blob: fcee9aeee09920be6ef5a8d49911f04c4874fe1e [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLSPIRVCodeGenerator.h"
#include "GLSL.std.450.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLExtension.h"
#include "ir/SkSLIndexExpression.h"
#include "ir/SkSLVariableReference.h"
#include "SkSLCompiler.h"
namespace SkSL {
static const int32_t SKSL_MAGIC = 0x0; // FIXME: we should probably register a magic number
void SPIRVCodeGenerator::setupIntrinsics() {
#define ALL_GLSL(x) std::make_tuple(kGLSL_STD_450_IntrinsicKind, GLSLstd450 ## x, GLSLstd450 ## x, \
GLSLstd450 ## x, GLSLstd450 ## x)
#define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) std::make_tuple(kGLSL_STD_450_IntrinsicKind, \
GLSLstd450 ## ifFloat, \
GLSLstd450 ## ifInt, \
GLSLstd450 ## ifUInt, \
SpvOpUndef)
#define ALL_SPIRV(x) std::make_tuple(kSPIRV_IntrinsicKind, SpvOp ## x, SpvOp ## x, SpvOp ## x, \
SpvOp ## x)
#define SPECIAL(x) std::make_tuple(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic)
fIntrinsicMap[String("round")] = ALL_GLSL(Round);
fIntrinsicMap[String("roundEven")] = ALL_GLSL(RoundEven);
fIntrinsicMap[String("trunc")] = ALL_GLSL(Trunc);
fIntrinsicMap[String("abs")] = BY_TYPE_GLSL(FAbs, SAbs, SAbs);
fIntrinsicMap[String("sign")] = BY_TYPE_GLSL(FSign, SSign, SSign);
fIntrinsicMap[String("floor")] = ALL_GLSL(Floor);
fIntrinsicMap[String("ceil")] = ALL_GLSL(Ceil);
fIntrinsicMap[String("fract")] = ALL_GLSL(Fract);
fIntrinsicMap[String("radians")] = ALL_GLSL(Radians);
fIntrinsicMap[String("degrees")] = ALL_GLSL(Degrees);
fIntrinsicMap[String("sin")] = ALL_GLSL(Sin);
fIntrinsicMap[String("cos")] = ALL_GLSL(Cos);
fIntrinsicMap[String("tan")] = ALL_GLSL(Tan);
fIntrinsicMap[String("asin")] = ALL_GLSL(Asin);
fIntrinsicMap[String("acos")] = ALL_GLSL(Acos);
fIntrinsicMap[String("atan")] = SPECIAL(Atan);
fIntrinsicMap[String("sinh")] = ALL_GLSL(Sinh);
fIntrinsicMap[String("cosh")] = ALL_GLSL(Cosh);
fIntrinsicMap[String("tanh")] = ALL_GLSL(Tanh);
fIntrinsicMap[String("asinh")] = ALL_GLSL(Asinh);
fIntrinsicMap[String("acosh")] = ALL_GLSL(Acosh);
fIntrinsicMap[String("atanh")] = ALL_GLSL(Atanh);
fIntrinsicMap[String("pow")] = ALL_GLSL(Pow);
fIntrinsicMap[String("exp")] = ALL_GLSL(Exp);
fIntrinsicMap[String("log")] = ALL_GLSL(Log);
fIntrinsicMap[String("exp2")] = ALL_GLSL(Exp2);
fIntrinsicMap[String("log2")] = ALL_GLSL(Log2);
fIntrinsicMap[String("sqrt")] = ALL_GLSL(Sqrt);
fIntrinsicMap[String("inverse")] = ALL_GLSL(MatrixInverse);
fIntrinsicMap[String("transpose")] = ALL_SPIRV(Transpose);
fIntrinsicMap[String("inversesqrt")] = ALL_GLSL(InverseSqrt);
fIntrinsicMap[String("determinant")] = ALL_GLSL(Determinant);
fIntrinsicMap[String("matrixInverse")] = ALL_GLSL(MatrixInverse);
fIntrinsicMap[String("mod")] = SPECIAL(Mod);
fIntrinsicMap[String("min")] = SPECIAL(Min);
fIntrinsicMap[String("max")] = SPECIAL(Max);
fIntrinsicMap[String("clamp")] = SPECIAL(Clamp);
fIntrinsicMap[String("dot")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDot,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("mix")] = SPECIAL(Mix);
fIntrinsicMap[String("step")] = ALL_GLSL(Step);
fIntrinsicMap[String("smoothstep")] = ALL_GLSL(SmoothStep);
fIntrinsicMap[String("fma")] = ALL_GLSL(Fma);
fIntrinsicMap[String("frexp")] = ALL_GLSL(Frexp);
fIntrinsicMap[String("ldexp")] = ALL_GLSL(Ldexp);
#define PACK(type) fIntrinsicMap[String("pack" #type)] = ALL_GLSL(Pack ## type); \
fIntrinsicMap[String("unpack" #type)] = ALL_GLSL(Unpack ## type)
PACK(Snorm4x8);
PACK(Unorm4x8);
PACK(Snorm2x16);
PACK(Unorm2x16);
PACK(Half2x16);
PACK(Double2x32);
fIntrinsicMap[String("length")] = ALL_GLSL(Length);
fIntrinsicMap[String("distance")] = ALL_GLSL(Distance);
fIntrinsicMap[String("cross")] = ALL_GLSL(Cross);
fIntrinsicMap[String("normalize")] = ALL_GLSL(Normalize);
fIntrinsicMap[String("faceForward")] = ALL_GLSL(FaceForward);
fIntrinsicMap[String("reflect")] = ALL_GLSL(Reflect);
fIntrinsicMap[String("refract")] = ALL_GLSL(Refract);
fIntrinsicMap[String("findLSB")] = ALL_GLSL(FindILsb);
fIntrinsicMap[String("findMSB")] = BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb);
fIntrinsicMap[String("dFdx")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdx,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("dFdy")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("dFdy")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("texture")] = SPECIAL(Texture);
fIntrinsicMap[String("texelFetch")] = SPECIAL(TexelFetch);
fIntrinsicMap[String("subpassLoad")] = SPECIAL(SubpassLoad);
fIntrinsicMap[String("any")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAny);
fIntrinsicMap[String("all")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAll);
fIntrinsicMap[String("equal")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdEqual, SpvOpIEqual,
SpvOpIEqual, SpvOpLogicalEqual);
fIntrinsicMap[String("notEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdNotEqual, SpvOpINotEqual,
SpvOpINotEqual,
SpvOpLogicalNotEqual);
fIntrinsicMap[String("lessThan")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdLessThan, SpvOpSLessThan,
SpvOpULessThan, SpvOpUndef);
fIntrinsicMap[String("lessThanEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdLessThanEqual,
SpvOpSLessThanEqual,
SpvOpULessThanEqual,
SpvOpUndef);
fIntrinsicMap[String("greaterThan")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdGreaterThan,
SpvOpSGreaterThan,
SpvOpUGreaterThan,
SpvOpUndef);
fIntrinsicMap[String("greaterThanEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdGreaterThanEqual,
SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual,
SpvOpUndef);
fIntrinsicMap[String("EmitVertex")] = ALL_SPIRV(EmitVertex);
fIntrinsicMap[String("EndPrimitive")] = ALL_SPIRV(EndPrimitive);
// interpolateAt* not yet supported...
