blob: cc8a38aa2d54d38745273cbbee5019244e9f427d [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrProgramDesc_DEFINED
#define GrProgramDesc_DEFINED
#include "GrBackendProcessorFactory.h"
#include "GrColor.h"
#include "GrTypesPriv.h"
#include "SkChecksum.h"
class GrGpuGL;
/** This class describes a program to generate. It also serves as a program cache key. Very little
of this is GL-specific. The GL-specific parts could be factored out into a subclass. */
class GrProgramDesc {
public:
// Creates an uninitialized key that must be populated by GrGpu::buildProgramDesc()
GrProgramDesc() {}
// Returns this as a uint32_t array to be used as a key in the program cache.
const uint32_t* asKey() const {
return reinterpret_cast<const uint32_t*>(fKey.begin());
}
// Gets the number of bytes in asKey(). It will be a 4-byte aligned value. When comparing two
// keys the size of either key can be used with memcmp() since the lengths themselves begin the
// keys and thus the memcmp will exit early if the keys are of different lengths.
uint32_t keyLength() const { return *this->atOffset<uint32_t, kLengthOffset>(); }
// Gets the a checksum of the key. Can be used as a hash value for a fast lookup in a cache.
uint32_t getChecksum() const { return *this->atOffset<uint32_t, kChecksumOffset>(); }
GrProgramDesc& operator= (const GrProgramDesc& other) {
size_t keyLength = other.keyLength();
fKey.reset(keyLength);
memcpy(fKey.begin(), other.fKey.begin(), keyLength);
return *this;
}
bool operator== (const GrProgramDesc& other) const {
// The length is masked as a hint to the compiler that the address will be 4 byte aligned.
return 0 == memcmp(this->asKey(), other.asKey(), this->keyLength() & ~0x3);
}
bool operator!= (const GrProgramDesc& other) const {
return !(*this == other);
}
static bool Less(const GrProgramDesc& a, const GrProgramDesc& b) {
return memcmp(a.asKey(), b.asKey(), a.keyLength() & ~0x3) < 0;
}
///////////////////////////////////////////////////////////////////////////
/// @name Stage Output Types
////
enum PrimaryOutputType {
// Modulate color and coverage, write result as the color output.
kModulate_PrimaryOutputType,
// Combines the coverage, dst, and color as coverage * color + (1 - coverage) * dst. This
// can only be set if fDstReadKey is non-zero.
kCombineWithDst_PrimaryOutputType,
kPrimaryOutputTypeCnt,
};
enum SecondaryOutputType {
// There is no secondary output
kNone_SecondaryOutputType,
// Writes coverage as the secondary output. Only set if dual source blending is supported
// and primary output is kModulate.
kCoverage_SecondaryOutputType,
// Writes coverage * (1 - colorA) as the secondary output. Only set if dual source blending
// is supported and primary output is kModulate.
kCoverageISA_SecondaryOutputType,
// Writes coverage * (1 - colorRGBA) as the secondary output. Only set if dual source
// blending is supported and primary output is kModulate.
kCoverageISC_SecondaryOutputType,
kSecondaryOutputTypeCnt,
};
// Specifies where the initial color comes from before the stages are applied.
enum ColorInput {
kAllOnes_ColorInput,
kAttribute_ColorInput,
kUniform_ColorInput,
kColorInputCnt
};
struct KeyHeader {
uint8_t fDstReadKey; // set by GrGLShaderBuilder if there
// are effects that must read the dst.
// Otherwise, 0.
uint8_t fFragPosKey; // set by GrGLShaderBuilder if there are
// effects that read the fragment position.
// Otherwise, 0.
