|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "src/pathops/SkPathOpsQuad.h" | 
|  |  | 
|  | #include "src/pathops/SkIntersections.h" | 
|  | #include "src/pathops/SkLineParameters.h" | 
|  | #include "src/pathops/SkPathOpsConic.h" | 
|  | #include "src/pathops/SkPathOpsCubic.h" | 
|  | #include "src/pathops/SkPathOpsLine.h" | 
|  | #include "src/pathops/SkPathOpsRect.h" | 
|  | #include "src/pathops/SkPathOpsTypes.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | // from blackpawn.com/texts/pointinpoly | 
|  | static bool pointInTriangle(const SkDPoint fPts[3], const SkDPoint& test) { | 
|  | SkDVector v0 = fPts[2] - fPts[0]; | 
|  | SkDVector v1 = fPts[1] - fPts[0]; | 
|  | SkDVector v2 = test - fPts[0]; | 
|  | double dot00 = v0.dot(v0); | 
|  | double dot01 = v0.dot(v1); | 
|  | double dot02 = v0.dot(v2); | 
|  | double dot11 = v1.dot(v1); | 
|  | double dot12 = v1.dot(v2); | 
|  | // Compute barycentric coordinates | 
|  | double denom = dot00 * dot11 - dot01 * dot01; | 
|  | double u = dot11 * dot02 - dot01 * dot12; | 
|  | double v = dot00 * dot12 - dot01 * dot02; | 
|  | // Check if point is in triangle | 
|  | if (denom >= 0) { | 
|  | return u >= 0 && v >= 0 && u + v < denom; | 
|  | } | 
|  | return u <= 0 && v <= 0 && u + v > denom; | 
|  | } | 
|  |  | 
|  | static bool matchesEnd(const SkDPoint fPts[3], const SkDPoint& test) { | 
|  | return fPts[0] == test || fPts[2] == test; | 
|  | } | 
|  |  | 
|  | /* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */ | 
|  | // Do a quick reject by rotating all points relative to a line formed by | 
|  | // a pair of one quad's points. If the 2nd quad's points | 
|  | // are on the line or on the opposite side from the 1st quad's 'odd man', the | 
|  | // curves at most intersect at the endpoints. | 
|  | /* if returning true, check contains true if quad's hull collapsed, making the cubic linear | 
|  | if returning false, check contains true if the the quad pair have only the end point in common | 
|  | */ | 
|  | bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const { | 
|  | bool linear = true; | 
|  | for (int oddMan = 0; oddMan < kPointCount; ++oddMan) { | 
|  | const SkDPoint* endPt[2]; | 
|  | this->otherPts(oddMan, endPt); | 
|  | double origX = endPt[0]->fX; | 
|  | double origY = endPt[0]->fY; | 
|  | double adj = endPt[1]->fX - origX; | 
|  | double opp = endPt[1]->fY - origY; | 
|  | double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; | 
|  | if (approximately_zero(sign)) { | 
|  | continue; | 
|  | } | 
|  | linear = false; | 
|  | bool foundOutlier = false; | 
|  | for (int n = 0; n < kPointCount; ++n) { | 
|  | double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; | 
|  | if (test * sign > 0 && !precisely_zero(test)) { | 
|  | foundOutlier = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!foundOutlier) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (linear && !matchesEnd(fPts, q2.fPts[0]) && !matchesEnd(fPts, q2.fPts[2])) { | 
|  | // if the end point of the opposite quad is inside the hull that is nearly a line, | 
|  | // then representing the quad as a line may cause the intersection to be missed. | 
|  | // Check to see if the endpoint is in the triangle. | 
|  | if (pointInTriangle(fPts, q2.fPts[0]) || pointInTriangle(fPts, q2.fPts[2])) { | 
|  | linear = false; | 
|  | } | 
|  | } | 
|  | *isLinear = linear; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { | 
|  | return conic.hullIntersects(*this, isLinear); | 
|  | } | 
|  |  | 
|  | bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
|  | return cubic.hullIntersects(*this, isLinear); | 