}
void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) {
out.write((const char*) &word, sizeof(word));
}
static bool is_float(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_float(context, type.componentType());
}
return type == *context.fFloat_Type || type == *context.fHalf_Type ||
type == *context.fDouble_Type;
}
static bool is_signed(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_signed(context, type.componentType());
}
return type == *context.fInt_Type || type == *context.fShort_Type;
}
static bool is_unsigned(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_unsigned(context, type.componentType());
}
return type == *context.fUInt_Type || type == *context.fUShort_Type;
}
static bool is_bool(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_bool(context, type.componentType());
}
return type == *context.fBool_Type;
}
static bool is_out(const Variable& var) {
return (var.fModifiers.fFlags & Modifiers::kOut_Flag) != 0;
}
void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) {
SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer);
SkASSERT(opCode != SpvOpUndef);
switch (opCode) {
case SpvOpReturn: // fall through
case SpvOpReturnValue: // fall through
case SpvOpKill: // fall through
case SpvOpBranch: // fall through
case SpvOpBranchConditional:
SkASSERT(fCurrentBlock);
fCurrentBlock = 0;
break;
case SpvOpConstant: // fall through
case SpvOpConstantTrue: // fall through
case SpvOpConstantFalse: // fall through
case SpvOpConstantComposite: // fall through
case SpvOpTypeVoid: // fall through
case SpvOpTypeInt: // fall through
case SpvOpTypeFloat: // fall through
case SpvOpTypeBool: // fall through
case SpvOpTypeVector: // fall through
case SpvOpTypeMatrix: // fall through
case SpvOpTypeArray: // fall through
case SpvOpTypePointer: // fall through
case SpvOpTypeFunction: // fall through
case SpvOpTypeRuntimeArray: // fall through
case SpvOpTypeStruct: // fall through
case SpvOpTypeImage: // fall through
case SpvOpTypeSampledImage: // fall through
case SpvOpVariable: // fall through
case SpvOpFunction: // fall through
case SpvOpFunctionParameter: // fall through
case SpvOpFunctionEnd: // fall through
case SpvOpExecutionMode: // fall through
case SpvOpMemoryModel: // fall through
case SpvOpCapability: // fall through
case SpvOpExtInstImport: // fall through
case SpvOpEntryPoint: // fall through
case SpvOpSource: // fall through
case SpvOpSourceExtension: // fall through
case SpvOpName: // fall through
case SpvOpMemberName: // fall through
case SpvOpDecorate: // fall through
case SpvOpMemberDecorate:
break;
default:
SkASSERT(fCurrentBlock);
}
this->writeWord((length << 16) | opCode, out);
}
void SPIRVCodeGenerator::writeLabel(SpvId label, OutputStream& out) {
fCurrentBlock = label;
this->writeInstruction(SpvOpLabel, label, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) {
this->writeOpCode(opCode, 1, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) {
this->writeOpCode(opCode, 2, out);
this->writeWord(word1, out);
}
void SPIRVCodeGenerator::writeString(const char* string, size_t length, OutputStream& out) {
out.write(string, length);
switch (length % 4) {
case 1:
out.write8(0);
// fall through
case 2:
out.write8(0);
// fall through
case 3:
out.write8(0);
break;
default:
this->writeWord(0, out);
}
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, StringFragment string, OutputStream& out) {
this->writeOpCode(opCode, 1 + (string.fLength + 4) / 4, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, StringFragment string,
OutputStream& out) {
this->writeOpCode(opCode, 2 + (string.fLength + 4) / 4, out);
this->writeWord(word1, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
StringFragment string, OutputStream& out) {
this->writeOpCode(opCode, 3 + (string.fLength + 4) / 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
OutputStream& out) {
this->writeOpCode(opCode, 3, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, OutputStream& out) {
this->writeOpCode(opCode, 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, OutputStream& out) {
this->writeOpCode(opCode, 5, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
OutputStream& out) {
this->writeOpCode(opCode, 6, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, OutputStream& out) {
this->writeOpCode(opCode, 7, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, OutputStream& out) {
this->writeOpCode(opCode, 8, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, int32_t word8,
OutputStream& out) {
this->writeOpCode(opCode, 9, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
this->writeWord(word8, out);
}
void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) {
for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) {
if (fCapabilities & bit) {
this->writeInstruction(SpvOpCapability, (SpvId) i, out);
}
}
if (fProgram.fKind == Program::kGeometry_Kind) {
this->writeInstruction(SpvOpCapability, SpvCapabilityGeometry, out);
}
}
SpvId SPIRVCodeGenerator::nextId() {
return fIdCount++;
}
void SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout,
SpvId resultId) {
this->writeInstruction(SpvOpName, resultId, type.name().c_str(), fNameBuffer);
// go ahead and write all of the field types, so we don't inadvertently write them while we're
// in the middle of writing the struct instruction
std::vector<SpvId> types;
for (const auto& f : type.fields()) {
types.push_back(this->getType(*f.fType, memoryLayout));
}
this->writeOpCode(SpvOpTypeStruct, 2 + (int32_t) types.size(), fConstantBuffer);
this->writeWord(resultId, fConstantBuffer);
for (SpvId id : types) {
this->writeWord(id, fConstantBuffer);
}
size_t offset = 0;
for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) {
size_t size = memoryLayout.size(*type.fields()[i].fType);
size_t alignment = memoryLayout.alignment(*type.fields()[i].fType);
const Layout& fieldLayout = type.fields()[i].fModifiers.fLayout;
if (fieldLayout.fOffset >= 0) {
if (fieldLayout.fOffset < (int) offset) {
fErrors.error(type.fOffset,
"offset of field '" + type.fields()[i].fName + "' must be at "
"least " + to_string((int) offset));
}
if (fieldLayout.fOffset % alignment) {
fErrors.error(type.fOffset,
"offset of field '" + type.fields()[i].fName + "' must be a multiple"
" of " + to_string((int) alignment));
}
offset = fieldLayout.fOffset;
} else {
size_t mod = offset % alignment;
if (mod) {
offset += alignment - mod;
}
}
this->writeInstruction(SpvOpMemberName, resultId, i, type.fields()[i].fName, fNameBuffer);
this->writeLayout(fieldLayout, resultId, i);
if (type.fields()[i].fModifiers.fLayout.fBuiltin < 0) {
this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset,
(SpvId) offset, fDecorationBuffer);
}
if (type.fields()[i].fType->kind() == Type::kMatrix_Kind) {
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor,
fDecorationBuffer);
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride,
(SpvId) memoryLayout.stride(*type.fields()[i].fType),
fDecorationBuffer);
}
offset += size;
Type::Kind kind = type.fields()[i].fType->kind();
if ((kind == Type::kArray_Kind || kind == Type::kStruct_Kind) && offset % alignment != 0) {
offset += alignment - offset % alignment;
}
}
}
Type SPIRVCodeGenerator::getActualType(const Type& type) {
if (type == *fContext.fHalf_Type) {
return *fContext.fFloat_Type;
}
if (type == *fContext.fShort_Type) {
return *fContext.fInt_Type;
}
if (type == *fContext.fUShort_Type) {
return *fContext.fUInt_Type;
}
if (type.kind() == Type::kMatrix_Kind || type.kind() == Type::kVector_Kind) {
if (type.componentType() == *fContext.fHalf_Type) {
return fContext.fFloat_Type->toCompound(fContext, type.columns(), type.rows());
}
if (type.componentType() == *fContext.fShort_Type) {
return fContext.fInt_Type->toCompound(fContext, type.columns(), type.rows());
}
if (type.componentType() == *fContext.fUShort_Type) {
return fContext.fUInt_Type->toCompound(fContext, type.columns(), type.rows());
}
}
return type;
}
SpvId SPIRVCodeGenerator::getType(const Type& type) {
return this->getType(type, fDefaultLayout);
}
SpvId SPIRVCodeGenerator::getType(const Type& rawType, const MemoryLayout& layout) {
Type type = this->getActualType(rawType);
String key = type.name() + to_string((int) layout.fStd);
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
switch (type.kind()) {
case Type::kScalar_Kind:
if (type == *fContext.fBool_Type) {
this->writeInstruction(SpvOpTypeBool, result, fConstantBuffer);
