|  | /* | 
|  | * Copyright 2023 Google LLC | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkSpan.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "include/private/base/SkFloatingPoint.h" | 
|  | #include "src/base/SkCubics.h" | 
|  | #include "src/base/SkUtils.h" | 
|  | #include "src/pathops/SkPathOpsCubic.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  |  | 
|  | static void testCubicRootsReal(skiatest::Reporter* reporter, std::string name, | 
|  | double A, double B, double C, double D, | 
|  | SkSpan<const double> expectedRoots, | 
|  | bool skipPathops = false, | 
|  | bool skipRootValidation = false) { | 
|  | skiatest::ReporterContext subtest(reporter, name); | 
|  | // Validate test case | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() <= 3, | 
|  | "Invalid test case, up to 3 roots allowed"); | 
|  |  | 
|  | for (size_t i = 0; i < expectedRoots.size(); i++) { | 
|  | double x = expectedRoots[i]; | 
|  | // A*x^3 + B*x^2 + C*x + D should equal 0 (unless floating point error causes issues) | 
|  | double y = A * x * x * x + B * x * x + C * x + D; | 
|  | if (!skipRootValidation) { | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), | 
|  | "Invalid test case root %zu. %.16f != 0", i, y); | 
|  | } | 
|  |  | 
|  | if (i > 0) { | 
|  | REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], | 
|  | "Invalid test case root %zu. Roots should be sorted in ascending order", i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The old pathops implementation sometimes gives incorrect solutions. We can opt | 
|  | // our tests out of checking that older implementation if that causes issues. | 
|  | if (!skipPathops) { | 
|  | skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkDCubic::RootsReal(A, B, C, D, roots); | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), | 
|  | "Wrong number of roots returned %zu != %d", expectedRoots.size(), | 
|  | rootCount); | 
|  |  | 
|  | // We don't care which order the roots are returned from the algorithm. | 
|  | // For determinism, we will sort them (and ensure the provided solutions are also sorted). | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | for (int i = 0; i < rootCount; i++) { | 
|  | if (sk_double_nearly_zero(expectedRoots[i])) { | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), | 
|  | "0 != %.16f at index %d", roots[i], i); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, | 
|  | sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), | 
|  | "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); | 
|  | } | 
|  | } | 
|  | } | 
|  | { | 
|  | skiatest::ReporterContext subsubtest(reporter, "SkCubics Analytic Implementation"); | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkCubics::RootsReal(A, B, C, D, roots); | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), | 
|  | "Wrong number of roots returned %zu != %d", expectedRoots.size(), | 
|  | rootCount); | 
|  |  | 
|  | // We don't care which order the roots are returned from the algorithm. | 
|  | // For determinism, we will sort them (and ensure the provided solutions are also sorted). | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | for (int i = 0; i < rootCount; i++) { | 
|  | if (sk_double_nearly_zero(expectedRoots[i])) { | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), | 
|  | "0 != %.16f at index %d", roots[i], i); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, | 
|  | sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), | 
|  | "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsReal_ActualCubics, reporter) { | 
|  | // All answers are given with 16 significant digits (max for a double) or as an integer | 
|  | // when the answer is exact. | 
|  | testCubicRootsReal(reporter, "one root 1x^3 + 2x^2 + 3x + 4", | 
|  | 1, 2, 3, 4, | 
|  | {-1.650629191439388}); | 
|  | //-1.650629191439388218880801 from Wolfram Alpha | 
|  |  | 
|  | // (3x-5)(6x-10)(x+4) = 18x^3 + 12x^2 - 190x + 200 | 
|  | testCubicRootsReal(reporter, "touches y axis 18x^3 + 12x^2 - 190x + 200", | 
|  | 18, 12, -190, 200, | 
|  | {-4., | 
|  | 1.666666666666667, // 5/3 | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "three roots 10x^3 - 20x^2 - 30x + 40", | 
|  | 10, -20, -30, 40, | 
|  | {-1.561552812808830, | 
|  | //-1.561552812808830274910705 from Wolfram Alpha | 
|  | 1., | 
