|  | /* | 
|  | * Copyright 2017 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/utils/SkShadowUtils.h" | 
|  |  | 
|  | #include "include/core/SkCanvas.h" | 
|  | #include "include/core/SkColorFilter.h" | 
|  | #include "include/core/SkMaskFilter.h" | 
|  | #include "include/core/SkPath.h" | 
|  | #include "include/core/SkString.h" | 
|  | #include "include/core/SkVertices.h" | 
|  | #include "include/private/SkColorData.h" | 
|  | #include "include/private/SkIDChangeListener.h" | 
|  | #include "include/private/SkTPin.h" | 
|  | #include "include/utils/SkRandom.h" | 
|  | #include "src/core/SkBlurMask.h" | 
|  | #include "src/core/SkColorFilterBase.h" | 
|  | #include "src/core/SkColorFilterPriv.h" | 
|  | #include "src/core/SkDevice.h" | 
|  | #include "src/core/SkDrawShadowInfo.h" | 
|  | #include "src/core/SkEffectPriv.h" | 
|  | #include "src/core/SkPathPriv.h" | 
|  | #include "src/core/SkRasterPipeline.h" | 
|  | #include "src/core/SkResourceCache.h" | 
|  | #include "src/core/SkRuntimeEffectPriv.h" | 
|  | #include "src/core/SkTLazy.h" | 
|  | #include "src/core/SkVM.h" | 
|  | #include "src/core/SkVerticesPriv.h" | 
|  | #include "src/utils/SkShadowTessellator.h" | 
|  | #include <new> | 
|  | #if SK_SUPPORT_GPU | 
|  | #include "src/gpu/effects/GrSkSLFP.h" | 
|  | #include "src/gpu/geometry/GrStyledShape.h" | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value, | 
|  | *                           then blends with the color's G value. | 
|  | *                           Final result is black with alpha of Gaussian(B)*G. | 
|  | *                           The assumption is that the original color's alpha is 1. | 
|  | */ | 
|  | class SkGaussianColorFilter : public SkColorFilterBase { | 
|  | public: | 
|  | SkGaussianColorFilter() : INHERITED() {} | 
|  |  | 
|  | #if SK_SUPPORT_GPU | 
|  | GrFPResult asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP, | 
|  | GrRecordingContext*, const GrColorInfo&) const override; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | void flatten(SkWriteBuffer&) const override {} | 
|  | bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override { | 
|  | rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | skvm::Color onProgram(skvm::Builder* p, skvm::Color c, const SkColorInfo& dst, skvm::Uniforms*, | 
|  | SkArenaAlloc*) const override { | 
|  | // x = 1 - x; | 
|  | // exp(-x * x * 4) - 0.018f; | 
|  | // ... now approximate with quartic | 
|  | // | 
|  | skvm::F32 x = p->splat(-2.26661229133605957031f); | 
|  | x = c.a * x + 2.89795351028442382812f; | 
|  | x = c.a * x + 0.21345567703247070312f; | 
|  | x = c.a * x + 0.15489584207534790039f; | 
|  | x = c.a * x + 0.00030726194381713867f; | 
|  | return {x, x, x, x}; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SK_FLATTENABLE_HOOKS(SkGaussianColorFilter) | 
|  |  | 
|  | using INHERITED = SkColorFilterBase; | 
|  | }; | 
|  |  | 
|  | sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) { | 
|  | return SkColorFilterPriv::MakeGaussian(); | 
|  | } | 
|  |  | 
|  | #if SK_SUPPORT_GPU | 
|  |  | 
|  | GrFPResult SkGaussianColorFilter::asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP, | 
|  | GrRecordingContext*, | 
|  | const GrColorInfo&) const { | 
|  | static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( | 
|  | half4 main(half4 inColor) { | 
|  | half factor = 1 - inColor.a; | 
|  | factor = exp(-factor * factor * 4) - 0.018; | 
|  | return half4(factor); | 
|  | } | 
|  | )"); | 
|  | SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); | 
|  | return GrFPSuccess( | 
|  | GrSkSLFP::Make(effect, "gaussian_fp", std::move(inputFP), GrSkSLFP::OptFlags::kNone)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | sk_sp<SkColorFilter> SkColorFilterPriv::MakeGaussian() { | 
|  | return sk_sp<SkColorFilter>(new SkGaussianColorFilter); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | uint64_t resource_cache_shared_id() { | 
|  | return 0x2020776f64616873llu;  // 'shadow  ' | 
|  | } | 
|  |  | 
|  | /** Factory for an ambient shadow mesh with particular shadow properties. */ | 
|  | struct AmbientVerticesFactory { | 
|  | SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed. | 