} else if (type == *fContext.fInt_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 1, fConstantBuffer);
} else if (type == *fContext.fUInt_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 0, fConstantBuffer);
} else if (type == *fContext.fFloat_Type) {
this->writeInstruction(SpvOpTypeFloat, result, 32, fConstantBuffer);
} else if (type == *fContext.fDouble_Type) {
this->writeInstruction(SpvOpTypeFloat, result, 64, fConstantBuffer);
} else {
SkASSERT(false);
}
break;
case Type::kVector_Kind:
this->writeInstruction(SpvOpTypeVector, result,
this->getType(type.componentType(), layout),
type.columns(), fConstantBuffer);
break;
case Type::kMatrix_Kind:
this->writeInstruction(SpvOpTypeMatrix, result,
this->getType(index_type(fContext, type), layout),
type.columns(), fConstantBuffer);
break;
case Type::kStruct_Kind:
this->writeStruct(type, layout, result);
break;
case Type::kArray_Kind: {
if (type.columns() > 0) {
IntLiteral count(fContext, -1, type.columns());
this->writeInstruction(SpvOpTypeArray, result,
this->getType(type.componentType(), layout),
this->writeIntLiteral(count), fConstantBuffer);
this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride,
(int32_t) layout.stride(type),
fDecorationBuffer);
} else {
SkASSERT(false); // we shouldn't have any runtime-sized arrays right now
this->writeInstruction(SpvOpTypeRuntimeArray, result,
this->getType(type.componentType(), layout),
fConstantBuffer);
this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride,
(int32_t) layout.stride(type),
fDecorationBuffer);
}
break;
}
case Type::kSampler_Kind: {
SpvId image = result;
if (SpvDimSubpassData != type.dimensions()) {
image = this->nextId();
}
if (SpvDimBuffer == type.dimensions()) {
fCapabilities |= (((uint64_t) 1) << SpvCapabilitySampledBuffer);
}
this->writeInstruction(SpvOpTypeImage, image,
this->getType(*fContext.fFloat_Type, layout),
type.dimensions(), type.isDepth(), type.isArrayed(),
type.isMultisampled(), type.isSampled() ? 1 : 2,
SpvImageFormatUnknown, fConstantBuffer);
fImageTypeMap[key] = image;
if (SpvDimSubpassData != type.dimensions()) {
this->writeInstruction(SpvOpTypeSampledImage, result, image, fConstantBuffer);
}
break;
}
default:
if (type == *fContext.fVoid_Type) {
this->writeInstruction(SpvOpTypeVoid, result, fConstantBuffer);
} else {
ABORT("invalid type: %s", type.description().c_str());
}
}
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getImageType(const Type& type) {
SkASSERT(type.kind() == Type::kSampler_Kind);
this->getType(type);
String key = type.name() + to_string((int) fDefaultLayout.fStd);
SkASSERT(fImageTypeMap.find(key) != fImageTypeMap.end());
return fImageTypeMap[key];
}
SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) {
String key = function.fReturnType.description() + "(";
String separator;
for (size_t i = 0; i < function.fParameters.size(); i++) {
key += separator;
separator = ", ";
key += function.fParameters[i]->fType.description();
}
key += ")";
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
int32_t length = 3 + (int32_t) function.fParameters.size();
SpvId returnType = this->getType(function.fReturnType);
std::vector<SpvId> parameterTypes;
for (size_t i = 0; i < function.fParameters.size(); i++) {
// glslang seems to treat all function arguments as pointers whether they need to be or
// not. I was initially puzzled by this until I ran bizarre failures with certain
// patterns of function calls and control constructs, as exemplified by this minimal
// failure case:
//
// void sphere(float x) {
// }
//
// void map() {
// sphere(1.0);
// }
//
// void main() {
// for (int i = 0; i < 1; i++) {
// map();
// }
// }
//
// As of this writing, compiling this in the "obvious" way (with sphere taking a float)
// crashes. Making it take a float* and storing the argument in a temporary variable,
// as glslang does, fixes it. It's entirely possible I simply missed whichever part of
// the spec makes this make sense.
// if (is_out(function->fParameters[i])) {
parameterTypes.push_back(this->getPointerType(function.fParameters[i]->fType,
SpvStorageClassFunction));
// } else {
// parameterTypes.push_back(this->getType(function.fParameters[i]->fType));
// }
}
this->writeOpCode(SpvOpTypeFunction, length, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
this->writeWord(returnType, fConstantBuffer);
for (SpvId id : parameterTypes) {
this->writeWord(id, fConstantBuffer);
}
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) {
return this->getPointerType(type, fDefaultLayout, storageClass);
}
SpvId SPIRVCodeGenerator::getPointerType(const Type& rawType, const MemoryLayout& layout,
SpvStorageClass_ storageClass) {
Type type = this->getActualType(rawType);
String key = type.description() + "*" + to_string(layout.fStd) + to_string(storageClass);
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpTypePointer, result, storageClass,
this->getType(type), fConstantBuffer);
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) {
switch (expr.fKind) {
case Expression::kBinary_Kind:
return this->writeBinaryExpression((BinaryExpression&) expr, out);
case Expression::kBoolLiteral_Kind:
return this->writeBoolLiteral((BoolLiteral&) expr);
case Expression::kConstructor_Kind:
return this->writeConstructor((Constructor&) expr, out);
case Expression::kIntLiteral_Kind:
return this->writeIntLiteral((IntLiteral&) expr);
case Expression::kFieldAccess_Kind:
return this->writeFieldAccess(((FieldAccess&) expr), out);
case Expression::kFloatLiteral_Kind:
return this->writeFloatLiteral(((FloatLiteral&) expr));
case Expression::kFunctionCall_Kind:
return this->writeFunctionCall((FunctionCall&) expr, out);
case Expression::kPrefix_Kind:
return this->writePrefixExpression((PrefixExpression&) expr, out);
case Expression::kPostfix_Kind:
return this->writePostfixExpression((PostfixExpression&) expr, out);
case Expression::kSwizzle_Kind:
return this->writeSwizzle((Swizzle&) expr, out);
case Expression::kVariableReference_Kind:
return this->writeVariableReference((VariableReference&) expr, out);
case Expression::kTernary_Kind:
return this->writeTernaryExpression((TernaryExpression&) expr, out);
case Expression::kIndex_Kind:
return this->writeIndexExpression((IndexExpression&) expr, out);
default:
ABORT("unsupported expression: %s", expr.description().c_str());
}
return -1;
}
SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) {
auto intrinsic = fIntrinsicMap.find(c.fFunction.fName);
SkASSERT(intrinsic != fIntrinsicMap.end());
int32_t intrinsicId;
if (c.fArguments.size() > 0) {
const Type& type = c.fArguments[0]->fType;
if (std::get<0>(intrinsic->second) == kSpecial_IntrinsicKind || is_float(fContext, type)) {
intrinsicId = std::get<1>(intrinsic->second);
} else if (is_signed(fContext, type)) {
intrinsicId = std::get<2>(intrinsic->second);
} else if (is_unsigned(fContext, type)) {
intrinsicId = std::get<3>(intrinsic->second);
} else if (is_bool(fContext, type)) {
intrinsicId = std::get<4>(intrinsic->second);
} else {
intrinsicId = std::get<1>(intrinsic->second);
}
} else {
intrinsicId = std::get<1>(intrinsic->second);
}
switch (std::get<0>(intrinsic->second)) {
case kGLSL_STD_450_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
arguments.push_back(this->getLValue(*c.fArguments[i], out)->getPointer());
} else {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(intrinsicId, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSPIRV_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
arguments.push_back(this->getLValue(*c.fArguments[i], out)->getPointer());
} else {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
}
if (c.fType != *fContext.fVoid_Type) {
this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
} else {
this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out);
}
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSpecial_IntrinsicKind:
return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out);
default:
ABORT("unsupported intrinsic kind");
}
}
std::vector<SpvId> SPIRVCodeGenerator::vectorize(
const std::vector<std::unique_ptr<Expression>>& args,
OutputStream& out) {
int vectorSize = 0;
for (const auto& a : args) {
if (a->fType.kind() == Type::kVector_Kind) {
if (vectorSize) {
SkASSERT(a->fType.columns() == vectorSize);
}
else {
vectorSize = a->fType.columns();
}
}
}
std::vector<SpvId> result;
for (const auto& a : args) {
SpvId raw = this->writeExpression(*a, out);
