|  | /* | 
|  | * Copyright 2017 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "src/utils/SkPolyUtils.h" | 
|  |  | 
|  | #include <limits> | 
|  |  | 
|  | #include "include/private/SkNx.h" | 
|  | #include "include/private/SkTArray.h" | 
|  | #include "include/private/SkTemplates.h" | 
|  | #include "src/core/SkPointPriv.h" | 
|  | #include "src/core/SkRectPriv.h" | 
|  | #include "src/core/SkTDPQueue.h" | 
|  | #include "src/core/SkTInternalLList.h" | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////////// | 
|  | // Helper data structures and functions | 
|  |  | 
|  | struct OffsetSegment { | 
|  | SkPoint fP0; | 
|  | SkVector fV; | 
|  | }; | 
|  |  | 
|  | constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero; | 
|  |  | 
|  | // Computes perpDot for point p compared to segment defined by origin p0 and vector v. | 
|  | // A positive value means the point is to the left of the segment, | 
|  | // negative is to the right, 0 is collinear. | 
|  | static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) { | 
|  | SkVector w = p - p0; | 
|  | SkScalar perpDot = v.cross(w); | 
|  | if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) { | 
|  | return ((perpDot > 0) ? 1 : -1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting) | 
|  | int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) { | 
|  | if (polygonSize < 3) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // compute area and use sign to determine winding | 
|  | SkScalar quadArea = 0; | 
|  | SkVector v0 = polygonVerts[1] - polygonVerts[0]; | 
|  | for (int curr = 2; curr < polygonSize; ++curr) { | 
|  | SkVector v1 = polygonVerts[curr] - polygonVerts[0]; | 
|  | quadArea += v0.cross(v1); | 
|  | v0 = v1; | 
|  | } | 
|  | if (SkScalarNearlyZero(quadArea, kCrossTolerance)) { | 
|  | return 0; | 
|  | } | 
|  | // 1 == ccw, -1 == cw | 
|  | return (quadArea > 0) ? 1 : -1; | 
|  | } | 
|  |  | 
|  | // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side' | 
|  | bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side, | 
|  | SkPoint* vector) { | 
|  | SkASSERT(side == -1 || side == 1); | 
|  | // if distances are equal, can just outset by the perpendicular | 
|  | SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX); | 
|  | if (!perp.setLength(offset*side)) { | 
|  | return false; | 
|  | } | 
|  | *vector = perp; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // check interval to see if intersection is in segment | 
|  | static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) { | 
|  | return (denomPositive && (numer < 0 || numer > denom)) || | 
|  | (!denomPositive && (numer > 0 || numer < denom)); | 
|  | } | 
|  |  | 
|  | // special zero-length test when we're using vdotv as a denominator | 
|  | static inline bool zero_length(const SkPoint& v, SkScalar vdotv) { | 
|  | return !(SkScalarsAreFinite(v.fX, v.fY) && vdotv); | 
|  | } | 
|  |  | 
|  | // Compute the intersection 'p' between segments s0 and s1, if any. | 
|  | // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'. | 
|  | // Returns false if there is no intersection. | 
|  | // If the length squared of a segment is 0, then we treat the segment as degenerate | 
|  | // and use only the first endpoint for tests. | 
|  | static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1, | 
|  | SkPoint* p, SkScalar* s, SkScalar* t) { | 
|  | const SkVector& v0 = s0.fV; | 
|  | const SkVector& v1 = s1.fV; | 
|  | SkVector w = s1.fP0 - s0.fP0; | 
|  | SkScalar denom = v0.cross(v1); | 
|  | bool denomPositive = (denom > 0); | 
|  | SkScalar sNumer, tNumer; | 
|  | if (SkScalarNearlyZero(denom, kCrossTolerance)) { | 
|  | // segments are parallel, but not collinear | 
|  | if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) || | 
|  | !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for zero-length segments | 
|  | SkScalar v0dotv0 = v0.dot(v0); | 
|  | if (zero_length(v0, v0dotv0)) { | 
|  | // Both are zero-length | 
|  | SkScalar v1dotv1 = v1.dot(v1); | 
|  | if (zero_length(v1, v1dotv1)) { | 
|  | // Check if they're the same point | 
|  | if (!SkPointPriv::CanNormalize(w.fX, w.fY)) { | 
|  | *p = s0.fP0; | 
|  | *s = 0; | 
|  | *t = 0; | 
|  | return true; | 
|  | } else { | 
|  | // Intersection is indeterminate | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Otherwise project segment0's origin onto segment1 | 
|  | tNumer = v1.dot(-w); | 
|  | denom = v1dotv1; | 
|  | if (outside_interval(tNumer, denom, true)) { | 
|  | return false; | 
|  | } | 
|  | sNumer = 0; | 
|  | } else { | 
|  | // Project segment1's endpoints onto segment0 | 
|  | sNumer = v0.dot(w); | 
|  | denom = v0dotv0; | 
|  | tNumer = 0; | 
|  | if (outside_interval(sNumer, denom, true)) { | 
|  | // The first endpoint doesn't lie on segment0 | 
|  | // If segment1 is degenerate, then there's no collision | 
|  | SkScalar v1dotv1 = v1.dot(v1); | 
|  | if (zero_length(v1, v1dotv1)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise try the other one | 
|  | SkScalar oldSNumer = sNumer; | 
|  | sNumer = v0.dot(w + v1); | 
|  | tNumer = denom; | 
|  | if (outside_interval(sNumer, denom, true)) { | 
|  | // it's possible that segment1's interval surrounds segment0 | 
|  | // this is false if params have the same signs, and in that case no collision | 
|  | if (sNumer*oldSNumer > 0) { | 
|  | return false; | 
|  | } | 
|  | // otherwise project segment0's endpoint onto segment1 instead | 
|  | sNumer = 0; | 
|  | tNumer = v1.dot(-w); | 
|  | denom = v1dotv1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | sNumer = w.cross(v1); | 
|  | if (outside_interval(sNumer, denom, denomPositive)) { | 
|  | return false; | 
|  | } | 
|  | tNumer = w.cross(v0); | 
|  | if (outside_interval(tNumer, denom, denomPositive)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SkScalar localS = sNumer/denom; | 
|  | SkScalar localT = tNumer/denom; | 
|  |  | 
|  | *p = s0.fP0 + v0*localS; | 
|  | *s = localS; | 
|  | *t = localT; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) { | 
|  | if (polygonSize < 3) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar lastPerpDot = 0; | 
|  | int xSignChangeCount = 0; | 
|  | int ySignChangeCount = 0; | 
|  |  | 
|  | int prevIndex = polygonSize - 1; | 
|  | int currIndex = 0; | 
|  | int nextIndex = 1; | 
|  | SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex]; | 
|  | SkScalar lastVx = v0.fX; | 
|  | SkScalar lastVy = v0.fY; | 
|  | SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; | 
|  | for (int i = 0; i < polygonSize; ++i) { | 
|  | if (!polygonVerts[i].isFinite()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that winding direction is always the same (otherwise we have a reflex vertex) | 
|  | SkScalar perpDot = v0.cross(v1); | 
|  | if (lastPerpDot*perpDot < 0) { | 
|  | return false; | 
|  | } | 
|  | if (0 != perpDot) { | 
|  | lastPerpDot = perpDot; | 
|  | } | 
|  |  | 
|  | // Check that the signs of the edge vectors don't change more than twice per coordinate | 
|  | if (lastVx*v1.fX < 0) { | 
|  | xSignChangeCount++; | 
|  | } | 
|  | if (lastVy*v1.fY < 0) { | 
|  | ySignChangeCount++; | 
|  | } | 
|  | if (xSignChangeCount > 2 || ySignChangeCount > 2) { | 
|  | return false; | 
|  | } | 
|  | prevIndex = currIndex; | 
|  | currIndex = nextIndex; | 
|  | nextIndex = (currIndex + 1) % polygonSize; | 
|  | if (v1.fX != 0) { | 
|  | lastVx = v1.fX; | 
|  | } | 
|  | if (v1.fY != 0) { | 
|  | lastVy = v1.fY; | 
|  | } | 
|  | v0 = v1; | 
|  | v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct OffsetEdge { | 
|  | OffsetEdge*   fPrev; | 
|  | OffsetEdge*   fNext; | 
|  | OffsetSegment fOffset; | 
|  | SkPoint       fIntersection; | 
|  | SkScalar      fTValue; | 
|  | uint16_t      fIndex; | 
|  | uint16_t      fEnd; | 
