->fBottom = devICropR.fBottom;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static int32_t next_image_filter_unique_id() {
static int32_t gImageFilterUniqueID;
// Never return 0.
int32_t id;
do {
id = sk_atomic_inc(&gImageFilterUniqueID) + 1;
} while (0 == id);
return id;
}
void SkImageFilter::Common::allocInputs(int count) {
fInputs.reset(count);
}
void SkImageFilter::Common::detachInputs(SkImageFilter** inputs) {
for (int i = 0; i < fInputs.count(); ++i) {
inputs[i] = fInputs[i].release();
}
}
bool SkImageFilter::Common::unflatten(SkReadBuffer& buffer, int expectedCount) {
const int count = buffer.readInt();
if (!buffer.validate(count >= 0)) {
return false;
}
if (!buffer.validate(expectedCount < 0 || count == expectedCount)) {
return false;
}
this->allocInputs(count);
for (int i = 0; i < count; i++) {
if (buffer.readBool()) {
fInputs[i] = sk_sp<SkImageFilter>(buffer.readImageFilter());
}
if (!buffer.isValid()) {
return false;
}
}
SkRect rect;
buffer.readRect(&rect);
if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) {
return false;
}
uint32_t flags = buffer.readUInt();
fCropRect = CropRect(rect, flags);
if (buffer.isVersionLT(SkReadBuffer::kImageFilterNoUniqueID_Version)) {
(void) buffer.readUInt();
}
return buffer.isValid();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkImageFilter::SkImageFilter(sk_sp<SkImageFilter>* inputs,
int inputCount,
const CropRect* cropRect)
: fInputCount(inputCount),
fInputs(new SkImageFilter*[inputCount]),
fUsesSrcInput(false),
fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)),
fUniqueID(next_image_filter_unique_id()) {
for (int i = 0; i < inputCount; ++i) {
if (nullptr == inputs[i] || inputs[i]->usesSrcInput()) {
fUsesSrcInput = true;
}
fInputs[i] = SkSafeRef(inputs[i].get());
}
}
SkImageFilter::SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect)
: fInputCount(inputCount),
fInputs(new SkImageFilter*[inputCount]),
fUsesSrcInput(false),
fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)),
fUniqueID(next_image_filter_unique_id()) {
for (int i = 0; i < inputCount; ++i) {
if (nullptr == inputs[i] || inputs[i]->usesSrcInput()) {
fUsesSrcInput = true;
}
fInputs[i] = SkSafeRef(inputs[i]);
}
}
SkImageFilter::~SkImageFilter() {
for (int i = 0; i < fInputCount; i++) {
SkSafeUnref(fInputs[i]);
}
delete[] fInputs;
Cache::Get()->purgeByKeys(fCacheKeys.begin(), fCacheKeys.count());
}
SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer)
: fUsesSrcInput(false)
, fUniqueID(next_image_filter_unique_id()) {
Common common;
if (common.unflatten(buffer, inputCount)) {
fCropRect = common.cropRect();
fInputCount = common.inputCount();
fInputs = new SkImageFilter* [fInputCount];
common.detachInputs(fInputs);
for (int i = 0; i < fInputCount; ++i) {
if (nullptr == fInputs[i] || fInputs[i]->usesSrcInput()) {
fUsesSrcInput = true;
}
}
} else {
fInputCount = 0;
fInputs = nullptr;
}
}
void SkImageFilter::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt(fInputCount);
for (int i = 0; i < fInputCount; i++) {
SkImageFilter* input = this->getInput(i);
buffer.writeBool(input != nullptr);
if (input != nullptr) {
buffer.writeFlattenable(input);
}
}
buffer.writeRect(fCropRect.rect());
buffer.writeUInt(fCropRect.flags());
}
sk_sp<SkSpecialImage> SkImageFilter::filterImage(SkSpecialImage* src, const Context& context,
SkIPoint* offset) const {
SkASSERT(src && offset);
uint32_t srcGenID = fUsesSrcInput ? src->uniqueID() : 0;
const SkIRect srcSubset = fUsesSrcInput ? src->subset() : SkIRect::MakeWH(0, 0);
Cache::Key key(fUniqueID, context.ctm(), context.clipBounds(), srcGenID, srcSubset);
if (context.cache()) {
SkSpecialImage* result = context.cache()->get(key, offset);
if (result) {
return sk_sp<SkSpecialImage>(SkRef(result));
}
}
sk_sp<SkSpecialImage> result(this->onFilterImage(src, context, offset));
if (result && context.cache()) {
context.cache()->set(key, result.get(), *offset);
SkAutoMutexAcquire mutex(fMutex);
fCacheKeys.push_back(key);
}
return result;
}
bool SkImageFilter::filterImageDeprecated(Proxy* proxy, const SkBitmap& src,
const Context& context,
SkBitmap* result, SkIPoint* offset) const {
SkASSERT(result);
SkASSERT(offset);
uint32_t srcGenID = fUsesSrcInput ? src.getGenerationID() : 0;
Cache::Key key(fUniqueID, context.ctm(), context.clipBounds(),
srcGenID, SkIRect::MakeWH(0, 0));
if (context.cache()) {
if (context.cache()->get(key, result, offset)) {
return true;
}
}
/*
* Give the proxy first shot at the filter. If it returns false, ask
* the filter to do it.