if (vectorSize && a->fType.kind() == Type::kScalar_Kind) {
SpvId vector = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + vectorSize, out);
this->writeWord(this->getType(a->fType.toCompound(fContext, vectorSize, 1)), out);
this->writeWord(vector, out);
for (int i = 0; i < vectorSize; i++) {
this->writeWord(raw, out);
}
result.push_back(vector);
} else {
result.push_back(raw);
}
}
return result;
}
void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst,
SpvId signedInst, SpvId unsignedInst,
const std::vector<SpvId>& args,
OutputStream& out) {
this->writeOpCode(SpvOpExtInst, 5 + args.size(), out);
this->writeWord(this->getType(type), out);
this->writeWord(id, out);
this->writeWord(fGLSLExtendedInstructions, out);
if (is_float(fContext, type)) {
this->writeWord(floatInst, out);
} else if (is_signed(fContext, type)) {
this->writeWord(signedInst, out);
} else if (is_unsigned(fContext, type)) {
this->writeWord(unsignedInst, out);
} else {
SkASSERT(false);
}
for (SpvId a : args) {
this->writeWord(a, out);
}
}
SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind,
OutputStream& out) {
SpvId result = this->nextId();
switch (kind) {
case kAtan_SpecialIntrinsic: {
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(arguments.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
break;
}
case kSubpassLoad_SpecialIntrinsic: {
SpvId img = this->writeExpression(*c.fArguments[0], out);
std::vector<std::unique_ptr<Expression>> args;
args.emplace_back(new FloatLiteral(fContext, -1, 0.0));
args.emplace_back(new FloatLiteral(fContext, -1, 0.0));
Constructor ctor(-1, *fContext.fFloat2_Type, std::move(args));
SpvId coords = this->writeConstantVector(ctor);
if (1 == c.fArguments.size()) {
this->writeInstruction(SpvOpImageRead,
this->getType(c.fType),
result,
img,
coords,
out);
} else {
SkASSERT(2 == c.fArguments.size());
SpvId sample = this->writeExpression(*c.fArguments[1], out);
this->writeInstruction(SpvOpImageRead,
this->getType(c.fType),
result,
img,
coords,
SpvImageOperandsSampleMask,
sample,
out);
}
break;
}
case kTexelFetch_SpecialIntrinsic: {
SkASSERT(c.fArguments.size() == 2);
SpvId image = this->nextId();
this->writeInstruction(SpvOpImage,
this->getImageType(c.fArguments[0]->fType),
image,
this->writeExpression(*c.fArguments[0], out),
out);
this->writeInstruction(SpvOpImageFetch,
this->getType(c.fType),
result,
image,
this->writeExpression(*c.fArguments[1], out),
out);
break;
}
case kTexture_SpecialIntrinsic: {
SpvOp_ op = SpvOpImageSampleImplicitLod;
switch (c.fArguments[0]->fType.dimensions()) {
case SpvDim1D:
if (c.fArguments[1]->fType == *fContext.fFloat2_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(c.fArguments[1]->fType == *fContext.fFloat_Type);
}
break;
case SpvDim2D:
if (c.fArguments[1]->fType == *fContext.fFloat3_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type);
}
break;
case SpvDim3D:
if (c.fArguments[1]->fType == *fContext.fFloat4_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(c.fArguments[1]->fType == *fContext.fFloat3_Type);
}
break;
case SpvDimCube: // fall through
case SpvDimRect: // fall through
case SpvDimBuffer: // fall through
case SpvDimSubpassData:
break;
}
SpvId type = this->getType(c.fType);
SpvId sampler = this->writeExpression(*c.fArguments[0], out);
SpvId uv = this->writeExpression(*c.fArguments[1], out);
if (c.fArguments.size() == 3) {
this->writeInstruction(op, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeExpression(*c.fArguments[2], out),
out);
} else {
SkASSERT(c.fArguments.size() == 2);
if (fProgram.fSettings.fSharpenTextures) {
FloatLiteral lodBias(fContext, -1, -0.5);
this->writeInstruction(op, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeFloatLiteral(lodBias),
out);
} else {
this->writeInstruction(op, type, result, sampler, uv,
out);
}
}
break;
}
case kMod_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
const Type& operandType = c.fArguments[0]->fType;
SpvOp_ op;
if (is_float(fContext, operandType)) {
op = SpvOpFMod;
} else if (is_signed(fContext, operandType)) {
op = SpvOpSMod;
} else if (is_unsigned(fContext, operandType)) {
op = SpvOpUMod;
} else {
SkASSERT(false);
return 0;
}
this->writeOpCode(op, 5, out);
this->writeWord(this->getType(operandType), out);
this->writeWord(result, out);
this->writeWord(args[0], out);
this->writeWord(args[1], out);
break;
}
case kClamp_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 3);
this->writeGLSLExtendedInstruction(c.fType, result, GLSLstd450FClamp, GLSLstd450SClamp,
GLSLstd450UClamp, args, out);
break;
}
case kMax_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
this->writeGLSLExtendedInstruction(c.fType, result, GLSLstd450FMax, GLSLstd450SMax,
GLSLstd450UMax, args, out);
break;
}
case kMin_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
this->writeGLSLExtendedInstruction(c.fType, result, GLSLstd450FMin, GLSLstd450SMin,
GLSLstd450UMin, args, out);
break;
}
case kMix_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 3);
this->writeGLSLExtendedInstruction(c.fType, result, GLSLstd450FMix, SpvOpUndef,
SpvOpUndef, args, out);
break;
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) {
const auto& entry = fFunctionMap.find(&c.fFunction);
if (entry == fFunctionMap.end()) {
return this->writeIntrinsicCall(c, out);
}
// stores (variable, type, lvalue) pairs to extract and save after the function call is complete
std::vector<std::tuple<SpvId, SpvId, std::unique_ptr<LValue>>> lvalues;
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
// id of temporary variable that we will use to hold this argument, or 0 if it is being
// passed directly
SpvId tmpVar;
// if we need a temporary var to store this argument, this is the value to store in the var
SpvId tmpValueId;
if (is_out(*c.fFunction.fParameters[i])) {
std::unique_ptr<LValue> lv = this->getLValue(*c.fArguments[i], out);
SpvId ptr = lv->getPointer();
if (ptr) {
arguments.push_back(ptr);
continue;
} else {
// lvalue cannot simply be read and written via a pointer (e.g. a swizzle). Need to
// copy it into a temp, call the function, read the value out of the temp, and then
// update the lvalue.
tmpValueId = lv->load(out);
tmpVar = this->nextId();
lvalues.push_back(std::make_tuple(tmpVar, this->getType(c.fArguments[i]->fType),
std::move(lv)));
}
} else {
// see getFunctionType for an explanation of why we're always using pointer parameters
tmpValueId = this->writeExpression(*c.fArguments[i], out);
tmpVar = this->nextId();
}
this->writeInstruction(SpvOpVariable,
this->getPointerType(c.fArguments[i]->fType,
SpvStorageClassFunction),
tmpVar,
SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, tmpVar, tmpValueId, out);
arguments.push_back(tmpVar);
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) c.fArguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(entry->second, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
// now that the call is complete, we may need to update some lvalues with the new values of out
// arguments
for (const auto& tuple : lvalues) {
SpvId load = this->nextId();
this->writeInstruction(SpvOpLoad, std::get<1>(tuple), load, std::get<0>(tuple), out);
std::get<2>(tuple)->store(load, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstantVector(const Constructor& c) {
SkASSERT(c.fType.kind() == Type::kVector_Kind && c.isConstant());
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], fConstantBuffer));
}
SpvId type = this->getType(c.fType);
if (c.fArguments.size() == 1) {
// with a single argument, a vector will have all of its entries equal to the argument
this->writeOpCode(SpvOpConstantComposite, 3 + c.fType.columns(), fConstantBuffer);
this->writeWord(type, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (int i = 0; i < c.fType.columns(); i++) {
this->writeWord(arguments[0], fConstantBuffer);
}
} else {
this->writeOpCode(SpvOpConstantComposite, 3 + (int32_t) c.fArguments.size(),
fConstantBuffer);
this->writeWord(type, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (SpvId id : arguments) {
this->writeWord(id, fConstantBuffer);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFloatConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.isFloat());
SkASSERT(c.fArguments.size() == 1);
SkASSERT(c.fArguments[0]->fType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.fArguments[0], out);
if (c.fArguments[0]->fType.isSigned()) {
this->writeInstruction(SpvOpConvertSToF, this->getType(c.fType), result, parameter,