|  | bool fTransparent; | 
|  | SkVector fOffset; | 
|  |  | 
|  | bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { | 
|  | if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { | 
|  | return false; | 
|  | } | 
|  | *translate = that.fOffset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, | 
|  | SkVector* translate) const { | 
|  | SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); | 
|  | // pick a canonical place to generate shadow | 
|  | SkMatrix noTrans(ctm); | 
|  | if (!ctm.hasPerspective()) { | 
|  | noTrans[SkMatrix::kMTransX] = 0; | 
|  | noTrans[SkMatrix::kMTransY] = 0; | 
|  | } | 
|  | *translate = fOffset; | 
|  | return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** Factory for an spot shadow mesh with particular shadow properties. */ | 
|  | struct SpotVerticesFactory { | 
|  | enum class OccluderType { | 
|  | // The umbra cannot be dropped out because either the occluder is not opaque, | 
|  | // or the center of the umbra is visible. Uses point light. | 
|  | kPointTransparent, | 
|  | // The umbra can be dropped where it is occluded. Uses point light. | 
|  | kPointOpaquePartialUmbra, | 
|  | // It is known that the entire umbra is occluded. Uses point light. | 
|  | kPointOpaqueNoUmbra, | 
|  | // Uses directional light. | 
|  | kDirectional, | 
|  | // The umbra can't be dropped out. Uses directional light. | 
|  | kDirectionalTransparent, | 
|  | }; | 
|  |  | 
|  | SkVector fOffset; | 
|  | SkPoint  fLocalCenter; | 
|  | SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. | 
|  | SkPoint3 fDevLightPos; | 
|  | SkScalar fLightRadius; | 
|  | OccluderType fOccluderType; | 
|  |  | 
|  | bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { | 
|  | if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || | 
|  | fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { | 
|  | return false; | 
|  | } | 
|  | switch (fOccluderType) { | 
|  | case OccluderType::kPointTransparent: | 
|  | case OccluderType::kPointOpaqueNoUmbra: | 
|  | // 'this' and 'that' will either both have no umbra removed or both have all the | 
|  | // umbra removed. | 
|  | *translate = that.fOffset; | 
|  | return true; | 
|  | case OccluderType::kPointOpaquePartialUmbra: | 
|  | // In this case we partially remove the umbra differently for 'this' and 'that' | 
|  | // if the offsets don't match. | 
|  | if (fOffset == that.fOffset) { | 
|  | translate->set(0, 0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | case OccluderType::kDirectional: | 
|  | case OccluderType::kDirectionalTransparent: | 
|  | *translate = that.fOffset - fOffset; | 
|  | return true; | 
|  | } | 
|  | SK_ABORT("Uninitialized occluder type?"); | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, | 
|  | SkVector* translate) const { | 
|  | bool transparent = fOccluderType == OccluderType::kPointTransparent || | 
|  | fOccluderType == OccluderType::kDirectionalTransparent; | 
|  | bool directional = fOccluderType == OccluderType::kDirectional || | 
|  | fOccluderType == OccluderType::kDirectionalTransparent; | 
|  | SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); | 
|  | if (directional) { | 
|  | translate->set(0, 0); | 
|  | return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, | 
|  | transparent, true); | 
|  | } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) { | 
|  | translate->set(0, 0); | 
|  | return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, | 
|  | transparent, false); | 
|  | } else { | 
|  | // pick a canonical place to generate shadow, with light centered over path | 
|  | SkMatrix noTrans(ctm); | 
|  | noTrans[SkMatrix::kMTransX] = 0; | 
|  | noTrans[SkMatrix::kMTransY] = 0; | 
|  | SkPoint devCenter(fLocalCenter); | 
|  | noTrans.mapPoints(&devCenter, 1); | 
|  | SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ); | 
|  | *translate = fOffset; | 
|  | return SkShadowTessellator::MakeSpot(path, noTrans, zParams, | 
|  | centerLightPos, fLightRadius, transparent, false); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache | 
|  | * records are immutable this is not itself a Rec. When we need to update it we return this on | 