|  | 2.561552812808830, | 
|  | // 2.561552812808830274910705 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "three roots -10x^3 + 200x^2 + 300x - 400", | 
|  | -10, 200, 300, -400, | 
|  | {-2.179884793243323, | 
|  | //-2.179884793243323422232630 from Wolfram Alpha | 
|  | 0.8607083693981839, | 
|  | // 0.8607083693981838897123320 from Wolfram Alpha | 
|  | 21.31917642384514, | 
|  | //21.31917642384513953252030 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "one root -x^3 + 0x^2 + 5x - 7", | 
|  | -1, 0, 5, -7, | 
|  | {-2.747346540307211, | 
|  | //-2.747346540307210849971436 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "one root 2x^3 - 3x^2 + 0x + 3", | 
|  | 2, -3, 0, 3, | 
|  | {-0.806443932358772, | 
|  | //-0.8064439323587723772036250 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "one root x^3 + 0x^2 + 0x - 9", | 
|  | 1, 0, 0, -9, | 
|  | {2.080083823051904, | 
|  | //2.0800838230519041145300568 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "three roots 2x^3 - 3x^2 - 4x + 0", | 
|  | 2, -3, -4, 0, | 
|  | {-0.8507810593582122, | 
|  | //-0.8507810593582121716220544 from Wolfram Alpha | 
|  | 0., | 
|  | 2.350781059358212 | 
|  | //2.350781059358212171622054 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "R^2 and Q^3 are near zero", | 
|  | -0.33790159225463867, -0.81997990608215332, | 
|  | -0.66327774524688721, -0.17884063720703125, | 
|  | {-0.7995944894729731}); | 
|  |  | 
|  | // The following three cases fallback to treating the cubic as a quadratic. | 
|  | // Otherwise, floating point error mangles the solutions near +- 1 | 
|  | // This means we don't find all the roots, but usually we only care about roots | 
|  | // in the range [0, 1], so that is ok. | 
|  | testCubicRootsReal(reporter, "oss-fuzz:55625 Two roots near zero, one big root", | 
|  | sk_bit_cast<double>(0xbf1a8de580000000), // -0.00010129655 | 
|  | sk_bit_cast<double>(0x4106c0c680000000), // 186392.8125 | 
|  | 0.0, | 
|  | sk_bit_cast<double>(0xc104c0ce80000000), // -170009.8125 | 
|  | { -0.9550418733785169, // Wolfram Alpha puts the root at X = 0.955042 | 
|  | 0.9550418733785169, // (~2e7 error) | 
|  | // 1.84007e9 is the other root, which we do not find. | 
|  | }, | 
|  | true /* == skipPathops */, true /* == skipRootValidation */); | 
|  |  | 
|  | testCubicRootsReal(reporter, "oss-fuzz:55625 Two roots near zero, one big root, near linear", | 
|  | sk_bit_cast<double>(0x3c04040400000000), // -1.3563156-19 | 
|  | sk_bit_cast<double>(0x4106c0c680000000), // 186392.8125 | 
|  | 0.0, | 
|  | sk_bit_cast<double>(0xc104c0ce80000000), // -170009.8125 | 
|  | { -0.9550418733785169, | 
|  | 0.9550418733785169, | 
|  | // 1.84007e9 is the other root, which we do not find. | 
|  | }, | 
|  | true /* == skipPathops */); | 
|  |  | 
|  | testCubicRootsReal(reporter, "oss-fuzz:55680 A nearly zero, C is zero", | 
|  | sk_bit_cast<double>(0x3eb0000000000000), // 9.5367431640625000e-07 | 
|  | sk_bit_cast<double>(0x409278a560000000), // 1182.1614990234375 | 
|  | 0.0, | 
|  | sk_bit_cast<double>(0xc092706160000000), // -1180.0950927734375 | 
|  | { -0.9991256228290017, | 
|  | // -0.9991256232316570469050229 according to Wolfram Alpha (~1e-09 error) | 
|  | 0.9991256228290017, | 
|  | // 0.9991256224263463476403026 according to Wolfram Alpha (~1e-09 error) | 
|  | // 1.239586176×10^9 is the other root, which we do not find. | 
|  | }, | 
|  | true, true /* == skipRootValidation */); | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsReal_Quadratics, reporter) { | 
|  | testCubicRootsReal(reporter, "two roots -2x^2 + 3x + 4", | 
|  | 0, -2, 3, 4, | 
|  | {-0.8507810593582122, | 
|  | //-0.8507810593582121716220544 from Wolfram Alpha | 
|  | 2.350781059358212, | 
|  | // 2.350781059358212171622054 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "touches y axis -x^2 + 3x + 4", | 
|  | 0, -2, 3, 4, | 
|  | {-0.8507810593582122, | 
|  | //-0.8507810593582121716220544 from Wolfram Alpha | 
|  | 2.350781059358212, | 
|  | // 2.350781059358212171622054 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | testCubicRootsReal(reporter, "no roots x^2 + 2x + 7", | 
|  | 0, 1, 2, 7, | 
|  | {}); | 
|  |  | 
|  | // similar to oss-fuzz:55680 | 
|  | testCubicRootsReal(reporter, "two roots one small one big (and ignored)", | 
|  | 0, -0.01, 200000000000000, -120000000000000, | 
