|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "src/pathops/SkPathOpsLine.h" | 
|  |  | 
|  | SkDPoint SkDLine::ptAtT(double t) const { | 
|  | if (0 == t) { | 
|  | return fPts[0]; | 
|  | } | 
|  | if (1 == t) { | 
|  | return fPts[1]; | 
|  | } | 
|  | double one_t = 1 - t; | 
|  | SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY }; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | double SkDLine::exactPoint(const SkDPoint& xy) const { | 
|  | if (xy == fPts[0]) {  // do cheapest test first | 
|  | return 0; | 
|  | } | 
|  | if (xy == fPts[1]) { | 
|  | return 1; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | double SkDLine::nearPoint(const SkDPoint& xy, bool* unequal) const { | 
|  | if (!AlmostBetweenUlps(fPts[0].fX, xy.fX, fPts[1].fX) | 
|  | || !AlmostBetweenUlps(fPts[0].fY, xy.fY, fPts[1].fY)) { | 
|  | return -1; | 
|  | } | 
|  | // project a perpendicular ray from the point to the line; find the T on the line | 
|  | SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line | 
|  | double denom = len.fX * len.fX + len.fY * len.fY;  // see DLine intersectRay | 
|  | SkDVector ab0 = xy - fPts[0]; | 
|  | double numer = len.fX * ab0.fX + ab0.fY * len.fY; | 
|  | if (!between(0, numer, denom)) { | 
|  | return -1; | 
|  | } | 
|  | if (!denom) { | 
|  | return 0; | 
|  | } | 
|  | double t = numer / denom; | 
|  | SkDPoint realPt = ptAtT(t); | 
|  | double dist = realPt.distance(xy);   // OPTIMIZATION: can we compare against distSq instead ? | 
|  | // find the ordinal in the original line with the largest unsigned exponent | 
|  | double tiniest = std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); | 
|  | double largest = std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); | 
|  | largest = std::max(largest, -tiniest); | 
|  | if (!AlmostEqualUlps_Pin(largest, largest + dist)) { // is the dist within ULPS tolerance? | 
|  | return -1; | 
|  | } | 
|  | if (unequal) { | 
|  | *unequal = (float) largest != (float) (largest + dist); | 
|  | } | 
|  | t = SkPinT(t);  // a looser pin breaks skpwww_lptemp_com_3 | 
|  | SkASSERT(between(0, t, 1)); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | bool SkDLine::nearRay(const SkDPoint& xy) const { | 
|  | // project a perpendicular ray from the point to the line; find the T on the line | 
|  | SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line | 
|  | double denom = len.fX * len.fX + len.fY * len.fY;  // see DLine intersectRay | 
|  | SkDVector ab0 = xy - fPts[0]; | 
|  | double numer = len.fX * ab0.fX + ab0.fY * len.fY; | 
|  | double t = numer / denom; | 
|  | SkDPoint realPt = ptAtT(t); | 
|  | double dist = realPt.distance(xy);   // OPTIMIZATION: can we compare against distSq instead ? | 
|  | // find the ordinal in the original line with the largest unsigned exponent | 
|  | double tiniest = std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); | 
|  | double largest = std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); | 
|  | largest = std::max(largest, -tiniest); | 
|  | return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance? | 
|  | } | 
|  |  | 
|  | double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, double y) { | 
|  | if (xy.fY == y) { | 
|  | if (xy.fX == left) { | 
|  | return 0; | 
|  | } | 
|  | if (xy.fX == right) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | double SkDLine::NearPointH(const SkDPoint& xy, double left, double right, double y) { | 
|  | if (!AlmostBequalUlps(xy.fY, y)) { | 
|  | return -1; | 
|  | } | 
|  | if (!AlmostBetweenUlps(left, xy.fX, right)) { | 
|  | return -1; | 
|  | } | 
|  | double t = (xy.fX - left) / (right - left); | 
|  | t = SkPinT(t); | 
|  | SkASSERT(between(0, t, 1)); | 
|  | double realPtX = (1 - t) * left + t * right; | 
|  | SkDVector distU = {xy.fY - y, xy.fX - realPtX}; | 
|  | double distSq = distU.fX * distU.fX + distU.fY * distU.fY; | 
|  | double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? | 
|  | double tiniest = std::min(std::min(y, left), right); | 
|  | double largest = std::max(std::max(y, left), right); | 
|  | largest = std::max(largest, -tiniest); | 
|  | if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? | 
|  | return -1; | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  | double SkDLine::ExactPointV(const SkDPoint& xy, double top, double bottom, double x) { | 
|  | if (xy.fX == x) { | 
|  | if (xy.fY == top) { | 
|  | return 0; | 
|  | } | 
|  | if (xy.fY == bottom) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | double SkDLine::NearPointV(const SkDPoint& xy, double top, double bottom, double x) { | 
|  | if (!AlmostBequalUlps(xy.fX, x)) { | 
|  | return -1; | 
|  | } | 
|  | if (!AlmostBetweenUlps(top, xy.fY, bottom)) { | 
|  | return -1; | 
|  | } | 
|  | double t = (xy.fY - top) / (bottom - top); | 
|  | t = SkPinT(t); | 
|  | SkASSERT(between(0, t, 1)); | 
|  | double realPtY = (1 - t) * top + t * bottom; | 
|  | SkDVector distU = {xy.fX - x, xy.fY - realPtY}; | 
|  | double distSq = distU.fX * distU.fX + distU.fY * distU.fY; | 
|  | double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? | 
|  | double tiniest = std::min(std::min(x, top), bottom); | 
|  | double largest = std::max(std::max(x, top), bottom); | 
|  | largest = std::max(largest, -tiniest); | 
|  | if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? | 
|  | return -1; | 
|  | } | 
|  | return t; | 
|  | } |