|  |  | 
|  | void init(uint16_t start = 0, uint16_t end = 0) { | 
|  | fIntersection = fOffset.fP0; | 
|  | fTValue = SK_ScalarMin; | 
|  | fIndex = start; | 
|  | fEnd = end; | 
|  | } | 
|  |  | 
|  | // special intersection check that looks for endpoint intersection | 
|  | bool checkIntersection(const OffsetEdge* that, | 
|  | SkPoint* p, SkScalar* s, SkScalar* t) { | 
|  | if (this->fEnd == that->fIndex) { | 
|  | SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV; | 
|  | if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) { | 
|  | *p = p1; | 
|  | *s = SK_Scalar1; | 
|  | *t = 0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return compute_intersection(this->fOffset, that->fOffset, p, s, t); | 
|  | } | 
|  |  | 
|  | // computes the line intersection and then the "distance" from that to this | 
|  | // this is really a signed squared distance, where negative means that | 
|  | // the intersection lies inside this->fOffset | 
|  | SkScalar computeCrossingDistance(const OffsetEdge* that) { | 
|  | const OffsetSegment& s0 = this->fOffset; | 
|  | const OffsetSegment& s1 = that->fOffset; | 
|  | const SkVector& v0 = s0.fV; | 
|  | const SkVector& v1 = s1.fV; | 
|  |  | 
|  | SkScalar denom = v0.cross(v1); | 
|  | if (SkScalarNearlyZero(denom, kCrossTolerance)) { | 
|  | // segments are parallel | 
|  | return SK_ScalarMax; | 
|  | } | 
|  |  | 
|  | SkVector w = s1.fP0 - s0.fP0; | 
|  | SkScalar localS = w.cross(v1) / denom; | 
|  | if (localS < 0) { | 
|  | localS = -localS; | 
|  | } else { | 
|  | localS -= SK_Scalar1; | 
|  | } | 
|  |  | 
|  | localS *= SkScalarAbs(localS); | 
|  | localS *= v0.dot(v0); | 
|  |  | 
|  | return localS; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | static void remove_node(const OffsetEdge* node, OffsetEdge** head) { | 
|  | // remove from linked list | 
|  | node->fPrev->fNext = node->fNext; | 
|  | node->fNext->fPrev = node->fPrev; | 
|  | if (node == *head) { | 
|  | *head = (node->fNext == node) ? nullptr : node->fNext; | 
|  | } | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // The objective here is to inset all of the edges by the given distance, and then | 
|  | // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon, | 
|  | // we should only be making left-hand turns (for cw polygons, we use the winding | 
|  | // parameter to reverse this). We detect this by checking whether the second intersection | 
|  | // on an edge is closer to its tail than the first one. | 
|  | // | 
|  | // We might also have the case that there is no intersection between two neighboring inset edges. | 
|  | // In this case, one edge will lie to the right of the other and should be discarded along with | 
|  | // its previous intersection (if any). | 
|  | // | 
|  | // Note: the assumption is that inputPolygon is convex and has no coincident points. | 
|  | // | 
|  | bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, | 
|  | SkScalar inset, SkTDArray<SkPoint>* insetPolygon) { | 
|  | if (inputPolygonSize < 3) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // restrict this to match other routines | 
|  | // practically we don't want anything bigger than this anyway | 
|  | if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // can't inset by a negative or non-finite amount | 
|  | if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // insetting close to zero just returns the original poly | 
|  | if (inset <= SK_ScalarNearlyZero) { | 
|  | for (int i = 0; i < inputPolygonSize; ++i) { | 
|  | *insetPolygon->push() = inputPolygonVerts[i]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // get winding direction | 
|  | int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); | 
|  | if (0 == winding) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // set up | 
|  | SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize); | 
|  | int prev = inputPolygonSize - 1; | 
|  | for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) { | 
|  | int next = (curr + 1) % inputPolygonSize; | 
|  | if (!inputPolygonVerts[curr].isFinite()) { | 
|  | return false; | 
|  | } | 
|  | // check for convexity just to be sure | 
|  | if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev], | 
|  | inputPolygonVerts[next])*winding < 0) { | 
|  | return false; | 
|  | } | 
|  | SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr]; | 
|  | SkVector perp = SkVector::Make(-v.fY, v.fX); | 
|  | perp.setLength(inset*winding); | 
|  | edgeData[curr].fPrev = &edgeData[prev]; | 
|  | edgeData[curr].fNext = &edgeData[next]; | 
|  | edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp; | 
|  | edgeData[curr].fOffset.fV = v; | 
|  | edgeData[curr].init(); | 
|  | } | 
|  |  | 
|  | OffsetEdge* head = &edgeData[0]; | 
|  | OffsetEdge* currEdge = head; | 
|  | OffsetEdge* prevEdge = currEdge->fPrev; | 
|  | int insetVertexCount = inputPolygonSize; | 
|  | unsigned int iterations = 0; | 
|  | unsigned int maxIterations = inputPolygonSize * inputPolygonSize; | 
|  | while (head && prevEdge != currEdge) { | 
|  | ++iterations; | 
|  | // we should check each edge against each other edge at most once | 
|  | if (iterations > maxIterations) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar s, t; | 
|  | SkPoint intersection; | 
|  | if (compute_intersection(prevEdge->fOffset, currEdge->fOffset, | 
|  | &intersection, &s, &t)) { | 
|  | // if new intersection is further back on previous inset from the prior intersection | 
|  | if (s < prevEdge->fTValue) { | 
|  | // no point in considering this one again | 
|  | remove_node(prevEdge, &head); | 
|  | --insetVertexCount; | 
|  | // go back one segment | 
|  | prevEdge = prevEdge->fPrev; | 
|  | // we've already considered this intersection, we're done | 
|  | } else if (currEdge->fTValue > SK_ScalarMin && | 
|  | SkPointPriv::EqualsWithinTolerance(intersection, | 
|  | currEdge->fIntersection, | 
|  | 1.0e-6f)) { | 
|  | break; | 
|  | } else { | 
|  | // add intersection | 
|  | currEdge->fIntersection = intersection; | 
|  | currEdge->fTValue = t; | 
|  |  | 
|  | // go to next segment | 
|  | prevEdge = currEdge; | 
|  | currEdge = currEdge->fNext; | 
|  | } | 
|  | } else { | 
|  | // if prev to right side of curr | 
|  | int side = winding*compute_side(currEdge->fOffset.fP0, | 
|  | currEdge->fOffset.fV, | 
|  | prevEdge->fOffset.fP0); | 
|  | if (side < 0 && | 
|  | side == winding*compute_side(currEdge->fOffset.fP0, | 
|  | currEdge->fOffset.fV, | 
|  | prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) { | 
|  | // no point in considering this one again | 
|  | remove_node(prevEdge, &head); | 
|  | --insetVertexCount; | 
|  | // go back one segment | 
|  | prevEdge = prevEdge->fPrev; | 
|  | } else { | 
|  | // move to next segment | 
|  | remove_node(currEdge, &head); | 
|  | --insetVertexCount; | 
|  | currEdge = currEdge->fNext; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // store all the valid intersections that aren't nearly coincident | 
|  | // TODO: look at the main algorithm and see if we can detect these better | 
|  | insetPolygon->reset(); | 
|  | if (!head) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static constexpr SkScalar kCleanupTolerance = 0.01f; | 
|  | if (insetVertexCount >= 0) { | 
|  | insetPolygon->setReserve(insetVertexCount); | 
|  | } | 
|  | int currIndex = 0; | 
|  | *insetPolygon->push() = head->fIntersection; | 
|  | currEdge = head->fNext; | 
|  | while (currEdge != head) { | 
|  | if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, | 
|  | (*insetPolygon)[currIndex], | 
|  | kCleanupTolerance)) { | 
|  | *insetPolygon->push() = currEdge->fIntersection; | 
|  | currIndex++; | 
|  | } | 
|  | currEdge = currEdge->fNext; | 
|  | } | 
|  | // make sure the first and last points aren't coincident | 