|  | { 0.6 }, | 
|  | true /* == skipPathops */); | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsReal_Linear, reporter) { | 
|  | testCubicRootsReal(reporter, "positive slope 3x + 4", | 
|  | 0, 0, 3, 4, | 
|  | {-1.333333333333333}); | 
|  |  | 
|  | testCubicRootsReal(reporter, "negative slope -2x - 8", | 
|  | 0, 0, -2, -8, | 
|  | {-4.}); | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsReal_Constant, reporter) { | 
|  | testCubicRootsReal(reporter, "No intersections y = 4", | 
|  | 0, 0, 0, 4, | 
|  | {}); | 
|  |  | 
|  | testCubicRootsReal(reporter, "Infinite solutions y = 0", | 
|  | 0, 0, 0, 0, | 
|  | {0.}); | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsReal_NonFiniteNumbers, reporter) { | 
|  | // The Pathops implementation does not check for infinities nor nans in all cases. | 
|  | double roots[3] = {0, 0, 0}; | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCubics::RootsReal(NAN, 1, 2, 3, roots) == 0, | 
|  | "Nan A" | 
|  | ); | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCubics::RootsReal(1, NAN, 2, 3, roots) == 0, | 
|  | "Nan B" | 
|  | ); | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCubics::RootsReal(1, 2, NAN, 3, roots) == 0, | 
|  | "Nan C" | 
|  | ); | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCubics::RootsReal(1, 2, 3, NAN, roots) == 0, | 
|  | "Nan D" | 
|  | ); | 
|  |  | 
|  | { | 
|  | skiatest::ReporterContext subtest(reporter, "oss-fuzz:55419 C and D are large"); | 
|  | int numRoots = SkCubics::RootsReal( | 
|  | -2, 0, | 
|  | sk_bit_cast<double>(0xd5422020202020ff), //-5.074559e+102 | 
|  | sk_bit_cast<double>(0x600fff202020ff20), // 5.362551e+154 | 
|  | roots); | 
|  | REPORTER_ASSERT(reporter, numRoots == 0, "No finite roots expected, got %d", numRoots); | 
|  | } | 
|  | { | 
|  | skiatest::ReporterContext subtest(reporter, "oss-fuzz:55829 A is zero and B is NAN"); | 
|  | int numRoots = SkCubics::RootsReal( | 
|  | 0, | 
|  | sk_bit_cast<double>(0xffffffffffff2020), //-nan | 
|  | sk_bit_cast<double>(0x20202020202020ff), // 6.013470e-154 | 
|  | sk_bit_cast<double>(0xff20202020202020), //-2.211661e+304 | 
|  | roots); | 
|  | REPORTER_ASSERT(reporter, numRoots == 0, "No finite roots expected, got %d", numRoots); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void testCubicValidT(skiatest::Reporter* reporter, std::string name, | 
|  | double A, double B, double C, double D, | 
|  | SkSpan<const double> expectedRoots) { | 
|  | skiatest::ReporterContext subtest(reporter, name); | 
|  | // Validate test case | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() <= 3, | 
|  | "Invalid test case, up to 3 roots allowed"); | 
|  |  | 
|  | for (size_t i = 0; i < expectedRoots.size(); i++) { | 
|  | double x = expectedRoots[i]; | 
|  | REPORTER_ASSERT(reporter, x >= 0 && x <= 1, | 
|  | "Invalid test case root %zu. Roots must be in [0, 1]", i); | 
|  |  | 
|  | // A*x^3 + B*x^2 + C*x + D should equal 0 | 
|  | double y = A * x * x * x + B * x * x + C * x + D; | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(y), | 
|  | "Invalid test case root %zu. %.16f != 0", i, y); | 
|  |  | 
|  | if (i > 0) { | 
|  | REPORTER_ASSERT(reporter, expectedRoots[i-1] <= expectedRoots[i], | 
|  | "Invalid test case root %zu. Roots should be sorted in ascending order", i); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation"); | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), | 
|  | "Wrong number of roots returned %zu != %d", | 
|  | expectedRoots.size(), rootCount); | 
|  |  | 
|  | // We don't care which order the roots are returned from the algorithm. | 
|  | // For determinism, we will sort them (and ensure the provided solutions are also sorted). | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | for (int i = 0; i < rootCount; i++) { | 
|  | if (sk_double_nearly_zero(expectedRoots[i])) { | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), | 
|  | "0 != %.16f at index %d", roots[i], i); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, | 
|  | sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), | 
|  | "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); | 
|  | } | 
|  | } | 
|  | } | 
|  | { | 
|  | skiatest::ReporterContext subsubtest(reporter, "SkCubics Analytic Implementation"); | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkCubics::RootsValidT(A, B, C, D, roots); | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), | 