out);
} else {
SkASSERT(c.fArguments[0]->fType.isUnsigned());
this->writeInstruction(SpvOpConvertUToF, this->getType(c.fType), result, parameter,
out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeIntConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.isSigned());
SkASSERT(c.fArguments.size() == 1);
SkASSERT(c.fArguments[0]->fType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.fArguments[0], out);
if (c.fArguments[0]->fType.isFloat()) {
this->writeInstruction(SpvOpConvertFToS, this->getType(c.fType), result, parameter,
out);
}
else {
SkASSERT(c.fArguments[0]->fType.isUnsigned());
this->writeInstruction(SpvOpBitcast, this->getType(c.fType), result, parameter,
out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeUIntConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.isUnsigned());
SkASSERT(c.fArguments.size() == 1);
SkASSERT(c.fArguments[0]->fType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.fArguments[0], out);
if (c.fArguments[0]->fType.isFloat()) {
this->writeInstruction(SpvOpConvertFToU, this->getType(c.fType), result, parameter,
out);
} else {
SkASSERT(c.fArguments[0]->fType.isSigned());
this->writeInstruction(SpvOpBitcast, this->getType(c.fType), result, parameter,
out);
}
return result;
}
void SPIRVCodeGenerator::writeUniformScaleMatrix(SpvId id, SpvId diagonal, const Type& type,
OutputStream& out) {
FloatLiteral zero(fContext, -1, 0);
SpvId zeroId = this->writeFloatLiteral(zero);
std::vector<SpvId> columnIds;
for (int column = 0; column < type.columns(); column++) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + type.rows(),
out);
this->writeWord(this->getType(type.componentType().toCompound(fContext, type.rows(), 1)),
out);
SpvId columnId = this->nextId();
this->writeWord(columnId, out);
columnIds.push_back(columnId);
for (int row = 0; row < type.columns(); row++) {
this->writeWord(row == column ? diagonal : zeroId, out);
}
}
this->writeOpCode(SpvOpCompositeConstruct, 3 + type.columns(),
out);
this->writeWord(this->getType(type), out);
this->writeWord(id, out);
for (SpvId id : columnIds) {
this->writeWord(id, out);
}
}
void SPIRVCodeGenerator::writeMatrixCopy(SpvId id, SpvId src, const Type& srcType,
const Type& dstType, OutputStream& out) {
SkASSERT(srcType.kind() == Type::kMatrix_Kind);
SkASSERT(dstType.kind() == Type::kMatrix_Kind);
SkASSERT(srcType.componentType() == dstType.componentType());
SpvId srcColumnType = this->getType(srcType.componentType().toCompound(fContext,
srcType.rows(),
1));
SpvId dstColumnType = this->getType(dstType.componentType().toCompound(fContext,
dstType.rows(),
1));
SpvId zeroId;
if (dstType.componentType() == *fContext.fFloat_Type) {
FloatLiteral zero(fContext, -1, 0.0);
zeroId = this->writeFloatLiteral(zero);
} else if (dstType.componentType() == *fContext.fInt_Type) {
IntLiteral zero(fContext, -1, 0);
zeroId = this->writeIntLiteral(zero);
} else {
ABORT("unsupported matrix component type");
}
SpvId zeroColumn = 0;
SpvId columns[4];
for (int i = 0; i < dstType.columns(); i++) {
if (i < srcType.columns()) {
// we're still inside the src matrix, copy the column
SpvId srcColumn = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, srcColumnType, srcColumn, src, i, out);
SpvId dstColumn;
if (srcType.rows() == dstType.rows()) {
// columns are equal size, don't need to do anything
dstColumn = srcColumn;
}
else if (dstType.rows() > srcType.rows()) {
// dst column is bigger, need to zero-pad it
dstColumn = this->nextId();
int delta = dstType.rows() - srcType.rows();
this->writeOpCode(SpvOpCompositeConstruct, 4 + delta, out);
this->writeWord(dstColumnType, out);
this->writeWord(dstColumn, out);
this->writeWord(srcColumn, out);
for (int i = 0; i < delta; ++i) {
this->writeWord(zeroId, out);
}
}
else {
// dst column is smaller, need to swizzle the src column
dstColumn = this->nextId();
int count = dstType.rows();
this->writeOpCode(SpvOpVectorShuffle, 5 + count, out);
this->writeWord(dstColumnType, out);
this->writeWord(dstColumn, out);
this->writeWord(srcColumn, out);
this->writeWord(srcColumn, out);
for (int i = 0; i < count; i++) {
this->writeWord(i, out);
}
}
columns[i] = dstColumn;
} else {
// we're past the end of the src matrix, need a vector of zeroes
if (!zeroColumn) {
zeroColumn = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.rows(), out);
this->writeWord(dstColumnType, out);
this->writeWord(zeroColumn, out);
for (int i = 0; i < dstType.rows(); ++i) {
this->writeWord(zeroId, out);
}
}
columns[i] = zeroColumn;
}
}
this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.columns(), out);
this->writeWord(this->getType(dstType), out);
this->writeWord(id, out);
for (int i = 0; i < dstType.columns(); i++) {
this->writeWord(columns[i], out);
}
}
SpvId SPIRVCodeGenerator::writeMatrixConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.kind() == Type::kMatrix_Kind);
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
SpvId result = this->nextId();
int rows = c.fType.rows();
int columns = c.fType.columns();
if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kScalar_Kind) {
this->writeUniformScaleMatrix(result, arguments[0], c.fType, out);
} else if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kMatrix_Kind) {
this->writeMatrixCopy(result, arguments[0], c.fArguments[0]->fType, c.fType, out);
} else if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kVector_Kind) {
SkASSERT(c.fType.rows() == 2 && c.fType.columns() == 2);
SkASSERT(c.fArguments[0]->fType.columns() == 4);
SpvId componentType = this->getType(c.fType.componentType());
SpvId v[4];
for (int i = 0; i < 4; ++i) {
v[i] = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, componentType, v[i], arguments[0], i, out);
}
SpvId columnType = this->getType(c.fType.componentType().toCompound(fContext, 2, 1));
SpvId column1 = this->nextId();
this->writeInstruction(SpvOpCompositeConstruct, columnType, column1, v[0], v[1], out);
SpvId column2 = this->nextId();
this->writeInstruction(SpvOpCompositeConstruct, columnType, column2, v[2], v[3], out);
this->writeInstruction(SpvOpCompositeConstruct, this->getType(c.fType), result, column1,
column2, out);
} else {
std::vector<SpvId> columnIds;
// ids of vectors and scalars we have written to the current column so far
std::vector<SpvId> currentColumn;
// the total number of scalars represented by currentColumn's entries
int currentCount = 0;
for (size_t i = 0; i < arguments.size(); i++) {
if (c.fArguments[i]->fType.kind() == Type::kVector_Kind &&
c.fArguments[i]->fType.columns() == c.fType.rows()) {
// this is a complete column by itself
SkASSERT(currentCount == 0);
columnIds.push_back(arguments[i]);
} else {
if (c.fArguments[i]->fType.columns() == 1) {
currentColumn.push_back(arguments[i]);
} else {
SpvId componentType = this->getType(c.fArguments[i]->fType.componentType());
for (int j = 0; j < c.fArguments[i]->fType.columns(); ++j) {
SpvId swizzle = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, componentType, swizzle,
arguments[i], j, out);
currentColumn.push_back(swizzle);
}
}
currentCount += c.fArguments[i]->fType.columns();
if (currentCount == rows) {
currentCount = 0;
this->writeOpCode(SpvOpCompositeConstruct, 3 + currentColumn.size(), out);
this->writeWord(this->getType(c.fType.componentType().toCompound(fContext, rows,
1)),
out);
SpvId columnId = this->nextId();
this->writeWord(columnId, out);
columnIds.push_back(columnId);
for (SpvId id : currentColumn) {
this->writeWord(id, out);
}
currentColumn.clear();
}
SkASSERT(currentCount < rows);
}
}
SkASSERT(columnIds.size() == (size_t) columns);
this->writeOpCode(SpvOpCompositeConstruct, 3 + columns, out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : columnIds) {
this->writeWord(id, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeVectorConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.kind() == Type::kVector_Kind);
if (c.isConstant()) {
return this->writeConstantVector(c);
}
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
if (c.fArguments[i]->fType.kind() == Type::kVector_Kind) {
// SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to
// extract the components and convert them in that case manually. On top of that,
// as of this writing there's a bug in the Intel Vulkan driver where OpCreateComposite
// doesn't handle vector arguments at all, so we always extract vector components and
// pass them into OpCreateComposite individually.