|  | if (currIndex >= 1 && | 
|  | SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], | 
|  | kCleanupTolerance)) { | 
|  | insetPolygon->pop(); | 
|  | } | 
|  |  | 
|  | return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count()); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // compute the number of points needed for a circular join when offsetting a reflex vertex | 
|  | bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset, | 
|  | SkScalar* rotSin, SkScalar* rotCos, int* n) { | 
|  | const SkScalar kRecipPixelsPerArcSegment = 0.25f; | 
|  |  | 
|  | SkScalar rCos = v1.dot(v2); | 
|  | if (!SkScalarIsFinite(rCos)) { | 
|  | return false; | 
|  | } | 
|  | SkScalar rSin = v1.cross(v2); | 
|  | if (!SkScalarIsFinite(rSin)) { | 
|  | return false; | 
|  | } | 
|  | SkScalar theta = SkScalarATan2(rSin, rCos); | 
|  |  | 
|  | SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment); | 
|  | // limit the number of steps to at most max uint16_t (that's all we can index) | 
|  | // knock one value off the top to account for rounding | 
|  | if (floatSteps >= std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  | int steps = SkScalarRoundToInt(floatSteps); | 
|  |  | 
|  | SkScalar dTheta = steps > 0 ? theta / steps : 0; | 
|  | *rotSin = SkScalarSin(dTheta); | 
|  | *rotCos = SkScalarCos(dTheta); | 
|  | // Our offset may be so large that we end up with a tiny dTheta, in which case we | 
|  | // lose precision when computing rotSin and rotCos. | 
|  | if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) { | 
|  | return false; | 
|  | } | 
|  | *n = steps; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater | 
|  | static bool left(const SkPoint& p0, const SkPoint& p1) { | 
|  | return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY); | 
|  | } | 
|  |  | 
|  | // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less | 
|  | static bool right(const SkPoint& p0, const SkPoint& p1) { | 
|  | return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY); | 
|  | } | 
|  |  | 
|  | struct Vertex { | 
|  | static bool Left(const Vertex& qv0, const Vertex& qv1) { | 
|  | return left(qv0.fPosition, qv1.fPosition); | 
|  | } | 
|  |  | 
|  | // packed to fit into 16 bytes (one cache line) | 
|  | SkPoint  fPosition; | 
|  | uint16_t fIndex;       // index in unsorted polygon | 
|  | uint16_t fPrevIndex;   // indices for previous and next vertex in unsorted polygon | 
|  | uint16_t fNextIndex; | 
|  | uint16_t fFlags; | 
|  | }; | 
|  |  | 
|  | enum VertexFlags { | 
|  | kPrevLeft_VertexFlag = 0x1, | 
|  | kNextLeft_VertexFlag = 0x2, | 
|  | }; | 
|  |  | 
|  | struct ActiveEdge { | 
|  | ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {} | 
|  | ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1) | 
|  | : fSegment({ p0, v }) | 
|  | , fIndex0(index0) | 
|  | , fIndex1(index1) | 
|  | , fAbove(nullptr) | 
|  | , fBelow(nullptr) | 
|  | , fRed(true) { | 
|  | fChild[0] = nullptr; | 
|  | fChild[1] = nullptr; | 
|  | } | 
|  |  | 
|  | // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0 | 
|  | // This is only used to verify the edgelist -- the actual test for insertion/deletion is much | 
|  | // simpler because we can make certain assumptions then. | 
|  | bool aboveIfLeft(const ActiveEdge* that) const { | 
|  | const SkPoint& p0 = this->fSegment.fP0; | 
|  | const SkPoint& q0 = that->fSegment.fP0; | 
|  | SkASSERT(p0.fX <= q0.fX); | 
|  | SkVector d = q0 - p0; | 
|  | const SkVector& v = this->fSegment.fV; | 
|  | const SkVector& w = that->fSegment.fV; | 
|  | // The idea here is that if the vector between the origins of the two segments (d) | 
|  | // rotates counterclockwise up to the vector representing the "this" segment (v), | 
|  | // then we know that "this" is above "that". If the result is clockwise we say it's below. | 
|  | if (this->fIndex0 != that->fIndex0) { | 
|  | SkScalar cross = d.cross(v); | 
|  | if (cross > kCrossTolerance) { | 
|  | return true; | 
|  | } else if (cross < -kCrossTolerance) { | 
|  | return false; | 
|  | } | 
|  | } else if (this->fIndex1 == that->fIndex1) { | 
|  | return false; | 
|  | } | 
|  | // At this point either the two origins are nearly equal or the origin of "that" | 
|  | // lies on dv. So then we try the same for the vector from the tail of "this" | 
|  | // to the head of "that". Again, ccw means "this" is above "that". | 
|  | // d = that.P1 - this.P0 | 
|  | //   = that.fP0 + that.fV - this.fP0 | 
|  | //   = that.fP0 - this.fP0 + that.fV | 
|  | //   = old_d + that.fV | 
|  | d += w; | 
|  | SkScalar cross = d.cross(v); | 
|  | if (cross > kCrossTolerance) { | 
|  | return true; | 
|  | } else if (cross < -kCrossTolerance) { | 
|  | return false; | 
|  | } | 
|  | // If the previous check fails, the two segments are nearly collinear | 
|  | // First check y-coord of first endpoints | 
|  | if (p0.fX < q0.fX) { | 
|  | return (p0.fY >= q0.fY); | 
|  | } else if (p0.fY > q0.fY) { | 
|  | return true; | 
|  | } else if (p0.fY < q0.fY) { | 
|  | return false; | 
|  | } | 
|  | // The first endpoints are the same, so check the other endpoint | 
|  | SkPoint p1 = p0 + v; | 
|  | SkPoint q1 = q0 + w; | 
|  | if (p1.fX < q1.fX) { | 
|  | return (p1.fY >= q1.fY); | 
|  | } else { | 
|  | return (p1.fY > q1.fY); | 
|  | } | 
|  | } | 
|  |  | 
|  | // same as leftAndAbove(), but generalized | 
|  | bool above(const ActiveEdge* that) const { | 
|  | const SkPoint& p0 = this->fSegment.fP0; | 
|  | const SkPoint& q0 = that->fSegment.fP0; | 
|  | if (right(p0, q0)) { | 
|  | return !that->aboveIfLeft(this); | 
|  | } else { | 
|  | return this->aboveIfLeft(that); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const { | 
|  | // check first to see if these edges are neighbors in the polygon | 
|  | if (this->fIndex0 == index0 || this->fIndex1 == index0 || | 
|  | this->fIndex0 == index1 || this->fIndex1 == index1) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We don't need the exact intersection point so we can do a simpler test here. | 
|  | const SkPoint& p0 = this->fSegment.fP0; | 
|  | const SkVector& v = this->fSegment.fV; | 
|  | SkPoint p1 = p0 + v; | 
|  | SkPoint q1 = q0 + w; | 
|  |  | 
|  | // We assume some x-overlap due to how the edgelist works | 
|  | // This allows us to simplify our test | 
|  | // We need some slop here because storing the vector and recomputing the second endpoint | 
|  | // doesn't necessary give us the original result in floating point. | 
|  | // TODO: Store vector as double? Store endpoint as well? | 
|  | SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero); | 
|  |  | 
|  | // if each segment straddles the other (i.e., the endpoints have different sides) | 
|  | // then they intersect | 
|  | bool result; | 
|  | if (p0.fX < q0.fX) { | 
|  | if (q1.fX < p1.fX) { | 
|  | result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0); | 
|  | } else { | 
|  | result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0); | 
|  | } | 
|  | } else { | 
|  | if (p1.fX < q1.fX) { | 
|  | result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0); | 
|  | } else { | 
|  | result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool intersect(const ActiveEdge* edge) { | 
|  | return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1); | 
|  | } | 
|  |  | 
|  | bool lessThan(const ActiveEdge* that) const { | 
|  | SkASSERT(!this->above(this)); | 
|  | SkASSERT(!that->above(that)); | 
|  | SkASSERT(!(this->above(that) && that->above(this))); | 
|  | return this->above(that); | 
|  | } | 
|  |  | 
|  | bool equals(uint16_t index0, uint16_t index1) const { | 
|  | return (this->fIndex0 == index0 && this->fIndex1 == index1); | 
|  | } | 
|  |  | 
|  | OffsetSegment fSegment; | 