|  | * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add | 
|  | * a new Rec with an adjusted size for any deletions/additions. | 
|  | */ | 
|  | class CachedTessellations : public SkRefCnt { | 
|  | public: | 
|  | size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } | 
|  |  | 
|  | sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, | 
|  | SkVector* translate) const { | 
|  | return fAmbientSet.find(ambient, matrix, translate); | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient, | 
|  | const SkMatrix& matrix, SkVector* translate) { | 
|  | return fAmbientSet.add(devPath, ambient, matrix, translate); | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix, | 
|  | SkVector* translate) const { | 
|  | return fSpotSet.find(spot, matrix, translate); | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot, | 
|  | const SkMatrix& matrix, SkVector* translate) { | 
|  | return fSpotSet.add(devPath, spot, matrix, translate); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename FACTORY, int MAX_ENTRIES> | 
|  | class Set { | 
|  | public: | 
|  | size_t size() const { return fSize; } | 
|  |  | 
|  | sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, | 
|  | SkVector* translate) const { | 
|  | for (int i = 0; i < MAX_ENTRIES; ++i) { | 
|  | if (fEntries[i].fFactory.isCompatible(factory, translate)) { | 
|  | const SkMatrix& m = fEntries[i].fMatrix; | 
|  | if (matrix.hasPerspective() || m.hasPerspective()) { | 
|  | if (matrix != fEntries[i].fMatrix) { | 
|  | continue; | 
|  | } | 
|  | } else if (matrix.getScaleX() != m.getScaleX() || | 
|  | matrix.getSkewX() != m.getSkewX() || | 
|  | matrix.getScaleY() != m.getScaleY() || | 
|  | matrix.getSkewY() != m.getSkewY()) { | 
|  | continue; | 
|  | } | 
|  | return fEntries[i].fVertices; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, | 
|  | SkVector* translate) { | 
|  | sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate); | 
|  | if (!vertices) { | 
|  | return nullptr; | 
|  | } | 
|  | int i; | 
|  | if (fCount < MAX_ENTRIES) { | 
|  | i = fCount++; | 
|  | } else { | 
|  | i = fRandom.nextULessThan(MAX_ENTRIES); | 
|  | fSize -= fEntries[i].fVertices->approximateSize(); | 
|  | } | 
|  | fEntries[i].fFactory = factory; | 
|  | fEntries[i].fVertices = vertices; | 
|  | fEntries[i].fMatrix = matrix; | 
|  | fSize += vertices->approximateSize(); | 
|  | return vertices; | 
|  | } | 
|  |  | 
|  | private: | 
|  | struct Entry { | 
|  | FACTORY fFactory; | 
|  | sk_sp<SkVertices> fVertices; | 
|  | SkMatrix fMatrix; | 
|  | }; | 
|  | Entry fEntries[MAX_ENTRIES]; | 
|  | int fCount = 0; | 
|  | size_t fSize = 0; | 
|  | SkRandom fRandom; | 
|  | }; | 
|  |  | 
|  | Set<AmbientVerticesFactory, 4> fAmbientSet; | 
|  | Set<SpotVerticesFactory, 4> fSpotSet; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular | 
|  | * path. The key represents the path's geometry and not any shadow params. | 
|  | */ | 
|  | class CachedTessellationsRec : public SkResourceCache::Rec { | 
|  | public: | 
|  | CachedTessellationsRec(const SkResourceCache::Key& key, | 
|  | sk_sp<CachedTessellations> tessellations) | 
|  | : fTessellations(std::move(tessellations)) { | 
|  | fKey.reset(new uint8_t[key.size()]); | 
|  | memcpy(fKey.get(), &key, key.size()); | 
|  | } | 
|  |  | 
|  | const Key& getKey() const override { | 
|  | return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); | 
|  | } | 
|  |  | 
|  | size_t bytesUsed() const override { return fTessellations->size(); } | 
|  |  | 
|  | const char* getCategory() const override { return "tessellated shadow masks"; } | 
|  |  | 
|  | sk_sp<CachedTessellations> refTessellations() const { return fTessellations; } | 
|  |  | 
|  | template <typename FACTORY> | 
|  | sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, | 
|  | SkVector* translate) const { | 
|  | return fTessellations->find(factory, matrix, translate); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<uint8_t[]> fKey; | 
|  | sk_sp<CachedTessellations> fTessellations; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the | 
|  | * vertices and a translation vector. If the CachedTessellations does not contain a suitable | 