SkBool8 fEmitsPointSize;
ColorInput fColorInput : 8;
ColorInput fCoverageInput : 8;
PrimaryOutputType fPrimaryOutputType : 8;
SecondaryOutputType fSecondaryOutputType : 8;
int8_t fPositionAttributeIndex;
int8_t fLocalCoordAttributeIndex;
int8_t fColorAttributeIndex;
int8_t fCoverageAttributeIndex;
SkBool8 fHasGeometryProcessor;
int8_t fColorEffectCnt;
int8_t fCoverageEffectCnt;
};
bool hasGeometryProcessor() const {
return SkToBool(this->header().fHasGeometryProcessor);
}
int numColorEffects() const {
return this->header().fColorEffectCnt;
}
int numCoverageEffects() const {
return this->header().fCoverageEffectCnt;
}
int numTotalEffects() const { return this->numColorEffects() + this->numCoverageEffects(); }
// This should really only be used internally, base classes should return their own headers
const KeyHeader& header() const { return *this->atOffset<KeyHeader, kHeaderOffset>(); }
/** Used to provide effects' keys to their emitCode() function. */
class ProcKeyProvider {
public:
enum ProcessorType {
kGeometry_ProcessorType,
kFragment_ProcessorType,
};
ProcKeyProvider(const GrProgramDesc* desc, ProcessorType type, int effectOffset)
: fDesc(desc), fBaseIndex(0), fEffectOffset(effectOffset) {
switch (type) {
case kGeometry_ProcessorType:
// there can be only one
fBaseIndex = 0;
break;
case kFragment_ProcessorType:
fBaseIndex = desc->hasGeometryProcessor() ? 1 : 0;
break;
}
}
GrProcessorKey get(int index) const {
const uint16_t* offsetsAndLengths = reinterpret_cast<const uint16_t*>(
fDesc->fKey.begin() + fEffectOffset);
// We store two uint16_ts per effect, one for the offset to the effect's key and one for
// its length. Here we just need the offset.
uint16_t offset = offsetsAndLengths[2 * (fBaseIndex + index) + 0];
uint16_t length = offsetsAndLengths[2 * (fBaseIndex + index) + 1];
// Currently effects must add to the key in units of uint32_t.
SkASSERT(0 == (length % sizeof(uint32_t)));
return GrProcessorKey(reinterpret_cast<const uint32_t*>(fDesc->fKey.begin() + offset),
length / sizeof(uint32_t));
}
private:
const GrProgramDesc* fDesc;
int fBaseIndex;
int fEffectOffset;
};
// A struct to communicate descriptor information to the program descriptor builder
struct DescInfo {
int positionAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
}
int localCoordAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
int colorVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
int coverageVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool hasLocalCoordAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
bool hasColorVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
bool hasCoverageVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
// These flags are needed to protect the code from creating an unused uniform color/coverage
// which will cause shader compiler errors.
bool fInputColorIsUsed;
bool fInputCoverageIsUsed;
// These flags give aggregated info on the processor stages that are used when building
// programs.
bool fReadsDst;
bool fReadsFragPosition;
bool fRequiresLocalCoordAttrib;
// Fragment shader color outputs
GrProgramDesc::PrimaryOutputType fPrimaryOutputType : 8;
GrProgramDesc::SecondaryOutputType fSecondaryOutputType : 8;
};
private:
template<typename T, size_t OFFSET> T* atOffset() {
return reinterpret_cast<T*>(reinterpret_cast<intptr_t>(fKey.begin()) + OFFSET);
}
template<typename T, size_t OFFSET> const T* atOffset() const {
return reinterpret_cast<const T*>(reinterpret_cast<intptr_t>(fKey.begin()) + OFFSET);
}
void finalize() {
int keyLength = fKey.count();
SkASSERT(0 == (keyLength % 4));
*(this->atOffset<uint32_t, GrProgramDesc::kLengthOffset>()) = SkToU32(keyLength);
uint32_t* checksum = this->atOffset<uint32_t, GrProgramDesc::kChecksumOffset>();
*checksum = 0;
*checksum = SkChecksum::Compute(reinterpret_cast<uint32_t*>(fKey.begin()), keyLength);
}
// The key, stored in fKey, is composed of four parts:
// 1. uint32_t for total key length.
// 2. uint32_t for a checksum.
// 3. Header struct defined above. Also room for extensions to the header
// 4. A Backend specific payload. Room is preallocated for this
enum KeyOffsets {
// Part 1.
kLengthOffset = 0,
// Part 2.
kChecksumOffset = kLengthOffset + sizeof(uint32_t),
// Part 3.
kHeaderOffset = kChecksumOffset + sizeof(uint32_t),
kHeaderSize = SkAlign4(2 * sizeof(KeyHeader)),
};
enum {
kMaxPreallocProcessors = 8,
kIntsPerProcessor = 4, // This is an overestimate of the average effect key size.
kPreAllocSize = kHeaderOffset + kHeaderSize +
kMaxPreallocProcessors * sizeof(uint32_t) * kIntsPerProcessor,
};
SkSTArray<kPreAllocSize, uint8_t, true> fKey;
friend class GrGLProgramDescBuilder;
};
#endif