SpvId vec = this->writeExpression(*c.fArguments[i], out);
SpvOp_ op = SpvOpUndef;
const Type& src = c.fArguments[i]->fType.componentType();
const Type& dst = c.fType.componentType();
if (dst == *fContext.fFloat_Type || dst == *fContext.fHalf_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
if (c.fArguments.size() == 1) {
return vec;
}
} else if (src == *fContext.fInt_Type || src == *fContext.fShort_Type) {
op = SpvOpConvertSToF;
} else if (src == *fContext.fUInt_Type || src == *fContext.fUShort_Type) {
op = SpvOpConvertUToF;
} else {
SkASSERT(false);
}
} else if (dst == *fContext.fInt_Type || dst == *fContext.fShort_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
op = SpvOpConvertFToS;
} else if (src == *fContext.fInt_Type || src == *fContext.fShort_Type) {
if (c.fArguments.size() == 1) {
return vec;
}
} else if (src == *fContext.fUInt_Type || src == *fContext.fUShort_Type) {
op = SpvOpBitcast;
} else {
SkASSERT(false);
}
} else if (dst == *fContext.fUInt_Type || dst == *fContext.fUShort_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
op = SpvOpConvertFToS;
} else if (src == *fContext.fInt_Type || src == *fContext.fShort_Type) {
op = SpvOpBitcast;
} else if (src == *fContext.fUInt_Type || src == *fContext.fUShort_Type) {
if (c.fArguments.size() == 1) {
return vec;
}
} else {
SkASSERT(false);
}
}
for (int j = 0; j < c.fArguments[i]->fType.columns(); j++) {
SpvId swizzle = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(src), swizzle, vec, j,
out);
if (op != SpvOpUndef) {
SpvId cast = this->nextId();
this->writeInstruction(op, this->getType(dst), cast, swizzle, out);
arguments.push_back(cast);
} else {
arguments.push_back(swizzle);
}
}
} else {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
}
SpvId result = this->nextId();
if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kScalar_Kind) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.columns(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (int i = 0; i < c.fType.columns(); i++) {
this->writeWord(arguments[0], out);
}
} else {
SkASSERT(arguments.size() > 1);
this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeArrayConstructor(const Constructor& c, OutputStream& out) {
SkASSERT(c.fType.kind() == Type::kArray_Kind);
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) c.fArguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstructor(const Constructor& c, OutputStream& out) {
if (c.fArguments.size() == 1 &&
this->getActualType(c.fType) == this->getActualType(c.fArguments[0]->fType)) {
return this->writeExpression(*c.fArguments[0], out);
}
if (c.fType == *fContext.fFloat_Type || c.fType == *fContext.fHalf_Type) {
return this->writeFloatConstructor(c, out);
} else if (c.fType == *fContext.fInt_Type || c.fType == *fContext.fShort_Type) {
return this->writeIntConstructor(c, out);
} else if (c.fType == *fContext.fUInt_Type || c.fType == *fContext.fUShort_Type) {
return this->writeUIntConstructor(c, out);
}
switch (c.fType.kind()) {
case Type::kVector_Kind:
return this->writeVectorConstructor(c, out);
case Type::kMatrix_Kind:
return this->writeMatrixConstructor(c, out);
case Type::kArray_Kind:
return this->writeArrayConstructor(c, out);
default:
ABORT("unsupported constructor: %s", c.description().c_str());
}
}
SpvStorageClass_ get_storage_class(const Modifiers& modifiers) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag));
return SpvStorageClassInput;
} else if (modifiers.fFlags & Modifiers::kOut_Flag) {
SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag));
return SpvStorageClassOutput;
} else if (modifiers.fFlags & Modifiers::kUniform_Flag) {
if (modifiers.fLayout.fFlags & Layout::kPushConstant_Flag) {
return SpvStorageClassPushConstant;
}
return SpvStorageClassUniform;
} else {
return SpvStorageClassFunction;
}
}
SpvStorageClass_ get_storage_class(const Expression& expr) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) expr).fVariable;
if (var.fStorage != Variable::kGlobal_Storage) {
return SpvStorageClassFunction;
}
SpvStorageClass_ result = get_storage_class(var.fModifiers);
if (result == SpvStorageClassFunction) {
result = SpvStorageClassPrivate;
}
return result;
}
case Expression::kFieldAccess_Kind:
return get_storage_class(*((FieldAccess&) expr).fBase);
case Expression::kIndex_Kind:
return get_storage_class(*((IndexExpression&) expr).fBase);
default:
return SpvStorageClassFunction;
}
}
std::vector<SpvId> SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) {
std::vector<SpvId> chain;
switch (expr.fKind) {
case Expression::kIndex_Kind: {
IndexExpression& indexExpr = (IndexExpression&) expr;
chain = this->getAccessChain(*indexExpr.fBase, out);
chain.push_back(this->writeExpression(*indexExpr.fIndex, out));
break;
}
case Expression::kFieldAccess_Kind: {
FieldAccess& fieldExpr = (FieldAccess&) expr;
chain = this->getAccessChain(*fieldExpr.fBase, out);
IntLiteral index(fContext, -1, fieldExpr.fFieldIndex);
chain.push_back(this->writeIntLiteral(index));
break;
}
default:
chain.push_back(this->getLValue(expr, out)->getPointer());
}
return chain;
}
class PointerLValue : public SPIRVCodeGenerator::LValue {
public:
PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, SpvId type)
: fGen(gen)
, fPointer(pointer)
, fType(type) {}
virtual SpvId getPointer() override {
return fPointer;
}
virtual SpvId load(OutputStream& out) override {
SpvId result = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fType, result, fPointer, out);
return result;
}
virtual void store(SpvId value, OutputStream& out) override {
fGen.writeInstruction(SpvOpStore, fPointer, value, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fPointer;
const SpvId fType;
};
class SwizzleLValue : public SPIRVCodeGenerator::LValue {
public:
SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const std::vector<int>& components,
const Type& baseType, const Type& swizzleType)
: fGen(gen)
, fVecPointer(vecPointer)
, fComponents(components)
, fBaseType(baseType)
, fSwizzleType(swizzleType) {}
virtual SpvId getPointer() override {
return 0;
}
virtual SpvId load(OutputStream& out) override {
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
SpvId result = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out);
fGen.writeWord(fGen.getType(fSwizzleType), out);
fGen.writeWord(result, out);
fGen.writeWord(base, out);
fGen.writeWord(base, out);
for (int component : fComponents) {
fGen.writeWord(component, out);
}
return result;
}
virtual void store(SpvId value, OutputStream& out) override {
// use OpVectorShuffle to mix and match the vector components. We effectively create
// a virtual vector out of the concatenation of the left and right vectors, and then
// select components from this virtual vector to make the result vector. For
// instance, given:
// float3L = ...;
// float3R = ...;
// L.xz = R.xy;
// we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want
// our result vector to look like (R.x, L.y, R.y), so we need to select indices
// (3, 1, 4).