|  | } | 
|  |  | 
|  | /* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan) | 
|  | oddMan    opp   x=oddMan^opp  x=x-oddMan  m=x>>2   x&~m | 
|  | 0       1         1            1         0       1 | 
|  | 2         2            2         0       2 | 
|  | 1       1         0           -1        -1       0 | 
|  | 2         3            2         0       2 | 
|  | 2       1         3            1         0       1 | 
|  | 2         0           -2        -1       0 | 
|  | */ | 
|  | void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const { | 
|  | for (int opp = 1; opp < kPointCount; ++opp) { | 
|  | int end = (oddMan ^ opp) - oddMan;  // choose a value not equal to oddMan | 
|  | end &= ~(end >> 2);  // if the value went negative, set it to zero | 
|  | endPt[opp - 1] = &fPts[end]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { | 
|  | int foundRoots = 0; | 
|  | for (int index = 0; index < realRoots; ++index) { | 
|  | double tValue = s[index]; | 
|  | if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { | 
|  | if (approximately_less_than_zero(tValue)) { | 
|  | tValue = 0; | 
|  | } else if (approximately_greater_than_one(tValue)) { | 
|  | tValue = 1; | 
|  | } | 
|  | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { | 
|  | if (approximately_equal(t[idx2], tValue)) { | 
|  | goto nextRoot; | 
|  | } | 
|  | } | 
|  | t[foundRoots++] = tValue; | 
|  | } | 
|  | nextRoot: | 
|  | {} | 
|  | } | 
|  | return foundRoots; | 
|  | } | 
|  |  | 
|  | // note: caller expects multiple results to be sorted smaller first | 
|  | // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting | 
|  | //  analysis of the quadratic equation, suggesting why the following looks at | 
|  | //  the sign of B -- and further suggesting that the greatest loss of precision | 
|  | //  is in b squared less two a c | 
|  | int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { | 
|  | double s[2]; | 
|  | int realRoots = RootsReal(A, B, C, s); | 
|  | int foundRoots = AddValidTs(s, realRoots, t); | 
|  | return foundRoots; | 
|  | } | 
|  |  | 
|  | static int handle_zero(const double B, const double C, double s[2]) { | 
|  | if (approximately_zero(B)) { | 
|  | s[0] = 0; | 
|  | return C == 0; | 
|  | } | 
|  | s[0] = -C / B; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Numeric Solutions (5.6) suggests to solve the quadratic by computing | 
|  | Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) | 
|  | and using the roots | 
|  | t1 = Q / A | 
|  | t2 = C / Q | 
|  | */ | 
|  | // this does not discard real roots <= 0 or >= 1 | 
|  | int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { | 
|  | if (!A) { | 
|  | return handle_zero(B, C, s); | 
|  | } | 
|  | const double p = B / (2 * A); | 
|  | const double q = C / A; | 
|  | if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { | 
|  | return handle_zero(B, C, s); | 
|  | } | 
|  | /* normal form: x^2 + px + q = 0 */ | 
|  | const double p2 = p * p; | 
|  | if (!AlmostDequalUlps(p2, q) && p2 < q) { | 
|  | return 0; | 
|  | } | 
|  | double sqrt_D = 0; | 
|  | if (p2 > q) { | 
|  | sqrt_D = sqrt(p2 - q); | 
|  | } | 
|  | s[0] = sqrt_D - p; | 
|  | s[1] = -sqrt_D - p; | 
|  | return 1 + !AlmostDequalUlps(s[0], s[1]); | 
|  | } | 
|  |  | 
|  | bool SkDQuad::isLinear(int startIndex, int endIndex) const { | 
|  | SkLineParameters lineParameters; | 
|  | lineParameters.quadEndPoints(*this, startIndex, endIndex); | 
|  | // FIXME: maybe it's possible to avoid this and compare non-normalized | 
|  | lineParameters.normalize(); | 