|  | uint16_t fIndex0;   // indices for previous and next vertex in polygon | 
|  | uint16_t fIndex1; | 
|  | ActiveEdge* fChild[2]; | 
|  | ActiveEdge* fAbove; | 
|  | ActiveEdge* fBelow; | 
|  | int32_t  fRed; | 
|  | }; | 
|  |  | 
|  | class ActiveEdgeList { | 
|  | public: | 
|  | ActiveEdgeList(int maxEdges) { | 
|  | fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges); | 
|  | fCurrFree = 0; | 
|  | fMaxFree = maxEdges; | 
|  | } | 
|  | ~ActiveEdgeList() { | 
|  | fTreeHead.fChild[1] = nullptr; | 
|  | sk_free(fAllocation); | 
|  | } | 
|  |  | 
|  | bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { | 
|  | SkVector v = p1 - p0; | 
|  | if (!v.isFinite()) { | 
|  | return false; | 
|  | } | 
|  | // empty tree case -- easy | 
|  | if (!fTreeHead.fChild[1]) { | 
|  | ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1); | 
|  | SkASSERT(root); | 
|  | if (!root) { | 
|  | return false; | 
|  | } | 
|  | root->fRed = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // set up helpers | 
|  | ActiveEdge* top = &fTreeHead; | 
|  | ActiveEdge *grandparent = nullptr; | 
|  | ActiveEdge *parent = nullptr; | 
|  | ActiveEdge *curr = top->fChild[1]; | 
|  | int dir = 0; | 
|  | int last = 0; // ? | 
|  | // predecessor and successor, for intersection check | 
|  | ActiveEdge* pred = nullptr; | 
|  | ActiveEdge* succ = nullptr; | 
|  |  | 
|  | // search down the tree | 
|  | while (true) { | 
|  | if (!curr) { | 
|  | // check for intersection with predecessor and successor | 
|  | if ((pred && pred->intersect(p0, v, index0, index1)) || | 
|  | (succ && succ->intersect(p0, v, index0, index1))) { | 
|  | return false; | 
|  | } | 
|  | // insert new node at bottom | 
|  | parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1); | 
|  | SkASSERT(curr); | 
|  | if (!curr) { | 
|  | return false; | 
|  | } | 
|  | curr->fAbove = pred; | 
|  | curr->fBelow = succ; | 
|  | if (pred) { | 
|  | if (pred->fSegment.fP0 == curr->fSegment.fP0 && | 
|  | pred->fSegment.fV == curr->fSegment.fV) { | 
|  | return false; | 
|  | } | 
|  | pred->fBelow = curr; | 
|  | } | 
|  | if (succ) { | 
|  | if (succ->fSegment.fP0 == curr->fSegment.fP0 && | 
|  | succ->fSegment.fV == curr->fSegment.fV) { | 
|  | return false; | 
|  | } | 
|  | succ->fAbove = curr; | 
|  | } | 
|  | if (IsRed(parent)) { | 
|  | int dir2 = (top->fChild[1] == grandparent); | 
|  | if (curr == parent->fChild[last]) { | 
|  | top->fChild[dir2] = SingleRotation(grandparent, !last); | 
|  | } else { | 
|  | top->fChild[dir2] = DoubleRotation(grandparent, !last); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) { | 
|  | // color flip | 
|  | curr->fRed = true; | 
|  | curr->fChild[0]->fRed = false; | 
|  | curr->fChild[1]->fRed = false; | 
|  | if (IsRed(parent)) { | 
|  | int dir2 = (top->fChild[1] == grandparent); | 
|  | if (curr == parent->fChild[last]) { | 
|  | top->fChild[dir2] = SingleRotation(grandparent, !last); | 
|  | } else { | 
|  | top->fChild[dir2] = DoubleRotation(grandparent, !last); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | last = dir; | 
|  | int side; | 
|  | // check to see if segment is above or below | 
|  | if (curr->fIndex0 == index0) { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); | 
|  | } else { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); | 
|  | } | 
|  | if (0 == side) { | 
|  | return false; | 
|  | } | 
|  | dir = (side < 0); | 
|  |  | 
|  | if (0 == dir) { | 
|  | succ = curr; | 
|  | } else { | 
|  | pred = curr; | 
|  | } | 
|  |  | 
|  | // update helpers | 
|  | if (grandparent) { | 
|  | top = grandparent; | 
|  | } | 
|  | grandparent = parent; | 
|  | parent = curr; | 
|  | curr = curr->fChild[dir]; | 
|  | } | 
|  |  | 
|  | // update root and make it black | 
|  | fTreeHead.fChild[1]->fRed = false; | 
|  |  | 
|  | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // replaces edge p0p1 with p1p2 | 
|  | bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, | 
|  | uint16_t index0, uint16_t index1, uint16_t index2) { | 
|  | if (!fTreeHead.fChild[1]) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkVector v = p2 - p1; | 
|  | ActiveEdge* curr = &fTreeHead; | 
|  | ActiveEdge* found = nullptr; | 
|  | int dir = 1; | 
|  |  | 
|  | // search | 
|  | while (curr->fChild[dir] != nullptr) { | 
|  | // update helpers | 
|  | curr = curr->fChild[dir]; | 
|  | // save found node | 
|  | if (curr->equals(index0, index1)) { | 
|  | found = curr; | 
|  | break; | 
|  | } else { | 
|  | // check to see if segment is above or below | 
|  | int side; | 
|  | if (curr->fIndex1 == index1) { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); | 
|  | } else { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); | 
|  | } | 
|  | if (0 == side) { | 
|  | return false; | 
|  | } | 
|  | dir = (side < 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // replace if found | 
|  | ActiveEdge* pred = found->fAbove; | 
|  | ActiveEdge* succ = found->fBelow; | 
|  | // check deletion and insert intersection cases | 
|  | if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) { | 
|  | return false; | 
|  | } | 
|  | if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) { | 
|  | return false; | 
|  | } | 
|  | found->fSegment.fP0 = p1; | 
|  | found->fSegment.fV = v; | 
|  | found->fIndex0 = index1; | 
|  | found->fIndex1 = index2; | 
|  | // above and below should stay the same | 
|  |  | 
|  | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { | 
|  | if (!fTreeHead.fChild[1]) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ActiveEdge* curr = &fTreeHead; | 
|  | ActiveEdge* parent = nullptr; | 
|  | ActiveEdge* grandparent = nullptr; | 
|  | ActiveEdge* found = nullptr; | 
|  | int dir = 1; | 
|  |  | 
|  | // search and push a red node down | 
|  | while (curr->fChild[dir] != nullptr) { | 
|  | int last = dir; | 
|  |  | 
|  | // update helpers | 
|  | grandparent = parent; | 
|  | parent = curr; | 
|  | curr = curr->fChild[dir]; | 
|  | // save found node | 
|  | if (curr->equals(index0, index1)) { | 
|  | found = curr; | 
|  | dir = 0; | 
|  | } else { | 
|  | // check to see if segment is above or below | 
|  | int side; | 
|  | if (curr->fIndex1 == index1) { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0); | 
|  | } else { | 
|  | side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1); | 
|  | } | 
|  | if (0 == side) { | 
|  | return false; | 
|  | } | 
|  | dir = (side < 0); | 
|  | } | 
|  |  | 
|  | // push the red node down | 
|  | if (!IsRed(curr) && !IsRed(curr->fChild[dir])) { | 
|  | if (IsRed(curr->fChild[!dir])) { | 
|  | parent = parent->fChild[last] = SingleRotation(curr, dir); | 
|  | } else { | 
|  | ActiveEdge *s = parent->fChild[!last]; | 
|  |  | 
|  | if (s != nullptr) { | 
|  | if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) { | 
|  | // color flip | 
|  | parent->fRed = false; | 
|  | s->fRed = true; | 
|  | curr->fRed = true; | 
|  | } else { | 
|  | int dir2 = (grandparent->fChild[1] == parent); | 
|  |  | 
|  | if (IsRed(s->fChild[last])) { | 
|  | grandparent->fChild[dir2] = DoubleRotation(parent, last); | 
|  | } else if (IsRed(s->fChild[!last])) { | 
|  | grandparent->fChild[dir2] = SingleRotation(parent, last); | 
|  | } | 
|  |  | 
|  | // ensure correct coloring | 
|  | curr->fRed = grandparent->fChild[dir2]->fRed = true; | 
|  | grandparent->fChild[dir2]->fChild[0]->fRed = false; | 
|  | grandparent->fChild[dir2]->fChild[1]->fRed = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // replace and remove if found | 
|  | if (found) { | 
|  | ActiveEdge* pred = found->fAbove; | 
|  | ActiveEdge* succ = found->fBelow; | 
|  | if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) { | 
|  | return false; | 
|  | } | 
|  | if (found != curr) { | 
|  | found->fSegment = curr->fSegment; | 