|  | * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations | 
|  | * to the caller. The caller will update it and reinsert it back into the cache. | 
|  | */ | 
|  | template <typename FACTORY> | 
|  | struct FindContext { | 
|  | FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) | 
|  | : fViewMatrix(viewMatrix), fFactory(factory) {} | 
|  | const SkMatrix* const fViewMatrix; | 
|  | // If this is valid after Find is called then we found the vertices and they should be drawn | 
|  | // with fTranslate applied. | 
|  | sk_sp<SkVertices> fVertices; | 
|  | SkVector fTranslate = {0, 0}; | 
|  |  | 
|  | // If this is valid after Find then the caller should add the vertices to the tessellation set | 
|  | // and create a new CachedTessellationsRec and insert it into SkResourceCache. | 
|  | sk_sp<CachedTessellations> fTessellationsOnFailure; | 
|  |  | 
|  | const FACTORY* fFactory; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of | 
|  | * the FindContext are used to determine if the vertices are reusable. If so the vertices and | 
|  | * necessary translation vector are set on the FindContext. | 
|  | */ | 
|  | template <typename FACTORY> | 
|  | bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { | 
|  | FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx; | 
|  | const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec); | 
|  | findContext->fVertices = | 
|  | rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); | 
|  | if (findContext->fVertices) { | 
|  | return true; | 
|  | } | 
|  | // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been | 
|  | // manipulated we will add a new Rec. | 
|  | findContext->fTessellationsOnFailure = rec.refTessellations(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | class ShadowedPath { | 
|  | public: | 
|  | ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) | 
|  | : fPath(path) | 
|  | , fViewMatrix(viewMatrix) | 
|  | #if SK_SUPPORT_GPU | 
|  | , fShapeForKey(*path, GrStyle::SimpleFill()) | 
|  | #endif | 
|  | {} | 
|  |  | 
|  | const SkPath& path() const { return *fPath; } | 
|  | const SkMatrix& viewMatrix() const { return *fViewMatrix; } | 
|  | #if SK_SUPPORT_GPU | 
|  | /** Negative means the vertices should not be cached for this path. */ | 
|  | int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } | 
|  | void writeKey(void* key) const { | 
|  | fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key)); | 
|  | } | 
|  | bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } | 
|  | #else | 
|  | int keyBytes() const { return -1; } | 
|  | void writeKey(void* key) const { SK_ABORT("Should never be called"); } | 
|  | bool isRRect(SkRRect* rrect) { return false; } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | const SkPath* fPath; | 
|  | const SkMatrix* fViewMatrix; | 
|  | #if SK_SUPPORT_GPU | 
|  | GrStyledShape fShapeForKey; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | // This creates a domain of keys in SkResourceCache used by this file. | 
|  | static void* kNamespace; | 
|  |  | 
|  | // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. | 
|  | class ShadowInvalidator : public SkIDChangeListener { | 
|  | public: | 
|  | ShadowInvalidator(const SkResourceCache::Key& key) { | 
|  | fKey.reset(new uint8_t[key.size()]); | 
|  | memcpy(fKey.get(), &key, key.size()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const SkResourceCache::Key& getKey() const { | 
|  | return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); | 
|  | } | 
|  |  | 
|  | // always purge | 
|  | static bool FindVisitor(const SkResourceCache::Rec&, void*) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void changed() override { | 
|  | SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<uint8_t[]> fKey; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless | 
|  | * they are first found in SkResourceCache. | 
|  | */ | 
|  | template <typename FACTORY> | 
|  | bool draw_shadow(const FACTORY& factory, | 
|  | std::function<void(const SkVertices*, SkBlendMode, const SkPaint&, | 
|  | SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) { | 
|  | FindContext<FACTORY> context(&path.viewMatrix(), &factory); | 
|  |  | 
|  | SkResourceCache::Key* key = nullptr; | 
|  | SkAutoSTArray<32 * 4, uint8_t> keyStorage; | 
|  | int keyDataBytes = path.keyBytes(); | 
|  | if (keyDataBytes >= 0) { | 
|  | keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); | 
|  | key = new (keyStorage.begin()) SkResourceCache::Key(); | 
|  | path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); | 
|  | key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); | 
|  | SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context); | 
|  | } | 
|  |  | 
|  | sk_sp<SkVertices> vertices; | 
|  | bool foundInCache = SkToBool(context.fVertices); | 
|  | if (foundInCache) { | 
|  | vertices = std::move(context.fVertices); | 
|  | } else { | 
|  | // TODO: handle transforming the path as part of the tessellator | 
|  | if (key) { | 
|  | // Update or initialize a tessellation set and add it to the cache. | 
|  | sk_sp<CachedTessellations> tessellations; | 
|  | if (context.fTessellationsOnFailure) { | 
|  | tessellations = std::move(context.fTessellationsOnFailure); | 
|  | } else { | 
|  | tessellations.reset(new CachedTessellations()); | 
|  | } | 
|  | vertices = tessellations->add(path.path(), factory, path.viewMatrix(), | 
|  | &context.fTranslate); | 
|  | if (!vertices) { | 
|  | return false; | 
|  | } | 
|  | auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); | 
|  | SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key)); | 
|  | SkResourceCache::Add(rec); | 
|  | } else { | 
|  | vertices = factory.makeVertices(path.path(), path.viewMatrix(), | 
|  | &context.fTranslate); | 
|  | if (!vertices) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SkPaint paint; | 
|  | // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of | 
|  | // that against our 'color' param. | 
|  | paint.setColorFilter( | 
|  | SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed( | 
|  | SkColorFilterPriv::MakeGaussian())); | 
|  |  | 
|  | drawProc(vertices.get(), SkBlendMode::kModulate, paint, | 
|  | context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | static bool tilted(const SkPoint3& zPlaneParams) { | 
|  | return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); | 
|  | } | 
|  |  | 
|  | void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, | 
|  | SkColor* outAmbientColor, SkColor* outSpotColor) { | 
|  | // For tonal color we only compute color values for the spot shadow. | 
|  | // The ambient shadow is greyscale only. | 
|  |  | 
|  | // Ambient | 
|  | *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0); | 
|  |  | 
|  | // Spot | 
|  | int spotR = SkColorGetR(inSpotColor); | 
|  | int spotG = SkColorGetG(inSpotColor); | 
|  | int spotB = SkColorGetB(inSpotColor); | 
|  | int max = std::max(std::max(spotR, spotG), spotB); | 
|  | int min = std::min(std::min(spotR, spotG), spotB); | 
|  | SkScalar luminance = 0.5f*(max + min)/255.f; | 
|  | SkScalar origA = SkColorGetA(inSpotColor)/255.f; | 
|  |  | 
|  | // We compute a color alpha value based on the luminance of the color, scaled by an | 
|  | // adjusted alpha value. We want the following properties to match the UX examples | 
|  | // (assuming a = 0.25) and to ensure that we have reasonable results when the color | 
|  | // is black and/or the alpha is 0: | 
|  | //     f(0, a) = 0 | 
|  | //     f(luminance, 0) = 0 | 
|  | //     f(1, 0.25) = .5 | 
|  | //     f(0.5, 0.25) = .4 | 
|  | //     f(1, 1) = 1 | 
|  | // The following functions match this as closely as possible. | 
|  | SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA; | 
|  | SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance; | 
|  | colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f); | 
|  |  | 
|  | // Similarly, we set the greyscale alpha based on luminance and alpha so that | 
|  | //     f(0, a) = a | 
|  | //     f(luminance, 0) = 0 | 
|  | //     f(1, 0.25) = 0.15 | 
|  | SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f); | 
|  |  | 
|  | // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an | 
|  | // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a) | 
|  | // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and | 
|  | // ignoring edge falloff, this becomes | 
|  | // | 
|  | //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb | 
|  | // | 
|  | // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and | 
|  | // set the alpha to (S_a + C_a - S_a*C_a). | 
|  | SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha); | 
|  | SkScalar tonalAlpha = colorScale + greyscaleAlpha; | 
|  | SkScalar unPremulScale = colorScale / tonalAlpha; | 
|  | *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f, | 
|  | unPremulScale*spotR, | 
|  | unPremulScale*spotG, | 
|  | unPremulScale*spotB); | 
|  | } | 
|  |  | 
|  | static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams, | 
|  | const SkPoint3& lightPos, SkScalar lightRadius, | 
|  | SkColor ambientColor, SkColor spotColor, | 
|  | uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) { | 
|  | SkPoint pt = { lightPos.fX, lightPos.fY }; | 
|  | if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) { | 
|  | // If light position is in device space, need to transform to local space | 
|  | // before applying to SkCanvas. | 
|  | SkMatrix inverse; | 
|  | if (!ctm.invert(&inverse)) { | 
|  | return false; | 
|  | } | 
|  | inverse.mapPoints(&pt, 1); | 
|  | } | 
|  |  | 
|  | rec->fZPlaneParams   = zPlaneParams; | 
|  | rec->fLightPos       = { pt.fX, pt.fY, lightPos.fZ }; | 
|  | rec->fLightRadius    = lightRadius; | 
|  | rec->fAmbientColor   = ambientColor; | 
|  | rec->fSpotColor      = spotColor; | 
|  | rec->fFlags          = flags; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Draw an offset spot shadow and outlining ambient shadow for the given path. | 
|  | void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, | 
|  | const SkPoint3& lightPos, SkScalar lightRadius, | 
|  | SkColor ambientColor, SkColor spotColor, | 
|  | uint32_t flags) { | 
|  | SkDrawShadowRec rec; | 
|  | if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, | 
|  | flags, canvas->getTotalMatrix(), &rec)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | canvas->private_draw_shadow_rec(path, rec); | 
|  | } | 
|  |  | 
|  | bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path, | 
|  | const SkPoint3& zPlaneParams, const SkPoint3& lightPos, | 
|  | SkScalar lightRadius, uint32_t flags, SkRect* bounds) { | 
|  | SkDrawShadowRec rec; | 
|  | if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK, | 
|  | flags, ctm, &rec)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static bool validate_rec(const SkDrawShadowRec& rec) { | 
|  | return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() && | 
|  | SkScalarIsFinite(rec.fLightRadius); | 
|  | } | 
|  |  | 
|  | void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { | 
|  | auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, | 
|  | SkScalar tx, SkScalar ty, bool hasPerspective) { | 
|  | if (vertices->priv().vertexCount()) { | 
|  | // For perspective shadows we've already computed the shadow in world space, | 
|  | // and we can't translate it without changing it. Otherwise we concat the | 
|  | // change in translation from the cached version. | 
|  | SkAutoDeviceTransformRestore adr( | 
|  | this, | 
|  | hasPerspective ? SkMatrix::I() | 
|  | : this->localToDevice() * SkMatrix::Translate(tx, ty)); | 
|  | // The vertex colors for a tesselated shadow polygon are always either opaque black | 
|  | // or transparent and their real contribution to the final blended color is via | 
|  | // their alpha. We can skip expensive per-vertex color conversion for this. | 
|  | this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true); | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (!validate_rec(rec)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | SkMatrix viewMatrix = this->localToDevice(); | 
|  | SkAutoDeviceTransformRestore adr(this, SkMatrix::I()); | 
|  |  | 
|  | ShadowedPath shadowedPath(&path, &viewMatrix); | 
|  |  | 
|  | bool tiltZPlane = tilted(rec.fZPlaneParams); | 
|  | bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); | 
|  | bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag); | 
|  | bool uncached = tiltZPlane || path.isVolatile(); | 
|  |  | 
|  | SkPoint3 zPlaneParams = rec.fZPlaneParams; | 
|  | SkPoint3 devLightPos = rec.fLightPos; | 
|  | if (!directional) { | 
|  | viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1); | 
|  | } | 
|  | float lightRadius = rec.fLightRadius; | 
|  |  | 
|  | if (SkColorGetA(rec.fAmbientColor) > 0) { | 
|  | bool success = false; | 
|  | if (uncached) { | 
|  | sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, | 
|  | zPlaneParams, | 
|  | transparent); | 
|  | if (vertices) { | 
|  | SkPaint paint; | 
|  | // Run the vertex color through a GaussianColorFilter and then modulate the | 
|  | // grayscale result of that against our 'color' param. | 
|  | paint.setColorFilter( | 
|  | SkColorFilters::Blend(rec.fAmbientColor, | 
|  | SkBlendMode::kModulate)->makeComposed( | 
|  | SkColorFilterPriv::MakeGaussian())); | 
|  | // The vertex colors for a tesselated shadow polygon are always either opaque black | 
|  | // or transparent and their real contribution to the final blended color is via | 
|  | // their alpha. We can skip expensive per-vertex color conversion for this. | 
|  | this->drawVertices(vertices.get(), | 
|  | SkBlender::Mode(SkBlendMode::kModulate), | 
|  | paint, | 
|  | /*skipColorXform=*/true); | 
|  | success = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!success) { | 
|  | AmbientVerticesFactory factory; | 
|  | factory.fOccluderHeight = zPlaneParams.fZ; | 
|  | factory.fTransparent = transparent; | 
|  | if (viewMatrix.hasPerspective()) { | 
|  | factory.fOffset.set(0, 0); | 
|  | } else { | 
|  | factory.fOffset.fX = viewMatrix.getTranslateX(); | 
|  | factory.fOffset.fY = viewMatrix.getTranslateY(); | 
|  | } | 
|  |  | 
|  | if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) { | 
|  | // Pretransform the path to avoid transforming the stroke, below. | 
|  | SkPath devSpacePath; | 
|  | path.transform(viewMatrix, &devSpacePath); | 
|  | devSpacePath.setIsVolatile(true); | 
|  |  | 
|  | // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of | 
|  | // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a'). | 
|  | // | 
|  | // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f') | 
|  | // can be calculated by interpolating: | 
|  | // | 
|  | //            original edge        outer edge | 
|  | //         |       |<---------- r ------>| | 
|  | //         |<------|--- f -------------->| | 
|  | //         |       |                     | | 
|  | //    alpha = 1  alpha = a          alpha = 0 | 
|  | // | 
|  | // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2. | 
|  | // | 
|  | // We now need to outset the path to place the new edge in the center of the | 
|  | // blur region: | 
|  | // | 
|  | //             original   new | 
|  | //         |       |<------|--- r ------>| | 
|  | //         |<------|--- f -|------------>| | 
|  | //         |       |<- o ->|<--- f/2 --->| | 
|  | // | 
|  | //     r = o + f/2, so o = r - f/2 | 
|  | // | 
|  | // We outset by using the stroker, so the strokeWidth is o/2. | 
|  | // | 
|  | SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ); | 
|  | SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ); | 
|  | SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA; | 
|  | SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius); | 
|  |  | 
|  | // Now draw with blur | 
|  | SkPaint paint; | 
|  | paint.setColor(rec.fAmbientColor); | 
|  | paint.setStrokeWidth(strokeWidth); | 
|  | paint.setStyle(SkPaint::kStrokeAndFill_Style); | 
|  | SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius); | 
|  | bool respectCTM = false; | 
|  | paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); | 
|  | this->drawPath(devSpacePath, paint); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SkColorGetA(rec.fSpotColor) > 0) { | 
|  | bool success = false; | 
|  | if (uncached) { | 
|  | sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, | 
|  | zPlaneParams, | 
|  | devLightPos, lightRadius, | 
|  | transparent, | 
|  | directional); | 
|  | if (vertices) { | 
|  | SkPaint paint; | 
|  | // Run the vertex color through a GaussianColorFilter and then modulate the | 
|  | // grayscale result of that against our 'color' param. | 
|  | paint.setColorFilter( | 
|  | SkColorFilters::Blend(rec.fSpotColor, | 
|  | SkBlendMode::kModulate)->makeComposed( | 
|  | SkColorFilterPriv::MakeGaussian())); | 
|  | // The vertex colors for a tesselated shadow polygon are always either opaque black | 
|  | // or transparent and their real contribution to the final blended color is via | 
|  | // their alpha. We can skip expensive per-vertex color conversion for this. | 
|  | this->drawVertices(vertices.get(), | 
|  | SkBlender::Mode(SkBlendMode::kModulate), | 
|  | paint, | 
|  | /*skipColorXform=*/true); | 
|  | success = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!success) { | 
|  | SpotVerticesFactory factory; | 
|  | factory.fOccluderHeight = zPlaneParams.fZ; | 
|  | factory.fDevLightPos = devLightPos; | 
|  | factory.fLightRadius = lightRadius; | 
|  |  | 
|  | SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); | 
|  | factory.fLocalCenter = center; | 
|  | viewMatrix.mapPoints(¢er, 1); | 
|  | SkScalar radius, scale; | 
|  | if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) { | 
|  | SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX, | 
|  | devLightPos.fY, devLightPos.fZ, | 
|  | lightRadius, &radius, &scale, | 
|  | &factory.fOffset); | 
|  | } else { | 
|  | SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX, | 
|  | devLightPos.fY - center.fY, devLightPos.fZ, | 
|  | lightRadius, &radius, &scale, &factory.fOffset); | 
|  | } | 
|  |  | 
|  | SkRect devBounds; | 
|  | viewMatrix.mapRect(&devBounds, path.getBounds()); | 
|  | if (transparent || | 
|  | SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || | 
|  | SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { | 
|  | // if the translation of the shadow is big enough we're going to end up | 
|  | // filling the entire umbra, we can treat these as all the same | 
|  | if (directional) { | 
|  | factory.fOccluderType = | 
|  | SpotVerticesFactory::OccluderType::kDirectionalTransparent; | 
|  | } else { | 
|  | factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent; | 
|  | } | 
|  | } else if (directional) { | 
|  | factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional; | 
|  | } else if (factory.fOffset.length()*scale + scale < radius) { | 
|  | // if we don't translate more than the blur distance, can assume umbra is covered | 
|  | factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra; | 
|  | } else if (path.isConvex()) { | 
|  | factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra; | 
|  | } else { | 
|  | factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent; | 
|  | } | 
|  | // need to add this after we classify the shadow | 
|  | factory.fOffset.fX += viewMatrix.getTranslateX(); | 
|  | factory.fOffset.fY += viewMatrix.getTranslateY(); | 
|  |  | 
|  | SkColor color = rec.fSpotColor; | 
|  | #ifdef DEBUG_SHADOW_CHECKS | 
|  | switch (factory.fOccluderType) { | 
|  | case SpotVerticesFactory::OccluderType::kPointTransparent: | 
|  | color = 0xFFD2B48C;  // tan for transparent | 
|  | break; | 
|  | case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra: | 
|  | color = 0xFFFFA500;   // orange for opaque | 
|  | break; | 
|  | case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra: | 
|  | color = 0xFFE5E500;  // corn yellow for covered | 
|  | break; | 
|  | case SpotVerticesFactory::OccluderType::kDirectional: | 
|  | case SpotVerticesFactory::OccluderType::kDirectionalTransparent: | 
|  | color = 0xFF550000;  // dark red for directional | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) { | 
|  | // draw with blur | 
|  | SkMatrix shadowMatrix; | 
|  | if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius, | 
|  | viewMatrix, zPlaneParams, | 
|  | path.getBounds(), directional, | 
|  | &shadowMatrix, &radius)) { | 
|  | return; | 
|  | } | 
|  | SkAutoDeviceTransformRestore adr2(this, shadowMatrix); | 
|  |  | 
|  | SkPaint paint; | 
|  | paint.setColor(rec.fSpotColor); | 
|  | SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); | 
|  | bool respectCTM = false; | 
|  | paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); | 
|  | this->drawPath(path, paint); | 
|  | } | 
|  | } | 
|  | } | 
|  | } |