|  | double distance = lineParameters.controlPtDistance(*this); | 
|  | double tiniest = std::min(std::min(std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), | 
|  | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); | 
|  | double largest = std::max(std::max(std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), | 
|  | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); | 
|  | largest = std::max(largest, -tiniest); | 
|  | return approximately_zero_when_compared_to(distance, largest); | 
|  | } | 
|  |  | 
|  | SkDVector SkDQuad::dxdyAtT(double t) const { | 
|  | double a = t - 1; | 
|  | double b = 1 - 2 * t; | 
|  | double c = t; | 
|  | SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, | 
|  | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; | 
|  | if (result.fX == 0 && result.fY == 0) { | 
|  | if (zero_or_one(t)) { | 
|  | result = fPts[2] - fPts[0]; | 
|  | } else { | 
|  | // incomplete | 
|  | SkDebugf("!q"); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? | 
|  | SkDPoint SkDQuad::ptAtT(double t) const { | 
|  | if (0 == t) { | 
|  | return fPts[0]; | 
|  | } | 
|  | if (1 == t) { | 
|  | return fPts[2]; | 
|  | } | 
|  | double one_t = 1 - t; | 
|  | double a = one_t * one_t; | 
|  | double b = 2 * one_t * t; | 
|  | double c = t * t; | 
|  | SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, | 
|  | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static double interp_quad_coords(const double* src, double t) { | 
|  | if (0 == t) { | 
|  | return src[0]; | 
|  | } | 
|  | if (1 == t) { | 
|  | return src[4]; | 
|  | } | 
|  | double ab = SkDInterp(src[0], src[2], t); | 
|  | double bc = SkDInterp(src[2], src[4], t); | 
|  | double abc = SkDInterp(ab, bc, t); | 
|  | return abc; | 
|  | } | 
|  |  | 
|  | bool SkDQuad::monotonicInX() const { | 
|  | return between(fPts[0].fX, fPts[1].fX, fPts[2].fX); | 
|  | } | 
|  |  | 
|  | bool SkDQuad::monotonicInY() const { | 
|  | return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Given a quadratic q, t1, and t2, find a small quadratic segment. | 
|  |  | 
|  | The new quadratic is defined by A, B, and C, where | 
|  | A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 | 
|  | C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 | 
|  |  | 
|  | To find B, compute the point halfway between t1 and t2: | 
|  |  | 
|  | q(at (t1 + t2)/2) == D | 
|  |  | 
|  | Next, compute where D must be if we know the value of B: | 
|  |  | 
|  | _12 = A/2 + B/2 | 
|  | 12_ = B/2 + C/2 | 
|  | 123 = A/4 + B/2 + C/4 | 
|  | = D | 
|  |  | 
|  | Group the known values on one side: | 
|  |  | 
|  | B   = D*2 - A/2 - C/2 | 
|  | */ | 
|  |  | 
|  | // OPTIMIZE? : special case  t1 = 1 && t2 = 0 | 
|  | SkDQuad SkDQuad::subDivide(double t1, double t2) const { | 
|  | if (0 == t1 && 1 == t2) { | 
|  | return *this; | 
|  | } | 
|  | SkDQuad dst; | 
|  | double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); | 
|  | double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); | 
|  | double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); | 
|  | double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); | 
|  | double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); | 
|  | double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); | 
|  | /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2; | 
|  | /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2; | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { | 
|  | if (fPts[endIndex].fX == fPts[1].fX) { | 
|  | dstPt->fX = fPts[endIndex].fX; | 
|  | } | 
|  | if (fPts[endIndex].fY == fPts[1].fY) { | 
|  | dstPt->fY = fPts[endIndex].fY; | 
|  | } | 
|  | } | 
|  |  | 
|  | SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { | 
|  | SkASSERT(t1 != t2); | 
|  | SkDPoint b; | 
|  | SkDQuad sub = subDivide(t1, t2); | 
|  | SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; | 
|  | SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; | 
|  | SkIntersections i; | 
|  | i.intersectRay(b0, b1); | 
|  | if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) { | 
|  | b = i.pt(0); | 
|  | } else { | 
|  | SkASSERT(i.used() <= 2); | 
|  | return SkDPoint::Mid(b0[1], b1[1]); | 
|  | } | 
|  | if (t1 == 0 || t2 == 0) { | 
|  | align(0, &b); | 
|  | } | 
|  | if (t1 == 1 || t2 == 1) { | 
|  | align(2, &b); | 
|  | } | 
|  | if (AlmostBequalUlps(b.fX, a.fX)) { | 
|  | b.fX = a.fX; | 
|  | } else if (AlmostBequalUlps(b.fX, c.fX)) { | 
|  | b.fX = c.fX; | 
|  | } | 
|  | if (AlmostBequalUlps(b.fY, a.fY)) { | 
|  | b.fY = a.fY; | 
|  | } else if (AlmostBequalUlps(b.fY, c.fY)) { | 
|  | b.fY = c.fY; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* classic one t subdivision */ | 
|  | static void interp_quad_coords(const double* src, double* dst, double t) { | 
|  | double ab = SkDInterp(src[0], src[2], t); | 
|  | double bc = SkDInterp(src[2], src[4], t); | 
|  | dst[0] = src[0]; | 
|  | dst[2] = ab; | 
|  | dst[4] = SkDInterp(ab, bc, t); | 
|  | dst[6] = bc; | 
|  | dst[8] = src[4]; | 
|  | } | 
|  |  | 
|  | SkDQuadPair SkDQuad::chopAt(double t) const | 
|  | { | 
|  | SkDQuadPair dst; | 
|  | interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); | 
|  | interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | static int valid_unit_divide(double numer, double denom, double* ratio) | 
|  | { | 
|  | if (numer < 0) { | 
|  | numer = -numer; | 
|  | denom = -denom; | 
|  | } | 
|  | if (denom == 0 || numer == 0 || numer >= denom) { | 
|  | return 0; | 
|  | } | 
|  | double r = numer / denom; | 
|  | if (r == 0) {  // catch underflow if numer <<<< denom | 
|  | return 0; | 
|  | } | 
|  | *ratio = r; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** Quad'(t) = At + B, where | 
|  | A = 2(a - 2b + c) | 
|  | B = 2(b - a) | 
|  | Solve for t, only if it fits between 0 < t < 1 | 
|  | */ | 
|  | int SkDQuad::FindExtrema(const double src[], double tValue[1]) { | 
|  | /*  At + B == 0 | 
|  | t = -B / A | 
|  | */ | 
|  | double a = src[0]; | 
|  | double b = src[2]; | 
|  | double c = src[4]; | 
|  | return valid_unit_divide(a - b, a - b - b + c, tValue); | 
|  | } | 
|  |  | 
|  | /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) | 
|  | * | 
|  | * a = A - 2*B +   C | 
|  | * b =     2*B - 2*C | 
|  | * c =             C | 
|  | */ | 
|  | void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { | 
|  | *a = quad[0];      // a = A | 
|  | *b = 2 * quad[2];  // b =     2*B | 
|  | *c = quad[4];      // c =             C | 
|  | *b -= *c;          // b =     2*B -   C | 
|  | *a -= *b;          // a = A - 2*B +   C | 
|  | *b -= *c;          // b =     2*B - 2*C | 
|  | } | 
|  |  | 
|  | int SkTQuad::intersectRay(SkIntersections* i, const SkDLine& line) const { | 
|  | return i->intersectRay(fQuad, line); | 
|  | } | 
|  |  | 
|  | bool SkTQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const  { | 
|  | return conic.hullIntersects(fQuad, isLinear); | 
|  | } | 
|  |  | 
|  | bool SkTQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
|  | return cubic.hullIntersects(fQuad, isLinear); | 
|  | } | 
|  |  | 
|  | void SkTQuad::setBounds(SkDRect* rect) const { | 
|  | rect->setBounds(fQuad); | 
|  | } |