|  | found->fIndex0 = curr->fIndex0; | 
|  | found->fIndex1 = curr->fIndex1; | 
|  | found->fAbove = curr->fAbove; | 
|  | pred = found->fAbove; | 
|  | // we don't need to set found->fBelow here | 
|  | } else { | 
|  | if (succ) { | 
|  | succ->fAbove = pred; | 
|  | } | 
|  | } | 
|  | if (pred) { | 
|  | pred->fBelow = curr->fBelow; | 
|  | } | 
|  | parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]]; | 
|  |  | 
|  | // no need to delete | 
|  | curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll); | 
|  | curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll); | 
|  | if (fTreeHead.fChild[1]) { | 
|  | fTreeHead.fChild[1]->fRed = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // update root and make it black | 
|  | if (fTreeHead.fChild[1]) { | 
|  | fTreeHead.fChild[1]->fRed = false; | 
|  | } | 
|  |  | 
|  | SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1])); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // allocator | 
|  | ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) { | 
|  | if (fCurrFree >= fMaxFree) { | 
|  | return nullptr; | 
|  | } | 
|  | char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree; | 
|  | ++fCurrFree; | 
|  | return new(bytes) ActiveEdge(p0, p1, index0, index1); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////// | 
|  | // Red-black tree methods | 
|  | /////////////////////////////////////////////////////////////////////////////////// | 
|  | static bool IsRed(const ActiveEdge* node) { | 
|  | return node && node->fRed; | 
|  | } | 
|  |  | 
|  | static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) { | 
|  | ActiveEdge* tmp = node->fChild[!dir]; | 
|  |  | 
|  | node->fChild[!dir] = tmp->fChild[dir]; | 
|  | tmp->fChild[dir] = node; | 
|  |  | 
|  | node->fRed = true; | 
|  | tmp->fRed = false; | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) { | 
|  | node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir); | 
|  |  | 
|  | return SingleRotation(node, dir); | 
|  | } | 
|  |  | 
|  | // returns black link count | 
|  | static int VerifyTree(const ActiveEdge* tree) { | 
|  | if (!tree) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const ActiveEdge* left = tree->fChild[0]; | 
|  | const ActiveEdge* right = tree->fChild[1]; | 
|  |  | 
|  | // no consecutive red links | 
|  | if (IsRed(tree) && (IsRed(left) || IsRed(right))) { | 
|  | SkASSERT(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // check secondary links | 
|  | if (tree->fAbove) { | 
|  | SkASSERT(tree->fAbove->fBelow == tree); | 
|  | SkASSERT(tree->fAbove->lessThan(tree)); | 
|  | } | 
|  | if (tree->fBelow) { | 
|  | SkASSERT(tree->fBelow->fAbove == tree); | 
|  | SkASSERT(tree->lessThan(tree->fBelow)); | 
|  | } | 
|  |  | 
|  | // violates binary tree order | 
|  | if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) { | 
|  | SkASSERT(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int leftCount = VerifyTree(left); | 
|  | int rightCount = VerifyTree(right); | 
|  |  | 
|  | // return black link count | 
|  | if (leftCount != 0 && rightCount != 0) { | 
|  | // black height mismatch | 
|  | if (leftCount != rightCount) { | 
|  | SkASSERT(false); | 
|  | return 0; | 
|  | } | 
|  | return IsRed(tree) ? leftCount : leftCount + 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ActiveEdge fTreeHead; | 
|  | char*      fAllocation; | 
|  | int        fCurrFree; | 
|  | int        fMaxFree; | 
|  | }; | 
|  |  | 
|  | // Here we implement a sweep line algorithm to determine whether the provided points | 
|  | // represent a simple polygon, i.e., the polygon is non-self-intersecting. | 
|  | // We first insert the vertices into a priority queue sorting horizontally from left to right. | 
|  | // Then as we pop the vertices from the queue we generate events which indicate that an edge | 
|  | // should be added or removed from an edge list. If any intersections are detected in the edge | 
|  | // list, then we know the polygon is self-intersecting and hence not simple. | 
|  | bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { | 
|  | if (polygonSize < 3) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If it's convex, it's simple | 
|  | if (SkIsConvexPolygon(polygon, polygonSize)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // practically speaking, it takes too long to process large polygons | 
|  | if (polygonSize > 2048) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize); | 
|  | for (int i = 0; i < polygonSize; ++i) { | 
|  | Vertex newVertex; | 
|  | if (!polygon[i].isFinite()) { | 
|  | return false; | 
|  | } | 
|  | newVertex.fPosition = polygon[i]; | 
|  | newVertex.fIndex = i; | 
|  | newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize; | 
|  | newVertex.fNextIndex = (i + 1) % polygonSize; | 
|  | newVertex.fFlags = 0; | 
|  | // The two edges adjacent to this vertex are the same, so polygon is not simple | 
|  | if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) { | 
|  | return false; | 
|  | } | 
|  | if (left(polygon[newVertex.fPrevIndex], polygon[i])) { | 
|  | newVertex.fFlags |= kPrevLeft_VertexFlag; | 
|  | } | 
|  | if (left(polygon[newVertex.fNextIndex], polygon[i])) { | 
|  | newVertex.fFlags |= kNextLeft_VertexFlag; | 
|  | } | 
|  | vertexQueue.insert(newVertex); | 
|  | } | 
|  |  | 
|  | // pop each vertex from the queue and generate events depending on | 
|  | // where it lies relative to its neighboring edges | 
|  | ActiveEdgeList sweepLine(polygonSize); | 
|  | while (vertexQueue.count() > 0) { | 
|  | const Vertex& v = vertexQueue.peek(); | 
|  |  | 
|  | // both to the right -- insert both | 
|  | if (v.fFlags == 0) { | 
|  | if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) { | 
|  | break; | 
|  | } | 
|  | if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) { | 
|  | break; | 
|  | } | 
|  | // both to the left -- remove both | 
|  | } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) { | 
|  | if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) { | 
|  | break; | 
|  | } | 
|  | if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) { | 
|  | break; | 
|  | } | 
|  | // one to left and right -- replace one with another | 
|  | } else { | 
|  | if (v.fFlags & kPrevLeft_VertexFlag) { | 
|  | if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex], | 
|  | v.fPrevIndex, v.fIndex, v.fNextIndex)) { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | SkASSERT(v.fFlags & kNextLeft_VertexFlag); | 
|  | if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex], | 
|  | v.fNextIndex, v.fIndex, v.fPrevIndex)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | vertexQueue.pop(); | 
|  | } | 
|  |  | 
|  | return (vertexQueue.count() == 0); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // helper function for SkOffsetSimplePolygon | 
|  | static void setup_offset_edge(OffsetEdge* currEdge, | 
|  | const SkPoint& endpoint0, const SkPoint& endpoint1, | 
|  | uint16_t startIndex, uint16_t endIndex) { | 
|  | currEdge->fOffset.fP0 = endpoint0; | 
|  | currEdge->fOffset.fV = endpoint1 - endpoint0; | 
|  | currEdge->init(startIndex, endIndex); | 
|  | } | 
|  |  | 
|  | static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset, | 
|  | uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) { | 
|  | int side = compute_side(inputPolygonVerts[prevIndex], | 
|  | inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex], | 
|  | inputPolygonVerts[nextIndex]); | 
|  | // if reflex point, we need to add extra edges | 
|  | return (side*winding*offset < 0); | 
|  | } | 
|  |  | 
|  | bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, | 
|  | const SkRect& bounds, SkScalar offset, | 
|  | SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) { | 
|  | if (inputPolygonSize < 3) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // need to be able to represent all the vertices in the 16-bit indices | 
|  | if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!SkScalarIsFinite(offset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // can't inset more than the half bounds of the polygon | 
|  | if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)), | 
|  | SkTAbs(SkRectPriv::HalfHeight(bounds)))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // offsetting close to zero just returns the original poly | 
|  | if (SkScalarNearlyZero(offset)) { | 
|  | for (int i = 0; i < inputPolygonSize; ++i) { | 
|  | *offsetPolygon->push() = inputPolygonVerts[i]; | 
|  | if (polygonIndices) { | 
|  | *polygonIndices->push() = i; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // get winding direction | 
|  | int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize); | 
|  | if (0 == winding) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // build normals | 
|  | SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize); | 
|  | unsigned int numEdges = 0; | 
|  | for (int currIndex = 0, prevIndex = inputPolygonSize - 1; | 
|  | currIndex < inputPolygonSize; | 
|  | prevIndex = currIndex, ++currIndex) { | 
|  | if (!inputPolygonVerts[currIndex].isFinite()) { | 
|  | return false; | 
|  | } | 
|  | int nextIndex = (currIndex + 1) % inputPolygonSize; | 
|  | if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex], | 
|  | offset, winding, &normals[currIndex])) { | 
|  | return false; | 
|  | } | 
|  | if (currIndex > 0) { | 
|  | // if reflex point, we need to add extra edges | 
|  | if (is_reflex_vertex(inputPolygonVerts, winding, offset, | 
|  | prevIndex, currIndex, nextIndex)) { | 
|  | SkScalar rotSin, rotCos; | 
|  | int numSteps; | 
|  | if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset, | 
|  | &rotSin, &rotCos, &numSteps)) { | 
|  | return false; | 
|  | } | 
|  | numEdges += std::max(numSteps, 1); | 
|  | } | 
|  | } | 
|  | numEdges++; | 
|  | } | 
|  | // finish up the edge counting | 
|  | if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) { | 
|  | SkScalar rotSin, rotCos; | 
|  | int numSteps; | 
|  | if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset, | 
|  | &rotSin, &rotCos, &numSteps)) { | 
|  | return false; | 
|  | } | 
|  | numEdges += std::max(numSteps, 1); | 
|  | } | 
|  |  | 
|  | // Make sure we don't overflow the max array count. | 
|  | // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1, | 
|  | // and we have a max of 2^16-1 original vertices. | 
|  | if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // build initial offset edge list | 
|  | SkSTArray<64, OffsetEdge> edgeData(numEdges); | 
|  | OffsetEdge* prevEdge = nullptr; | 
|  | for (int currIndex = 0, prevIndex = inputPolygonSize - 1; | 
|  | currIndex < inputPolygonSize; | 
|  | prevIndex = currIndex, ++currIndex) { | 
|  | int nextIndex = (currIndex + 1) % inputPolygonSize; | 
|  | // if reflex point, fill in curve | 
|  | if (is_reflex_vertex(inputPolygonVerts, winding, offset, | 
|  | prevIndex, currIndex, nextIndex)) { | 
|  | SkScalar rotSin, rotCos; | 
|  | int numSteps; | 
|  | SkVector prevNormal = normals[prevIndex]; | 
|  | if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset, | 
|  | &rotSin, &rotCos, &numSteps)) { | 
|  | return false; | 
|  | } | 
|  | auto currEdge = edgeData.push_back_n(std::max(numSteps, 1)); | 
|  | for (int i = 0; i < numSteps - 1; ++i) { | 
|  | SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin, | 
|  | prevNormal.fY*rotCos + prevNormal.fX*rotSin); | 
|  | setup_offset_edge(currEdge, | 
|  | inputPolygonVerts[currIndex] + prevNormal, | 
|  | inputPolygonVerts[currIndex] + currNormal, | 
|  | currIndex, currIndex); | 
|  | prevNormal = currNormal; | 
|  | currEdge->fPrev = prevEdge; | 
|  | if (prevEdge) { | 
|  | prevEdge->fNext = currEdge; | 
|  | } | 
|  | prevEdge = currEdge; | 
|  | ++currEdge; | 
|  | } | 
|  | setup_offset_edge(currEdge, | 
|  | inputPolygonVerts[currIndex] + prevNormal, | 
|  | inputPolygonVerts[currIndex] + normals[currIndex], | 
|  | currIndex, currIndex); | 
|  | currEdge->fPrev = prevEdge; | 
|  | if (prevEdge) { | 
|  | prevEdge->fNext = currEdge; | 
|  | } | 
|  | prevEdge = currEdge; | 
|  | } | 
|  |  | 
|  | // Add the edge | 
|  | auto currEdge = edgeData.push_back_n(1); | 
|  | setup_offset_edge(currEdge, | 
|  | inputPolygonVerts[currIndex] + normals[currIndex], | 
|  | inputPolygonVerts[nextIndex] + normals[currIndex], | 
|  | currIndex, nextIndex); | 
|  | currEdge->fPrev = prevEdge; | 
|  | if (prevEdge) { | 
|  | prevEdge->fNext = currEdge; | 
|  | } | 
|  | prevEdge = currEdge; | 
|  | } | 
|  | // close up the linked list | 
|  | SkASSERT(prevEdge); | 
|  | prevEdge->fNext = &edgeData[0]; | 
|  | edgeData[0].fPrev = prevEdge; | 
|  |  | 
|  | // now clip edges | 
|  | SkASSERT(edgeData.count() == (int)numEdges); | 
|  | auto head = &edgeData[0]; | 
|  | auto currEdge = head; | 
|  | unsigned int offsetVertexCount = numEdges; | 
|  | unsigned long long iterations = 0; | 
|  | unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges; | 
|  | while (head && prevEdge != currEdge && offsetVertexCount > 0) { | 
|  | ++iterations; | 
|  | // we should check each edge against each other edge at most once | 
|  | if (iterations > maxIterations) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar s, t; | 
|  | SkPoint intersection; | 
|  | if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) { | 
|  | // if new intersection is further back on previous inset from the prior intersection | 
|  | if (s < prevEdge->fTValue) { | 
|  | // no point in considering this one again | 
|  | remove_node(prevEdge, &head); | 
|  | --offsetVertexCount; | 
|  | // go back one segment | 
|  | prevEdge = prevEdge->fPrev; | 
|  | // we've already considered this intersection, we're done | 
|  | } else if (currEdge->fTValue > SK_ScalarMin && | 
|  | SkPointPriv::EqualsWithinTolerance(intersection, | 
|  | currEdge->fIntersection, | 
|  | 1.0e-6f)) { | 
|  | break; | 
|  | } else { | 
|  | // add intersection | 
|  | currEdge->fIntersection = intersection; | 
|  | currEdge->fTValue = t; | 
|  | currEdge->fIndex = prevEdge->fEnd; | 
|  |  | 
|  | // go to next segment | 
|  | prevEdge = currEdge; | 
|  | currEdge = currEdge->fNext; | 
|  | } | 
|  | } else { | 
|  | // If there is no intersection, we want to minimize the distance between | 
|  | // the point where the segment lines cross and the segments themselves. | 
|  | OffsetEdge* prevPrevEdge = prevEdge->fPrev; | 
|  | OffsetEdge* currNextEdge = currEdge->fNext; | 
|  | SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge); | 
|  | SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge); | 
|  | // if both lead to direct collision | 
|  | if (dist0 < 0 && dist1 < 0) { | 
|  | // check first to see if either represent parts of one contour | 
|  | SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV; | 
|  | bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1, | 
|  | prevEdge->fOffset.fP0); | 
|  | p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV; | 
|  | bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1, | 
|  | currNextEdge->fOffset.fP0); | 
|  |  | 
|  | // want to step along contour to find intersections rather than jump to new one | 
|  | if (currSameContour && !prevSameContour) { | 
|  | remove_node(currEdge, &head); | 
|  | currEdge = currNextEdge; | 
|  | --offsetVertexCount; | 
|  | continue; | 
|  | } else if (prevSameContour && !currSameContour) { | 
|  | remove_node(prevEdge, &head); | 
|  | prevEdge = prevPrevEdge; | 
|  | --offsetVertexCount; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // otherwise minimize collision distance along segment | 
|  | if (dist0 < dist1) { | 
|  | remove_node(prevEdge, &head); | 
|  | prevEdge = prevPrevEdge; | 
|  | } else { | 
|  | remove_node(currEdge, &head); | 
|  | currEdge = currNextEdge; | 
|  | } | 
|  | --offsetVertexCount; | 
|  | } | 
|  | } | 
|  |  | 
|  | // store all the valid intersections that aren't nearly coincident | 
|  | // TODO: look at the main algorithm and see if we can detect these better | 
|  | offsetPolygon->reset(); | 
|  | if (!head || offsetVertexCount == 0 || | 
|  | offsetVertexCount >= std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static constexpr SkScalar kCleanupTolerance = 0.01f; | 
|  | offsetPolygon->setReserve(offsetVertexCount); | 
|  | int currIndex = 0; | 
|  | *offsetPolygon->push() = head->fIntersection; | 
|  | if (polygonIndices) { | 
|  | *polygonIndices->push() = head->fIndex; | 
|  | } | 
|  | currEdge = head->fNext; | 
|  | while (currEdge != head) { | 
|  | if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, | 
|  | (*offsetPolygon)[currIndex], | 
|  | kCleanupTolerance)) { | 
|  | *offsetPolygon->push() = currEdge->fIntersection; | 
|  | if (polygonIndices) { | 
|  | *polygonIndices->push() = currEdge->fIndex; | 
|  | } | 
|  | currIndex++; | 
|  | } | 
|  | currEdge = currEdge->fNext; | 
|  | } | 
|  | // make sure the first and last points aren't coincident | 
|  | if (currIndex >= 1 && | 
|  | SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], | 
|  | kCleanupTolerance)) { | 
|  | offsetPolygon->pop(); | 
|  | if (polygonIndices) { | 
|  | polygonIndices->pop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check winding of offset polygon (it should be same as the original polygon) | 
|  | SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count()); | 
|  |  | 
|  | return (winding*offsetWinding > 0 && | 
|  | SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count())); | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | struct TriangulationVertex { | 
|  | SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex); | 
|  |  | 
|  | enum class VertexType { kConvex, kReflex }; | 
|  |  | 
|  | SkPoint    fPosition; | 
|  | VertexType fVertexType; | 
|  | uint16_t   fIndex; | 
|  | uint16_t   fPrevIndex; | 
|  | uint16_t   fNextIndex; | 
|  | }; | 
|  |  | 
|  | static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, | 
|  | SkRect* bounds) { | 
|  | Sk4s min, max; | 
|  | min = max = Sk4s(p0.fX, p0.fY, p0.fX, p0.fY); | 
|  | Sk4s xy(p1.fX, p1.fY, p2.fX, p2.fY); | 
|  | min = Sk4s::Min(min, xy); | 
|  | max = Sk4s::Max(max, xy); | 
|  | bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), | 
|  | std::max(max[0], max[2]), std::max(max[1], max[3])); | 
|  | } | 
|  |  | 
|  | // test to see if point p is in triangle p0p1p2. | 
|  | // for now assuming strictly inside -- if on the edge it's outside | 
|  | static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, | 
|  | const SkPoint& p) { | 
|  | SkVector v0 = p1 - p0; | 
|  | SkVector v1 = p2 - p1; | 
|  | SkScalar n = v0.cross(v1); | 
|  |  | 
|  | SkVector w0 = p - p0; | 
|  | if (n*v0.cross(w0) < SK_ScalarNearlyZero) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkVector w1 = p - p1; | 
|  | if (n*v1.cross(w1) < SK_ScalarNearlyZero) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkVector v2 = p0 - p2; | 
|  | SkVector w2 = p - p2; | 
|  | if (n*v2.cross(w2) < SK_ScalarNearlyZero) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Data structure to track reflex vertices and check whether any are inside a given triangle | 
|  | class ReflexHash { | 
|  | public: | 
|  | bool init(const SkRect& bounds, int vertexCount) { | 
|  | fBounds = bounds; | 
|  | fNumVerts = 0; | 
|  | SkScalar width = bounds.width(); | 
|  | SkScalar height = bounds.height(); | 
|  | if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We want vertexCount grid cells, roughly distributed to match the bounds ratio | 
|  | SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height)); | 
|  | if (!SkScalarIsFinite(hCount)) { | 
|  | return false; | 
|  | } | 
|  | fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1); | 
|  | fVCount = vertexCount/fHCount; | 
|  | fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width), | 
|  | sk_ieee_float_divide(fVCount - 0.001f, height)); | 
|  | if (!fGridConversion.isFinite()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | fGrid.setCount(fHCount*fVCount); | 
|  | for (int i = 0; i < fGrid.count(); ++i) { | 
|  | fGrid[i].reset(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void add(TriangulationVertex* v) { | 
|  | int index = hash(v); | 
|  | fGrid[index].addToTail(v); | 
|  | ++fNumVerts; | 
|  | } | 
|  |  | 
|  | void remove(TriangulationVertex* v) { | 
|  | int index = hash(v); | 
|  | fGrid[index].remove(v); | 
|  | --fNumVerts; | 
|  | } | 
|  |  | 
|  | bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, | 
|  | uint16_t ignoreIndex0, uint16_t ignoreIndex1) const { | 
|  | if (!fNumVerts) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkRect triBounds; | 
|  | compute_triangle_bounds(p0, p1, p2, &triBounds); | 
|  | int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX; | 
|  | int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX; | 
|  | int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY; | 
|  | int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY; | 
|  |  | 
|  | for (int v = v0; v <= v1; ++v) { | 
|  | for (int h = h0; h <= h1; ++h) { | 
|  | int i = v * fHCount + h; | 
|  | for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin(); | 
|  | reflexIter != fGrid[i].end(); ++reflexIter) { | 
|  | TriangulationVertex* reflexVertex = *reflexIter; | 
|  | if (reflexVertex->fIndex != ignoreIndex0 && | 
|  | reflexVertex->fIndex != ignoreIndex1 && | 
|  | point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int hash(TriangulationVertex* vert) const { | 
|  | int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX; | 
|  | int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY; | 
|  | SkASSERT(v*fHCount + h >= 0); | 
|  | return v*fHCount + h; | 
|  | } | 
|  |  | 
|  | SkRect fBounds; | 
|  | int fHCount; | 
|  | int fVCount; | 
|  | int fNumVerts; | 
|  | // converts distance from the origin to a grid location (when cast to int) | 
|  | SkVector fGridConversion; | 
|  | SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid; | 
|  | }; | 
|  |  | 
|  | // Check to see if a reflex vertex has become a convex vertex after clipping an ear | 
|  | static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts, | 
|  | int winding, ReflexHash* reflexHash, | 
|  | SkTInternalLList<TriangulationVertex>* convexList) { | 
|  | if (TriangulationVertex::VertexType::kReflex == p->fVertexType) { | 
|  | SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex]; | 
|  | SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition; | 
|  | if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { | 
|  | p->fVertexType = TriangulationVertex::VertexType::kConvex; | 
|  | reflexHash->remove(p); | 
|  | p->fPrev = p->fNext = nullptr; | 
|  | convexList->addToTail(p); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize, | 
|  | SkTDArray<uint16_t>* triangleIndices) { | 
|  | if (polygonSize < 3) { | 
|  | return false; | 
|  | } | 
|  | // need to be able to represent all the vertices in the 16-bit indices | 
|  | if (polygonSize >= std::numeric_limits<uint16_t>::max()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // get bounds | 
|  | SkRect bounds; | 
|  | if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) { | 
|  | return false; | 
|  | } | 
|  | // get winding direction | 
|  | // TODO: we do this for all the polygon routines -- might be better to have the client | 
|  | // compute it and pass it in | 
|  | int winding = SkGetPolygonWinding(polygonVerts, polygonSize); | 
|  | if (0 == winding) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set up vertices | 
|  | SkAutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize); | 
|  | int prevIndex = polygonSize - 1; | 
|  | SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex]; | 
|  | for (int currIndex = 0; currIndex < polygonSize; ++currIndex) { | 
|  | int nextIndex = (currIndex + 1) % polygonSize; | 
|  |  | 
|  | triangulationVertices[currIndex] = TriangulationVertex{}; | 
|  | triangulationVertices[currIndex].fPosition = polygonVerts[currIndex]; | 
|  | triangulationVertices[currIndex].fIndex = currIndex; | 
|  | triangulationVertices[currIndex].fPrevIndex = prevIndex; | 
|  | triangulationVertices[currIndex].fNextIndex = nextIndex; | 
|  | SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex]; | 
|  | if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) { | 
|  | triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex; | 
|  | } else { | 
|  | triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex; | 
|  | } | 
|  |  | 
|  | prevIndex = currIndex; | 
|  | v0 = v1; | 
|  | } | 
|  |  | 
|  | // Classify initial vertices into a list of convex vertices and a hash of reflex vertices | 
|  | // TODO: possibly sort the convexList in some way to get better triangles | 
|  | SkTInternalLList<TriangulationVertex> convexList; | 
|  | ReflexHash reflexHash; | 
|  | if (!reflexHash.init(bounds, polygonSize)) { | 
|  | return false; | 
|  | } | 
|  | prevIndex = polygonSize - 1; | 
|  | for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) { | 
|  | TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType; | 
|  | if (TriangulationVertex::VertexType::kConvex == currType) { | 
|  | int nextIndex = (currIndex + 1) % polygonSize; | 
|  | TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType; | 
|  | TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType; | 
|  | // We prioritize clipping vertices with neighboring reflex vertices. | 
|  | // The intent here is that it will cull reflex vertices more quickly. | 
|  | if (TriangulationVertex::VertexType::kReflex == prevType || | 
|  | TriangulationVertex::VertexType::kReflex == nextType) { | 
|  | convexList.addToHead(&triangulationVertices[currIndex]); | 
|  | } else { | 
|  | convexList.addToTail(&triangulationVertices[currIndex]); | 
|  | } | 
|  | } else { | 
|  | // We treat near collinear vertices as reflex | 
|  | reflexHash.add(&triangulationVertices[currIndex]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The general concept: We are trying to find three neighboring vertices where | 
|  | // no other vertex lies inside the triangle (an "ear"). If we find one, we clip | 
|  | // that ear off, and then repeat on the new polygon. Once we get down to three vertices | 
|  | // we have triangulated the entire polygon. | 
|  | // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by | 
|  | // noting that only convex vertices can be potential ears, and we only need to check whether | 
|  | // any reflex vertices lie inside the ear. | 
|  | triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2)); | 
|  | int vertexCount = polygonSize; | 
|  | while (vertexCount > 3) { | 
|  | bool success = false; | 
|  | TriangulationVertex* earVertex = nullptr; | 
|  | TriangulationVertex* p0 = nullptr; | 
|  | TriangulationVertex* p2 = nullptr; | 
|  | // find a convex vertex to clip | 
|  | for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin(); | 
|  | convexIter != convexList.end(); ++convexIter) { | 
|  | earVertex = *convexIter; | 
|  | SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType); | 
|  |  | 
|  | p0 = &triangulationVertices[earVertex->fPrevIndex]; | 
|  | p2 = &triangulationVertices[earVertex->fNextIndex]; | 
|  |  | 
|  | // see if any reflex vertices are inside the ear | 
|  | bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition, | 
|  | p2->fPosition, p0->fIndex, p2->fIndex); | 
|  | if (failed) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // found one we can clip | 
|  | success = true; | 
|  | break; | 
|  | } | 
|  | // If we can't find any ears to clip, this probably isn't a simple polygon | 
|  | if (!success) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // add indices | 
|  | auto indices = triangleIndices->append(3); | 
|  | indices[0] = indexMap[p0->fIndex]; | 
|  | indices[1] = indexMap[earVertex->fIndex]; | 
|  | indices[2] = indexMap[p2->fIndex]; | 
|  |  | 
|  | // clip the ear | 
|  | convexList.remove(earVertex); | 
|  | --vertexCount; | 
|  |  | 
|  | // reclassify reflex verts | 
|  | p0->fNextIndex = earVertex->fNextIndex; | 
|  | reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList); | 
|  |  | 
|  | p2->fPrevIndex = earVertex->fPrevIndex; | 
|  | reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList); | 
|  | } | 
|  |  | 
|  | // output indices | 
|  | for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin(); | 
|  | vertexIter != convexList.end(); ++vertexIter) { | 
|  | TriangulationVertex* vertex = *vertexIter; | 
|  | *triangleIndices->push() = indexMap[vertex->fIndex]; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /////////// | 
|  |  | 
|  | static double crs(SkVector a, SkVector b) { | 
|  | return a.fX * b.fY - a.fY * b.fX; | 
|  | } | 
|  |  | 
|  | static int sign(SkScalar v) { | 
|  | return v < 0 ? -1 : (v > 0); | 
|  | } | 
|  |  | 
|  | struct SignTracker { | 
|  | int fSign; | 
|  | int fSignChanges; | 
|  |  | 
|  | void reset() { | 
|  | fSign = 0; | 
|  | fSignChanges = 0; | 
|  | } | 
|  |  | 
|  | void init(int s) { | 
|  | SkASSERT(fSignChanges == 0); | 
|  | SkASSERT(s == 1 || s == -1 || s == 0); | 
|  | fSign = s; | 
|  | fSignChanges = 1; | 
|  | } | 
|  |  | 
|  | void update(int s) { | 
|  | if (s) { | 
|  | if (fSign != s) { | 
|  | fSignChanges += 1; | 
|  | fSign = s; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ConvexTracker { | 
|  | SkVector    fFirst, fPrev; | 
|  | SignTracker fDSign, fCSign; | 
|  | int         fVecCounter; | 
|  | bool        fIsConcave; | 
|  |  | 
|  | ConvexTracker() { this->reset(); } | 
|  |  | 
|  | void reset() { | 
|  | fPrev = {0, 0}; | 
|  | fDSign.reset(); | 
|  | fCSign.reset(); | 
|  | fVecCounter = 0; | 
|  | fIsConcave = false; | 
|  | } | 
|  |  | 
|  | void addVec(SkPoint p1, SkPoint p0) { | 
|  | this->addVec(p1 - p0); | 
|  | } | 
|  | void addVec(SkVector v) { | 
|  | if (v.fX == 0 && v.fY == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | fVecCounter += 1; | 
|  | if (fVecCounter == 1) { | 
|  | fFirst = fPrev = v; | 
|  | fDSign.update(sign(v.fX)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SkScalar d = v.fX; | 
|  | SkScalar c = crs(fPrev, v); | 
|  | int sign_c; | 
|  | if (c) { | 
|  | sign_c = sign(c); | 
|  | } else { | 
|  | if (d >= 0) { | 
|  | sign_c = fCSign.fSign; | 
|  | } else { | 
|  | sign_c = -fCSign.fSign; | 
|  | } | 
|  | } | 
|  |  | 
|  | fDSign.update(sign(d)); | 
|  | fCSign.update(sign_c); | 
|  | fPrev = v; | 
|  |  | 
|  | if (fDSign.fSignChanges > 3 || fCSign.fSignChanges > 1) { | 
|  | fIsConcave = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void finalCross() { | 
|  | this->addVec(fFirst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool SkIsPolyConvex_experimental(const SkPoint pts[], int count) { | 
|  | if (count <= 3) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ConvexTracker tracker; | 
|  |  | 
|  | for (int i = 0; i < count - 1; ++i) { | 
|  | tracker.addVec(pts[i + 1], pts[i]); | 
|  | if (tracker.fIsConcave) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | tracker.addVec(pts[0], pts[count - 1]); | 
|  | tracker.finalCross(); | 
|  | return !tracker.fIsConcave; | 
|  | } | 
|  |  |