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
SpvId shuffle = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType.columns(), out);
fGen.writeWord(fGen.getType(fBaseType), out);
fGen.writeWord(shuffle, out);
fGen.writeWord(base, out);
fGen.writeWord(value, out);
for (int i = 0; i < fBaseType.columns(); i++) {
// current offset into the virtual vector, defaults to pulling the unmodified
// value from the left side
int offset = i;
// check to see if we are writing this component
for (size_t j = 0; j < fComponents.size(); j++) {
if (fComponents[j] == i) {
// we're writing to this component, so adjust the offset to pull from
// the correct component of the right side instead of preserving the
// value from the left
offset = (int) (j + fBaseType.columns());
break;
}
}
fGen.writeWord(offset, out);
}
fGen.writeInstruction(SpvOpStore, fVecPointer, shuffle, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fVecPointer;
const std::vector<int>& fComponents;
const Type& fBaseType;
const Type& fSwizzleType;
};
std::unique_ptr<SPIRVCodeGenerator::LValue> SPIRVCodeGenerator::getLValue(const Expression& expr,
OutputStream& out) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
SpvId type;
const Variable& var = ((VariableReference&) expr).fVariable;
if (var.fModifiers.fLayout.fBuiltin == SK_IN_BUILTIN) {
type = this->getType(Type("sk_in", Type::kArray_Kind, var.fType.componentType(),
fSkInCount));
} else {
type = this->getType(expr.fType);
}
auto entry = fVariableMap.find(&var);
SkASSERT(entry != fVariableMap.end());
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(*this,
entry->second,
type));
}
case Expression::kIndex_Kind: // fall through
case Expression::kFieldAccess_Kind: {
std::vector<SpvId> chain = this->getAccessChain(expr, out);
SpvId member = this->nextId();
this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out);
this->writeWord(this->getPointerType(expr.fType, get_storage_class(expr)), out);
this->writeWord(member, out);
for (SpvId idx : chain) {
this->writeWord(idx, out);
}
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(expr.fType)));
}
case Expression::kSwizzle_Kind: {
Swizzle& swizzle = (Swizzle&) expr;
size_t count = swizzle.fComponents.size();
SpvId base = this->getLValue(*swizzle.fBase, out)->getPointer();
SkASSERT(base);
if (count == 1) {
IntLiteral index(fContext, -1, swizzle.fComponents[0]);
SpvId member = this->nextId();
this->writeInstruction(SpvOpAccessChain,
this->getPointerType(swizzle.fType,
get_storage_class(*swizzle.fBase)),
member,
base,
this->writeIntLiteral(index),
out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(expr.fType)));
} else {
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new SwizzleLValue(
*this,
base,
swizzle.fComponents,
swizzle.fBase->fType,
expr.fType));
}
}
case Expression::kTernary_Kind: {
TernaryExpression& t = (TernaryExpression&) expr;
SpvId test = this->writeExpression(*t.fTest, out);
SpvId end = this->nextId();
SpvId ifTrueLabel = this->nextId();
SpvId ifFalseLabel = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrueLabel, ifFalseLabel, out);
this->writeLabel(ifTrueLabel, out);
SpvId ifTrue = this->getLValue(*t.fIfTrue, out)->getPointer();
SkASSERT(ifTrue);
this->writeInstruction(SpvOpBranch, end, out);
ifTrueLabel = fCurrentBlock;
SpvId ifFalse = this->getLValue(*t.fIfFalse, out)->getPointer();
SkASSERT(ifFalse);
ifFalseLabel = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, ifTrue,
ifTrueLabel, ifFalse, ifFalseLabel, out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
result,
this->getType(expr.fType)));
}
default:
// expr isn't actually an lvalue, create a dummy variable for it. This case happens due
// to the need to store values in temporary variables during function calls (see
// comments in getFunctionType); erroneous uses of rvalues as lvalues should have been
// caught by IRGenerator
SpvId result = this->nextId();
SpvId type = this->getPointerType(expr.fType, SpvStorageClassFunction);
this->writeInstruction(SpvOpVariable, type, result, SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, result, this->writeExpression(expr, out), out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
result,
this->getType(expr.fType)));
}
}
SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) {
SpvId result = this->nextId();
auto entry = fVariableMap.find(&ref.fVariable);
SkASSERT(entry != fVariableMap.end());
SpvId var = entry->second;
this->writeInstruction(SpvOpLoad, this->getType(ref.fVariable.fType), result, var, out);
if (ref.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN &&
fProgram.fSettings.fFlipY) {
// need to remap to a top-left coordinate system
if (fRTHeightStructId == (SpvId) -1) {
// height variable hasn't been written yet
std::shared_ptr<SymbolTable> st(new SymbolTable(&fErrors));
SkASSERT(fRTHeightFieldIndex == (SpvId) -1);
std::vector<Type::Field> fields;
fields.emplace_back(Modifiers(), SKSL_RTHEIGHT_NAME, fContext.fFloat_Type.get());
StringFragment name("sksl_synthetic_uniforms");
Type intfStruct(-1, name, fields);
Layout layout(0, -1, -1, 1, -1, -1, -1, -1, Layout::Format::kUnspecified,
Layout::kUnspecified_Primitive, -1, -1, "", Layout::kNo_Key,
StringFragment());
Variable* intfVar = new Variable(-1,
Modifiers(layout, Modifiers::kUniform_Flag),
name,
intfStruct,
Variable::kGlobal_Storage);
fSynthetics.takeOwnership(intfVar);
InterfaceBlock intf(-1, intfVar, name, String(""),
std::vector<std::unique_ptr<Expression>>(), st);
fRTHeightStructId = this->writeInterfaceBlock(intf);
fRTHeightFieldIndex = 0;
}
SkASSERT(fRTHeightFieldIndex != (SpvId) -1);
// write float4(gl_FragCoord.x, u_skRTHeight - gl_FragCoord.y, 0.0, 1.0)
SpvId xId = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(*fContext.fFloat_Type), xId,
result, 0, out);
IntLiteral fieldIndex(fContext, -1, fRTHeightFieldIndex);
SpvId fieldIndexId = this->writeIntLiteral(fieldIndex);
SpvId heightPtr = this->nextId();
this->writeOpCode(SpvOpAccessChain, 5, out);
this->writeWord(this->getPointerType(*fContext.fFloat_Type, SpvStorageClassUniform), out);
this->writeWord(heightPtr, out);
this->writeWord(fRTHeightStructId, out);
this->writeWord(fieldIndexId, out);
SpvId heightRead = this->nextId();
this->writeInstruction(SpvOpLoad, this->getType(*fContext.fFloat_Type), heightRead,
heightPtr, out);
SpvId rawYId = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(*fContext.fFloat_Type), rawYId,
result, 1, out);
SpvId flippedYId = this->nextId();
this->writeInstruction(SpvOpFSub, this->getType(*fContext.fFloat_Type), flippedYId,
heightRead, rawYId, out);
FloatLiteral zero(fContext, -1, 0.0);
SpvId zeroId = writeFloatLiteral(zero);
FloatLiteral one(fContext, -1, 1.0);
SpvId oneId = writeFloatLiteral(one);
SpvId flipped = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 7, out);
this->writeWord(this->getType(*fContext.fFloat4_Type), out);
this->writeWord(flipped, out);
this->writeWord(xId, out);
this->writeWord(flippedYId, out);
this->writeWord(zeroId, out);
this->writeWord(oneId, out);
return flipped;
}
return result;
}
SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, OutputStream& out) {
return getLValue(expr, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, OutputStream& out) {
return getLValue(f, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, OutputStream& out) {
SpvId base = this->writeExpression(*swizzle.fBase, out);
SpvId result = this->nextId();
size_t count = swizzle.fComponents.size();
if (count == 1) {
this->writeInstruction(SpvOpCompositeExtract, this->getType(swizzle.fType), result, base,
swizzle.fComponents[0], out);
} else {
this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out);
this->writeWord(this->getType(swizzle.fType), out);
this->writeWord(result, out);
this->writeWord(base, out);
this->writeWord(base, out);
for (int component : swizzle.fComponents) {
this->writeWord(component, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType,
const Type& operandType, SpvId lhs,
SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt,
SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) {
SpvId result = this->nextId();
if (is_float(fContext, operandType)) {
this->writeInstruction(ifFloat, this->getType(resultType), result, lhs, rhs, out);
} else if (is_signed(fContext, operandType)) {
this->writeInstruction(ifInt, this->getType(resultType), result, lhs, rhs, out);
} else if (is_unsigned(fContext, operandType)) {
this->writeInstruction(ifUInt, this->getType(resultType), result, lhs, rhs, out);
} else if (operandType == *fContext.fBool_Type) {
this->writeInstruction(ifBool, this->getType(resultType), result, lhs, rhs, out);
} else {
ABORT("invalid operandType: %s", operandType.description().c_str());
}
return result;
}
bool is_assignment(Token::Kind op) {
switch (op) {
case Token::EQ: // fall through
case Token::PLUSEQ: // fall through
case Token::MINUSEQ: // fall through
case Token::STAREQ: // fall through
case Token::SLASHEQ: // fall through
case Token::PERCENTEQ: // fall through
case Token::SHLEQ: // fall through
case Token::SHREQ: // fall through
case Token::BITWISEOREQ: // fall through
case Token::BITWISEXOREQ: // fall through
case Token::BITWISEANDEQ: // fall through
case Token::LOGICALOREQ: // fall through
case Token::LOGICALXOREQ: // fall through
case Token::LOGICALANDEQ:
return true;
default:
return false;
}
}
SpvId SPIRVCodeGenerator::foldToBool(SpvId id, const Type& operandType, SpvOp op,
OutputStream& out) {
if (operandType.kind() == Type::kVector_Kind) {
SpvId result = this->nextId();
this->writeInstruction(op, this->getType(*fContext.fBool_Type), result, id, out);
return result;
}
return id;
}
SpvId SPIRVCodeGenerator::writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs,
SpvOp_ floatOperator, SpvOp_ intOperator,
OutputStream& out) {
SpvOp_ compareOp = is_float(fContext, operandType) ? floatOperator : intOperator;
SkASSERT(operandType.kind() == Type::kMatrix_Kind);
SpvId rowType = this->getType(operandType.componentType().toCompound(fContext,
operandType.columns(),
1));
SpvId bvecType = this->getType(fContext.fBool_Type->toCompound(fContext,
operandType.columns(),
1));
SpvId boolType = this->getType(*fContext.fBool_Type);
SpvId result = 0;
for (int i = 0; i < operandType.rows(); i++) {
SpvId rowL = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, rowType, rowL, lhs, 0, out);
SpvId rowR = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, rowType, rowR, rhs, 0, out);
SpvId compare = this->nextId();
this->writeInstruction(compareOp, bvecType, compare, rowL, rowR, out);
SpvId all = this->nextId();
this->writeInstruction(SpvOpAll, boolType, all, compare, out);
if (result != 0) {
SpvId next = this->nextId();
this->writeInstruction(SpvOpLogicalAnd, boolType, next, result, all, out);
result = next;
}
else {
result = all;
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, OutputStream& out) {
// handle cases where we don't necessarily evaluate both LHS and RHS
switch (b.fOperator) {
case Token::EQ: {
SpvId rhs = this->writeExpression(*b.fRight, out);
this->getLValue(*b.fLeft, out)->store(rhs, out);
return rhs;
}
case Token::LOGICALAND:
return this->writeLogicalAnd(b, out);
case Token::LOGICALOR:
return this->writeLogicalOr(b, out);
default:
break;
}
// "normal" operators
const Type& resultType = b.fType;
std::unique_ptr<LValue> lvalue;
SpvId lhs;
if (is_assignment(b.fOperator)) {
lvalue = this->getLValue(*b.fLeft, out);
lhs = lvalue->load(out);
} else {
lvalue = nullptr;
lhs = this->writeExpression(*b.fLeft, out);
}
SpvId rhs = this->writeExpression(*b.fRight, out);
if (b.fOperator == Token::COMMA) {
return rhs;
}
Type tmp("<invalid>");
// overall type we are operating on: float2, int, uint4...