|  | "Wrong number of roots returned %zu != %d", | 
|  | expectedRoots.size(), rootCount); | 
|  |  | 
|  | // We don't care which order the roots are returned from the algorithm. | 
|  | // For determinism, we will sort them (and ensure the provided solutions are also sorted). | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | for (int i = 0; i < rootCount; i++) { | 
|  | if (sk_double_nearly_zero(expectedRoots[i])) { | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[i]), | 
|  | "0 != %.16f at index %d", roots[i], i); | 
|  | } else { | 
|  | REPORTER_ASSERT(reporter, | 
|  | sk_doubles_nearly_equal_ulps(expectedRoots[i], roots[i], 64), | 
|  | "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); | 
|  | } | 
|  | } | 
|  | } | 
|  | { | 
|  | skiatest::ReporterContext subsubtest(reporter, "SkCubics Binary Search Implementation"); | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkCubics::BinarySearchRootsValidT(A, B, C, D, roots); | 
|  | REPORTER_ASSERT(reporter, expectedRoots.size() == size_t(rootCount), | 
|  | "Wrong number of roots returned %zu != %d", expectedRoots.size(), | 
|  | rootCount); | 
|  |  | 
|  | // We don't care which order the roots are returned from the algorithm. | 
|  | // For determinism, we will sort them (and ensure the provided solutions are also sorted). | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | for (int i = 0; i < rootCount; i++) { | 
|  | double delta = std::abs(roots[i] - expectedRoots[i]); | 
|  | REPORTER_ASSERT(reporter, | 
|  | // Binary search is not absolutely accurate all the time, but | 
|  | // it should be accurate enough reliably | 
|  | delta < 0.000001, | 
|  | "%.16f != %.16f at index %d", expectedRoots[i], roots[i], i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsValidT, reporter) { | 
|  | // All answers are given with 16 significant digits (max for a double) or as an integer | 
|  | // when the answer is exact. | 
|  | testCubicValidT(reporter, "three roots 24x^3 - 46x^2 + 29x - 6", | 
|  | 24, -46, 29, -6, | 
|  | {0.5, | 
|  | 0.6666666666666667, | 
|  | 0.75}); | 
|  |  | 
|  | testCubicValidT(reporter, "three roots total, two in range 54x^3 - 117x^2 + 45x + 0", | 
|  | 54, -117, 45, 0, | 
|  | {0.0, | 
|  | 0.5, | 
|  | // 5/3 is the other root, but not in [0, 1] | 
|  | }); | 
|  |  | 
|  | testCubicValidT(reporter, "one root = 1 10x^3 - 20x^2 - 30x + 40", | 
|  | 10, -20, -30, 40, | 
|  | {1.0}); | 
|  |  | 
|  | testCubicValidT(reporter, "one root = 0 2x^3 - 3x^2 - 4x + 0", | 
|  | 2, -3, -4, 0, | 
|  | {0.0}); | 
|  |  | 
|  | testCubicValidT(reporter, "three roots total, two in range -2x^3 - 3x^2 + 4x + 0", | 
|  | -2, -3, 4, 0, | 
|  | { 0.0, | 
|  | 0.8507810593582122, | 
|  | // 0.8507810593582121716220544 from Wolfram Alpha | 
|  | }); | 
|  |  | 
|  | // x(x-1) = x^2 - x | 
|  | testCubicValidT(reporter, "Two roots at exactly 0 and 1", | 
|  | 0, 1, -1, 0, | 
|  | {0.0, 1.0}); | 
|  |  | 
|  | testCubicValidT(reporter, "Single point has one root", | 
|  | 0, 0, 0, 0, | 
|  | {0.0}); | 
|  | } | 
|  |  | 
|  | DEF_TEST(CubicRootsValidT_ClampToZeroAndOne, reporter) { | 
|  | { | 
|  | // (x + 0.00001)(x - 1.00005), but the answers will be 0 and 1 | 
|  | double A = 0.; | 
|  | double B = 1.; | 
|  | double C = -1.00004; | 
|  | double D = -0.0000100005; | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, rootCount == 2); | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[0]), "%.16f != 0", roots[0]); | 
|  | REPORTER_ASSERT(reporter, sk_doubles_nearly_equal_ulps(roots[1], 1), "%.16f != 1", roots[1]); | 
|  | } | 
|  | { | 
|  | // Three very small roots, all of them are nearly equal zero | 
|  | // (1 - 10000000000x)(1 - 20000000000x)(1 - 30000000000x) | 
|  | // -6000000000000000000000000000000 x^3 + 1100000000000000000000 x^2 - 60000000000 x + 1 | 
|  | double A = -6.0e30; | 
|  | double B = 1.1e21; | 
|  | double C = -6.0e10; | 
|  | double D = 1; | 
|  | double roots[3] = {0, 0, 0}; | 
|  | int rootCount = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, rootCount == 1); | 
|  | std::sort(std::begin(roots), std::begin(roots) + rootCount); | 
|  | REPORTER_ASSERT(reporter, sk_double_nearly_zero(roots[0]), "%.16f != 0", roots[0]); | 
|  | } | 
|  | } |