*/
if ((proxy && proxy->filterImage(this, src, context, result, offset)) ||
this->onFilterImageDeprecated(proxy, src, context, result, offset)) {
if (context.cache()) {
context.cache()->set(key, *result, *offset);
SkAutoMutexAcquire mutex(fMutex);
fCacheKeys.push_back(key);
}
return true;
}
return false;
}
bool SkImageFilter::filterInputDeprecated(int index, Proxy* proxy, const SkBitmap& src,
const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
SkImageFilter* input = this->getInput(index);
if (!input) {
return true;
}
// SRGBTODO: Don't handle sRGB here, in anticipation of this code path being deleted.
sk_sp<SkSpecialImage> specialSrc(SkSpecialImage::internal_fromBM(proxy, src, nullptr));
if (!specialSrc) {
return false;
}
sk_sp<SkSpecialImage> tmp(input->onFilterImage(specialSrc.get(),
this->mapContext(ctx),
offset));
if (!tmp) {
return false;
}
return tmp->internal_getBM(result);
}
SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction) const {
if (kReverse_MapDirection == direction) {
SkIRect bounds = this->onFilterNodeBounds(src, ctm, direction);
return this->onFilterBounds(bounds, ctm, direction);
} else {
SkIRect bounds = this->onFilterBounds(src, ctm, direction);
bounds = this->onFilterNodeBounds(bounds, ctm, direction);
SkIRect dst;
this->getCropRect().applyTo(bounds, ctm, this->affectsTransparentBlack(), &dst);
return dst;
}
}
SkRect SkImageFilter::computeFastBounds(const SkRect& src) const {
if (0 == fInputCount) {
return src;
}
SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
for (int i = 1; i < fInputCount; i++) {
SkImageFilter* input = this->getInput(i);
if (input) {
combinedBounds.join(input->computeFastBounds(src));
} else {
combinedBounds.join(src);
}
}
return combinedBounds;
}
bool SkImageFilter::canComputeFastBounds() const {
if (this->affectsTransparentBlack()) {
return false;
}
for (int i = 0; i < fInputCount; i++) {
SkImageFilter* input = this->getInput(i);
if (input && !input->canComputeFastBounds()) {
return false;
}
}
return true;
}
bool SkImageFilter::onFilterImageDeprecated(Proxy*, const SkBitmap&, const Context&,
SkBitmap*, SkIPoint*) const {
// Only classes that now use the new SkSpecialImage-based path will not have
// onFilterImageDeprecated methods. For those classes we should never be
// calling this method.
SkASSERT(0);
return false;
}
// SkImageFilter-derived classes that do not yet have their own onFilterImage
// implementation convert back to calling the deprecated filterImage method
sk_sp<SkSpecialImage> SkImageFilter::onFilterImage(SkSpecialImage* src, const Context& ctx,
SkIPoint* offset) const {
SkBitmap srcBM, resultBM;
if (!src->internal_getBM(&srcBM)) {
return nullptr;
}
// This is the only valid call to the old filterImage path
if (!this->filterImageDeprecated(src->internal_getProxy(), srcBM, ctx, &resultBM, offset)) {
return nullptr;
}
return SkSpecialImage::internal_fromBM(src->internal_getProxy(), resultBM, &src->props());
}
bool SkImageFilter::canFilterImageGPU() const {
return this->asFragmentProcessor(nullptr, nullptr, SkMatrix::I(), SkIRect());
}
bool SkImageFilter::filterImageGPUDeprecated(Proxy* proxy, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
SkBitmap input = src;
SkASSERT(fInputCount == 1);
SkIPoint srcOffset = SkIPoint::Make(0, 0);
if (!this->filterInputGPUDeprecated(0, proxy, src, ctx, &input, &srcOffset)) {
return false;
}
GrTexture* srcTexture = input.getTexture();
SkIRect bounds;
if (!this->applyCropRectDeprecated(ctx, proxy, input, &srcOffset, &bounds, &input)) {
return false;
}
GrContext* context = srcTexture->getContext();
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag,
desc.fWidth = bounds.width();
desc.fHeight = bounds.height();
desc.fConfig = kRGBA_8888_GrPixelConfig;
SkAutoTUnref<GrTexture> dst(context->textureProvider()->createApproxTexture(desc));
if (!dst) {
return false;
}
GrFragmentProcessor* fp;
offset->fX = bounds.left();
offset->fY = bounds.top();
bounds.offset(-srcOffset);
SkMatrix matrix(ctx.ctm());
matrix.postTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
GrPaint paint;
// SRGBTODO: Don't handle sRGB here, in anticipation of this code path being deleted.
if (this->asFragmentProcessor(&fp, srcTexture, matrix, bounds)) {
SkASSERT(fp);
paint.addColorFragmentProcessor(fp)->unref();
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
SkAutoTUnref<GrDrawContext> drawContext(context->drawContext(dst->asRenderTarget()));
if (drawContext) {
SkRect srcRect = SkRect::Make(bounds);
SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height());
GrClip clip(dstRect);
drawContext->fillRectToRect(clip, paint, SkMatrix::I(), dstRect, srcRect);
GrWrapTextureInBitmap(dst, bounds.width(), bounds.height(), false, result);
return true;
}
}
#endif
return false;
}
bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const {
SkASSERT(nullptr != filterPtr);
if (!this->isColorFilterNode(filterPtr)) {
return false;
}
if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) {
(*filterPtr)->unref();
return false;
}
return true;
}
bool SkImageFilter::applyCropRect(const Context& ctx, const SkIRect& srcBounds,
SkIRect* dstBounds) const {
SkIRect temp = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(temp, ctx.ctm(), this->affectsTransparentBlack(), dstBounds);
// Intersect against the clip bounds, in case the crop rect has
// grown the bounds beyond the original clip. This can happen for
// example in tiling, where the clip is much smaller than the filtered
// primitive. If we didn't do this, we would be processing the filter
// at the full crop rect size in every tile.
return dstBounds->intersect(ctx.clipBounds());
}
bool SkImageFilter::applyCropRectDeprecated(const Context& ctx, Proxy* proxy, const SkBitmap& src,
SkIPoint* srcOffset, SkIRect* bounds,
SkBitmap* dst) const {
SkIRect srcBounds;
src.getBounds(&srcBounds);
srcBounds.offset(*srcOffset);
SkIRect dstBounds = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(dstBounds, ctx.ctm(), this->affectsTransparentBlack(), bounds);
if (!bounds->intersect(ctx.clipBounds())) {
return false;
}
if (srcBounds.contains(*bounds)) {
*dst = src;
return true;
} else {
SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds->width(), bounds->height()));
if (!device) {
return false;
}
SkCanvas canvas(device);
canvas.clear(0x00000000);
canvas.drawBitmap(src, srcOffset->x() - bounds->x(), srcOffset->y() - bounds->y());
*srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
*dst = device->accessBitmap(false);
return true;
}
}
// Return a larger (newWidth x newHeight) copy of 'src' with black padding
// around it.
static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src,
int newWidth, int newHeight, int offX, int offY) {
SkImageInfo info = SkImageInfo::MakeN32Premul(newWidth, newHeight);
sk_sp<SkSpecialSurface> surf(src->makeSurface(info));
if (!surf) {
return nullptr;
}
SkCanvas* canvas = surf->getCanvas();
SkASSERT(canvas);
canvas->clear(0x0);
src->draw(canvas, offX, offY, nullptr);
return surf->makeImageSnapshot();
}
sk_sp<SkSpecialImage> SkImageFilter::applyCropRect(const Context& ctx,
SkSpecialImage* src,
SkIPoint* srcOffset,
SkIRect* bounds) const {
SkIRect srcBounds;
srcBounds = SkIRect::MakeXYWH(srcOffset->fX, srcOffset->fY, src->width(), src->height());
SkIRect dstBounds = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(dstBounds, ctx.ctm(), this->affectsTransparentBlack(), bounds);
if (!bounds->intersect(ctx.clipBounds())) {
return nullptr;
}
if (srcBounds.contains(*bounds)) {
return sk_sp<SkSpecialImage>(SkRef(src));
} else {
sk_sp<SkSpecialImage> img(pad_image(src,
bounds->width(), bounds->height(),
srcOffset->x() - bounds->x(),
srcOffset->y() - bounds->y()));
*srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
return img;
}
}
SkIRect SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction) const {
if (fInputCount < 1) {
return src;
}
SkIRect totalBounds;
for (int i = 0; i < fInputCount; ++i) {
SkImageFilter* filter = this->getInput(i);
SkIRect rect = filter ? filter->filterBounds(src, ctm, direction) : src;
if (0 == i) {
totalBounds = rect;
} else {
totalBounds.join(rect);
}
}
return totalBounds;
}
SkIRect SkImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, MapDirection) const {
return src;
}
SkImageFilter::Context SkImageFilter::mapContext(const Context& ctx) const {
SkIRect clipBounds = this->onFilterNodeBounds(ctx.clipBounds(), ctx.ctm(),
MapDirection::kReverse_MapDirection);
return Context(ctx.ctm(), clipBounds, ctx.cache());
}
bool SkImageFilter::asFragmentProcessor(GrFragmentProcessor**, GrTexture*,
const SkMatrix&, const SkIRect&) const {
return false;
}
sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix,
SkFilterQuality filterQuality,
sk_sp<SkImageFilter> input) {
return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input));
}
sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const {
// SkLocalMatrixImageFilter takes SkImage* in its factory, but logically that parameter
// is *always* treated as a const ptr. Hence the const-cast here.
//
SkImageFilter* nonConstThis = const_cast<SkImageFilter*>(this);
return SkLocalMatrixImageFilter::Make(matrix, sk_ref_sp<SkImageFilter>(nonConstThis));
}
sk_sp<SkSpecialImage> SkImageFilter::filterInput(int index,
SkSpecialImage* src,
const Context& ctx,
SkIPoint* offset) const {
SkImageFilter* input = this->getInput(index);
if (!input) {
return sk_sp<SkSpecialImage>(SkRef(src));
}
sk_sp<SkSpecialImage> result(input->filterImage(src, this->mapContext(ctx), offset));
#if SK_SUPPORT_GPU
if (src->peekTexture() && result && !result->peekTexture()) {
// Keep the result on the GPU - this is still required for some
// image filters that don't support GPU in all cases
GrContext* context = src->peekTexture()->getContext();
return result->makeTextureImage(src->internal_getProxy(), context);
}
#endif
return result;
}
#if SK_SUPPORT_GPU
bool SkImageFilter::filterInputGPUDeprecated(int index, SkImageFilter::Proxy* proxy,
const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
SkImageFilter* input = this->getInput(index);
if (!input) {
return true;
}
// SRGBTODO: Don't handle sRGB here, in anticipation of this code path being deleted.
sk_sp<SkSpecialImage> specialSrc(SkSpecialImage::internal_fromBM(proxy, src, nullptr));
if (!specialSrc) {
return false;
}
sk_sp<SkSpecialImage> tmp(input->onFilterImage(specialSrc.get(),
this->mapContext(ctx),
offset));
if (!tmp) {
return false;
}
if (!tmp->internal_getBM(result)) {
return false;
}
if (!result->getTexture()) {
GrContext* context = src.getTexture()->getContext();
const SkImageInfo info = result->info();
if (kUnknown_SkColorType == info.colorType()) {
return false;
}
SkAutoTUnref<GrTexture> resultTex(
GrRefCachedBitmapTexture(context, *result, GrTextureParams::ClampNoFilter()));
if (!resultTex) {
return false;
}