const Type* operandType;
// IR allows mismatched types in expressions (e.g. float2 * float), but they need special
// handling in SPIR-V
if (this->getActualType(b.fLeft->fType) != this->getActualType(b.fRight->fType)) {
if (b.fLeft->fType.kind() == Type::kVector_Kind &&
b.fRight->fType.isNumber()) {
// promote number to vector
SpvId vec = this->nextId();
const Type& vecType = b.fLeft->fType;
this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out);
this->writeWord(this->getType(vecType), out);
this->writeWord(vec, out);
for (int i = 0; i < vecType.columns(); i++) {
this->writeWord(rhs, out);
}
rhs = vec;
operandType = &b.fLeft->fType;
} else if (b.fRight->fType.kind() == Type::kVector_Kind &&
b.fLeft->fType.isNumber()) {
// promote number to vector
SpvId vec = this->nextId();
const Type& vecType = b.fRight->fType;
this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out);
this->writeWord(this->getType(vecType), out);
this->writeWord(vec, out);
for (int i = 0; i < vecType.columns(); i++) {
this->writeWord(lhs, out);
}
lhs = vec;
SkASSERT(!lvalue);
operandType = &b.fRight->fType;
} else if (b.fLeft->fType.kind() == Type::kMatrix_Kind) {
SpvOp_ op;
if (b.fRight->fType.kind() == Type::kMatrix_Kind) {
op = SpvOpMatrixTimesMatrix;
} else if (b.fRight->fType.kind() == Type::kVector_Kind) {
op = SpvOpMatrixTimesVector;
} else {
SkASSERT(b.fRight->fType.kind() == Type::kScalar_Kind);
op = SpvOpMatrixTimesScalar;
}
SpvId result = this->nextId();
this->writeInstruction(op, this->getType(b.fType), result, lhs, rhs, out);
if (b.fOperator == Token::STAREQ) {
lvalue->store(result, out);
} else {
SkASSERT(b.fOperator == Token::STAR);
}
return result;
} else if (b.fRight->fType.kind() == Type::kMatrix_Kind) {
SpvId result = this->nextId();
if (b.fLeft->fType.kind() == Type::kVector_Kind) {
this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(b.fType), result,
lhs, rhs, out);
} else {
SkASSERT(b.fLeft->fType.kind() == Type::kScalar_Kind);
this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(b.fType), result, rhs,
lhs, out);
}
if (b.fOperator == Token::STAREQ) {
lvalue->store(result, out);
} else {
SkASSERT(b.fOperator == Token::STAR);
}
return result;
} else {
ABORT("unsupported binary expression: %s", b.description().c_str());
}
} else {
tmp = this->getActualType(b.fLeft->fType);
operandType = &tmp;
SkASSERT(*operandType == this->getActualType(b.fRight->fType));
}
switch (b.fOperator) {
case Token::EQEQ: {
if (operandType->kind() == Type::kMatrix_Kind) {
return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdEqual,
SpvOpIEqual, out);
}
SkASSERT(resultType == *fContext.fBool_Type);
const Type* tmpType;
if (operandType->kind() == Type::kVector_Kind) {
tmpType = &fContext.fBool_Type->toCompound(fContext,
operandType->columns(),
operandType->rows());
} else {
tmpType = &resultType;
}
return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs,
SpvOpFOrdEqual, SpvOpIEqual,
SpvOpIEqual, SpvOpLogicalEqual, out),
*operandType, SpvOpAll, out);
}
case Token::NEQ:
if (operandType->kind() == Type::kMatrix_Kind) {
return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdNotEqual,
SpvOpINotEqual, out);
}
SkASSERT(resultType == *fContext.fBool_Type);
const Type* tmpType;
if (operandType->kind() == Type::kVector_Kind) {
tmpType = &fContext.fBool_Type->toCompound(fContext,
operandType->columns(),
operandType->rows());
} else {
tmpType = &resultType;
}
return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs,
SpvOpFOrdNotEqual, SpvOpINotEqual,
SpvOpINotEqual, SpvOpLogicalNotEqual,
out),
*operandType, SpvOpAny, out);
case Token::GT:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThan, SpvOpSGreaterThan,
SpvOpUGreaterThan, SpvOpUndef, out);
case Token::LT:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan,
SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out);
case Token::GTEQ:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual, SpvOpUndef, out);
case Token::LTEQ:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual,
SpvOpULessThanEqual, SpvOpUndef, out);
case Token::PLUS:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
case Token::MINUS:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
case Token::STAR:
if (b.fLeft->fType.kind() == Type::kMatrix_Kind &&
b.fRight->fType.kind() == Type::kMatrix_Kind) {
// matrix multiply
SpvId result = this->nextId();
this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
return result;
}
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul,
SpvOpIMul, SpvOpIMul, SpvOpUndef, out);
case Token::SLASH:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv,
SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out);
case Token::PERCENT:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMod,
SpvOpSMod, SpvOpUMod, SpvOpUndef, out);
case Token::SHL:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpShiftLeftLogical, SpvOpShiftLeftLogical,
SpvOpUndef, out);
case Token::SHR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpShiftRightArithmetic, SpvOpShiftRightLogical,
SpvOpUndef, out);
case Token::BITWISEAND:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseAnd, SpvOpBitwiseAnd, SpvOpUndef, out);
case Token::BITWISEOR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseOr, SpvOpBitwiseOr, SpvOpUndef, out);
case Token::BITWISEXOR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseXor, SpvOpBitwiseXor, SpvOpUndef, out);
case Token::PLUSEQ: {
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
SkASSERT(lvalue);
lvalue->store(result, out);
return result;
}
case Token::MINUSEQ: {
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
SkASSERT(lvalue);
lvalue->store(result, out);
return result;
}
case Token::STAREQ: {
if (b.fLeft->fType.kind() == Type::kMatrix_Kind &&
b.fRight->fType.kind() == Type::kMatrix_Kind) {
// matrix multiply
SpvId result = this->nextId();
this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
SkASSERT(lvalue);
lvalue->store(result, out);
return result;
}
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs