|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/core/SkRect.h" | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "include/private/base/SkDebug.h" | 
|  | #include "src/core/SkPointPriv.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include <cfloat> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <string> | 
|  |  | 
|  | static void test_casts(skiatest::Reporter* reporter) { | 
|  | SkPoint p = { 0, 0 }; | 
|  | SkRect  r = { 0, 0, 0, 0 }; | 
|  |  | 
|  | const SkScalar* pPtr = reinterpret_cast<const SkScalar*>(&p); | 
|  | const SkScalar* rPtr = reinterpret_cast<const SkScalar*>(&r); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, SkPointPriv::AsScalars(p) == pPtr); | 
|  | REPORTER_ASSERT(reporter, r.asScalars() == rPtr); | 
|  | } | 
|  |  | 
|  | // Tests SkPoint::Normalize() for this (x,y) | 
|  | static void test_Normalize(skiatest::Reporter* reporter, | 
|  | SkScalar x, SkScalar y) { | 
|  | SkPoint point; | 
|  | point.set(x, y); | 
|  | SkScalar oldLength = point.length(); | 
|  | SkScalar returned = SkPoint::Normalize(&point); | 
|  | SkScalar newLength = point.length(); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(returned, oldLength)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(newLength, SK_Scalar1)); | 
|  | } | 
|  |  | 
|  | static void test_normalize_cannormalize_consistent(skiatest::Reporter* reporter) { | 
|  | const SkScalar values[] = { 1, 1e18f, 1e20f, 1e38f, SK_ScalarInfinity, SK_ScalarNaN }; | 
|  |  | 
|  | for (SkScalar val : values) { | 
|  | const SkScalar variants[] = { val, -val, SkScalarInvert(val), -SkScalarInvert(val) }; | 
|  |  | 
|  | for (SkScalar v : variants) { | 
|  | const SkPoint pts[] = { { 0, v }, { v, 0 }, { 1, v }, { v, 1 }, { v, v } }; | 
|  |  | 
|  | for (SkPoint p : pts) { | 
|  | bool can = SkPointPriv::CanNormalize(p.fX, p.fY); | 
|  | bool nor = p.normalize(); | 
|  | REPORTER_ASSERT(reporter, can == nor); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests that SkPoint::length() and SkPoint::Length() both return | 
|  | // approximately expectedLength for this (x,y). | 
|  | static void test_length(skiatest::Reporter* reporter, SkScalar x, SkScalar y, | 
|  | SkScalar expectedLength) { | 
|  | SkPoint point; | 
|  | point.set(x, y); | 
|  | SkScalar s1 = point.length(); | 
|  | SkScalar s2 = SkPoint::Length(x, y); | 
|  | //The following should be exactly the same, but need not be. | 
|  | //See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=323 | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, s2)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, expectedLength)); | 
|  |  | 
|  | test_Normalize(reporter, x, y); | 
|  | } | 
|  |  | 
|  | // Ugh. Windows compiler can dive into other .cpp files, and sometimes | 
|  | // notices that I will generate an overflow... which is exactly the point | 
|  | // of this test! | 
|  | // | 
|  | // To avoid this warning, I need to convince the compiler that I might not | 
|  | // use that big value, hence this hacky helper function: reporter is | 
|  | // ALWAYS non-null. (shhhhhh, don't tell the compiler that). | 
|  | template <typename T> T get_value(skiatest::Reporter* reporter, T value) { | 
|  | return reporter ? value : 0; | 
|  | } | 
|  |  | 
|  | // On linux gcc, 32bit, we are seeing the compiler propagate up the value | 
|  | // of SkPoint::length() as a double (which we use sometimes to avoid overflow | 
|  | // during the computation), even though the signature says float (SkScalar). | 
|  | // | 
|  | // force_as_float is meant to capture our latest technique (horrible as | 
|  | // it is) to force the value to be a float, so we can test whether it was | 
|  | // finite or not. | 
|  | static float force_as_float(skiatest::Reporter* reporter, float value) { | 
|  | uint32_t storage; | 
|  | memcpy(&storage, &value, 4); | 
|  | // even the pair of memcpy calls are not sufficient, since those seem to | 
|  | // be no-op'd, so we add a runtime tests (just like get_value) to force | 
|  | // the compiler to give us an actual float. | 
|  | if (nullptr == reporter) { | 
|  | storage = ~storage; | 
|  | } | 
|  | memcpy(&value, &storage, 4); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | // test that we handle very large values correctly. i.e. that we can | 
|  | // successfully normalize something whose mag overflows a float. | 
|  | static void test_overflow(skiatest::Reporter* reporter) { | 
|  | SkScalar bigFloat = get_value(reporter, 3.4e38f); | 
|  | SkPoint pt = { bigFloat, bigFloat }; | 
|  |  | 
|  | SkScalar length = pt.length(); | 
|  | length = force_as_float(reporter, length); | 
|  |  | 
|  | // expect this to be non-finite, but dump the results if not. | 
|  | if (SkScalarIsFinite(length)) { | 
|  | SkDebugf("length(%g, %g) == %g\n", pt.fX, pt.fY, length); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(length)); | 
|  | } | 
|  |  | 
|  | // this should succeed, even though we can't represent length | 
|  | REPORTER_ASSERT(reporter, pt.setLength(SK_Scalar1)); | 
|  |  | 
|  | // now that pt is normalized, we check its length | 
|  | length = pt.length(); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(length, SK_Scalar1)); | 
|  | } | 
|  |  | 
|  | DEF_TEST(Point, reporter) { | 
|  | test_casts(reporter); | 
|  |  | 
|  | static const struct { | 
|  | SkScalar fX; | 
|  | SkScalar fY; | 
|  | SkScalar fLength; | 
|  | } gRec[] = { | 
|  | { SkIntToScalar(3), SkIntToScalar(4), SkIntToScalar(5) }, | 
|  | { 0.6f, 0.8f, SK_Scalar1 }, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < std::size(gRec); ++i) { | 
|  | test_length(reporter, gRec[i].fX, gRec[i].fY, gRec[i].fLength); | 
|  | } | 
|  |  | 
|  | test_overflow(reporter); | 
|  | test_normalize_cannormalize_consistent(reporter); | 
|  | } | 
|  |  | 
|  | DEF_TEST(Point_setLengthFast, reporter) { | 
|  | // Scale a (1,1) point to a bunch of different lengths, | 
|  | // making sure the slow and fast paths are within 0.1%. | 
|  | const float tests[] = { 1.0f, 0.0f, 1.0e-37f, 3.4e38f, 42.0f, 0.00012f }; | 
|  |  | 
|  | const SkPoint kOne = {1.0f, 1.0f}; | 
|  | for (unsigned i = 0; i < std::size(tests); i++) { | 
|  | SkPoint slow = kOne, fast = kOne; | 
|  |  | 
|  | slow.setLength(tests[i]); | 
|  | SkPointPriv::SetLengthFast(&fast, tests[i]); | 
|  |  | 
|  | if (slow.length() < FLT_MIN && fast.length() < FLT_MIN) continue; | 
|  |  | 
|  | SkScalar ratio = slow.length() / fast.length(); | 
|  | REPORTER_ASSERT(reporter, ratio > 0.999f); | 
|  | REPORTER_ASSERT(reporter, ratio < 1.001f); | 
|  | } | 
|  | } |