result->setPixelRef(new SkGrPixelRef(info, resultTex))->unref();
}
return true;
}
#endif
namespace {
class CacheImpl : public SkImageFilter::Cache {
public:
CacheImpl(size_t maxBytes) : fMaxBytes(maxBytes), fCurrentBytes(0) { }
~CacheImpl() override {
SkTDynamicHash<Value, Key>::Iter iter(&fLookup);
while (!iter.done()) {
Value* v = &*iter;
++iter;
delete v;
}
}
struct Value {
Value(const Key& key, const SkBitmap& bitmap, const SkIPoint& offset)
: fKey(key), fBitmap(bitmap), fOffset(offset) {}
Value(const Key& key, SkSpecialImage* image, const SkIPoint& offset)
: fKey(key), fImage(SkRef(image)), fOffset(offset) {}
Key fKey;
SkBitmap fBitmap;
SkAutoTUnref<SkSpecialImage> fImage;
SkIPoint fOffset;
static const Key& GetKey(const Value& v) {
return v.fKey;
}
static uint32_t Hash(const Key& key) {
return SkChecksum::Murmur3(reinterpret_cast<const uint32_t*>(&key), sizeof(Key));
}
SK_DECLARE_INTERNAL_LLIST_INTERFACE(Value);
};
bool get(const Key& key, SkBitmap* result, SkIPoint* offset) const override {
SkAutoMutexAcquire mutex(fMutex);
if (Value* v = fLookup.find(key)) {
*result = v->fBitmap;
*offset = v->fOffset;
if (v != fLRU.head()) {
fLRU.remove(v);
fLRU.addToHead(v);
}
return true;
}
return false;
}
SkSpecialImage* get(const Key& key, SkIPoint* offset) const override {
SkAutoMutexAcquire mutex(fMutex);
if (Value* v = fLookup.find(key)) {
*offset = v->fOffset;
if (v != fLRU.head()) {
fLRU.remove(v);
fLRU.addToHead(v);
}
return v->fImage;
}
return nullptr;
}
void set(const Key& key, const SkBitmap& result, const SkIPoint& offset) override {
SkAutoMutexAcquire mutex(fMutex);
if (Value* v = fLookup.find(key)) {
this->removeInternal(v);
}
Value* v = new Value(key, result, offset);
fLookup.add(v);
fLRU.addToHead(v);
fCurrentBytes += result.getSize();
while (fCurrentBytes > fMaxBytes) {
Value* tail = fLRU.tail();
SkASSERT(tail);
if (tail == v) {
break;
}
this->removeInternal(tail);
}
}
void set(const Key& key, SkSpecialImage* image, const SkIPoint& offset) override {
SkAutoMutexAcquire mutex(fMutex);
if (Value* v = fLookup.find(key)) {
this->removeInternal(v);
}
Value* v = new Value(key, image, offset);
fLookup.add(v);
fLRU.addToHead(v);
fCurrentBytes += image->getSize();
while (fCurrentBytes > fMaxBytes) {
Value* tail = fLRU.tail();
SkASSERT(tail);
if (tail == v) {
break;
}
this->removeInternal(tail);
}
}
void purge() override {
SkAutoMutexAcquire mutex(fMutex);
while (fCurrentBytes > 0) {
Value* tail = fLRU.tail();
SkASSERT(tail);
this->removeInternal(tail);
}
}
void purgeByKeys(const Key keys[], int count) override {
SkAutoMutexAcquire mutex(fMutex);
for (int i = 0; i < count; i++) {
if (Value* v = fLookup.find(keys[i])) {
this->removeInternal(v);
}
}
}
private:
void removeInternal(Value* v) {
if (v->fImage) {
fCurrentBytes -= v->fImage->getSize();
} else {
fCurrentBytes -= v->fBitmap.getSize();
}
fLRU.remove(v);
fLookup.remove(v->fKey);
delete v;
}
private:
SkTDynamicHash<Value, Key> fLookup;
mutable SkTInternalLList<Value> fLRU;
size_t fMaxBytes;
size_t fCurrentBytes;
mutable SkMutex fMutex;
};
} // namespace
SkImageFilter::Cache* SkImageFilter::Cache::Create(size_t maxBytes) {
return new CacheImpl(maxBytes);
}
SK_DECLARE_STATIC_ONCE_PTR(SkImageFilter::Cache, cache);
SkImageFilter::Cache* SkImageFilter::Cache::Get() {
return cache.get([]{ return SkImageFilter::Cache::Create(kDefaultCacheSize); });
}
void SkImageFilter::PurgeCache() {
Cache::Get()->purge();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkBaseDevice* SkImageFilter::DeviceProxy::createDevice(int w, int h, TileUsage usage) {
SkBaseDevice::CreateInfo cinfo(SkImageInfo::MakeN32Premul(w, h),
kPossible_TileUsage == usage ? SkBaseDevice::kPossible_TileUsage
: SkBaseDevice::kNever_TileUsage,
kUnknown_SkPixelGeometry,
false, /* preserveLCDText */
true /*forImageFilter*/);
SkBaseDevice* dev = fDevice->onCreateDevice(cinfo, nullptr);
if (nullptr == dev) {
const SkSurfaceProps surfaceProps(fDevice->fSurfaceProps.flags(),
kUnknown_SkPixelGeometry);
dev = SkBitmapDevice::Create(cinfo.fInfo, surfaceProps);
}
return dev;
}
bool SkImageFilter::DeviceProxy::filterImage(const SkImageFilter* filter, const SkBitmap& src,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
return fDevice->filterImage(filter, src, ctx, result, offset);
}