blob: b5c9e559b8adb72fce3f1c561ecf559de4618e3a [file] [log] [blame]
/*
* Copyright 2021 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrPathStencilCoverOp.h"
#include "src/gpu/GrDefaultGeoProcFactory.h"
#include "src/gpu/GrEagerVertexAllocator.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/tessellate/GrMiddleOutPolygonTriangulator.h"
#include "src/gpu/tessellate/GrPathCurveTessellator.h"
#include "src/gpu/tessellate/GrPathWedgeTessellator.h"
#include "src/gpu/tessellate/GrTessellationPathRenderer.h"
#include "src/gpu/tessellate/shaders/GrPathTessellationShader.h"
using PathFlags = GrTessellationPathRenderer::PathFlags;
namespace {
// Fills a path's bounding box, with subpixel outset to avoid possible T-junctions with extreme
// edges of the path.
// NOTE: The emitted geometry may not be axis-aligned, depending on the view matrix.
class BoundingBoxShader : public GrGeometryProcessor {
public:
BoundingBoxShader(const SkMatrix& viewMatrix, SkPMColor4f color, const GrShaderCaps& shaderCaps)
: GrGeometryProcessor(kTessellate_BoundingBoxShader_ClassID)
, fViewMatrix(viewMatrix)
, fColor(color) {
// The 1/4px outset logic does not work with perspective yet.
SkASSERT(!fViewMatrix.hasPerspective());
if (!shaderCaps.vertexIDSupport()) {
constexpr static Attribute kUnitCoordAttrib("unitCoord", kFloat2_GrVertexAttribType,
kFloat2_GrSLType);
this->setVertexAttributes(&kUnitCoordAttrib, 1);
}
constexpr static Attribute kPathBoundsAttrib("pathBounds", kFloat4_GrVertexAttribType,
kFloat4_GrSLType);
this->setInstanceAttributes(&kPathBoundsAttrib, 1);
}
private:
const char* name() const final { return "tessellate_BoundingBoxShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
const SkMatrix fViewMatrix;
const SkPMColor4f fColor;
};
GrGLSLGeometryProcessor* BoundingBoxShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrGLSLGeometryProcessor {
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
args.fVaryingHandler->emitAttributes(args.fGeomProc);
// Vertex shader.
const char* viewMatrix;
fViewMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
kFloat3x3_GrSLType, "viewMatrix",
&viewMatrix);
if (args.fShaderCaps->vertexIDSupport()) {
// If we don't have sk_VertexID support then "unitCoord" already came in as a vertex
// attrib.
args.fVertBuilder->codeAppendf(R"(
float2 unitCoord = float2(sk_VertexID & 1, sk_VertexID >> 1);)");
}
args.fVertBuilder->codeAppendf(R"(
float3x3 VIEW_MATRIX = %s;
// Bloat the bounding box by 1/4px to be certain we will reset every stencil value.
float2x2 M_ = inverse(float2x2(VIEW_MATRIX));
float2 bloat = float2(abs(M_[0]) + abs(M_[1])) * .25;
// Find the vertex position.
float2 localcoord = mix(pathBounds.xy - bloat, pathBounds.zw + bloat, unitCoord);
float2 vertexpos = (VIEW_MATRIX * float3(localcoord, 1)).xy;)", viewMatrix);
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localcoord");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
// Fragment shader.
const char* color;
fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
kHalf4_GrSLType, "color", &color);
args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, color);
args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps&,
const GrGeometryProcessor& gp) override {
const auto& bboxShader = gp.cast<BoundingBoxShader>();
pdman.setSkMatrix(fViewMatrixUniform, bboxShader.fViewMatrix);
const SkPMColor4f& color = bboxShader.fColor;
pdman.set4f(fColorUniform, color.fR, color.fG, color.fB, color.fA);
}
GrGLSLUniformHandler::UniformHandle fViewMatrixUniform;
GrGLSLUniformHandler::UniformHandle fColorUniform;
};
return new Impl;
}
} // namespace
void GrPathStencilCoverOp::visitProxies(const GrVisitProxyFunc& func) const {
if (fCoverBBoxProgram) {
fCoverBBoxProgram->pipeline().visitProxies(func);
} else {
fProcessors.visitProxies(func);
}
}
GrDrawOp::FixedFunctionFlags GrPathStencilCoverOp::fixedFunctionFlags() const {
auto flags = FixedFunctionFlags::kUsesStencil;
if (fAAType != GrAAType::kNone) {
flags |= FixedFunctionFlags::kUsesHWAA;
}
return flags;
}
GrProcessorSet::Analysis GrPathStencilCoverOp::finalize(const GrCaps& caps,
const GrAppliedClip* clip,
GrClampType clampType) {
return fProcessors.finalize(fColor, GrProcessorAnalysisCoverage::kNone, clip, nullptr, caps,
clampType, &fColor);
}
void GrPathStencilCoverOp::prePreparePrograms(const GrTessellationShader::ProgramArgs& args,
GrAppliedClip&& appliedClip) {
SkASSERT(!fTessellator);
SkASSERT(!fStencilFanProgram);
SkASSERT(!fStencilPathProgram);
SkASSERT(!fCoverBBoxProgram);
const GrPipeline* stencilPipeline = GrPathTessellationShader::MakeStencilOnlyPipeline(
args, fAAType, fPathFlags, appliedClip.hardClip());
const GrUserStencilSettings* stencilPathSettings =
GrPathTessellationShader::StencilPathSettings(GrFillRuleForSkPath(fPath));
if (fPath.countVerbs() > 50 && this->bounds().height() * this->bounds().width() > 256 * 256) {
// Large complex paths do better with a dedicated triangle shader for the inner fan.
// This takes less PCI bus bandwidth (6 floats per triangle instead of 8) and allows us
// to make sure it has an efficient middle-out topology.
auto triangleGP = GrDefaultGeoProcFactory::Make(
args.fArena,
GrDefaultGeoProcFactory::Color(SK_PMColor4fTRANSPARENT),
GrDefaultGeoProcFactory::Coverage::kSolid_Type,
GrDefaultGeoProcFactory::LocalCoords::kUnused_Type,
fViewMatrix);
fStencilFanProgram = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
args.fArena,
stencilPipeline,
args.fWriteView,
triangleGP,
GrPrimitiveType::kTriangles,
args.fXferBarrierFlags,
args.fColorLoadOp,
stencilPathSettings);
fTessellator = GrPathCurveTessellator::Make(args.fArena, fViewMatrix,
SK_PMColor4fTRANSPARENT,
GrPathCurveTessellator::DrawInnerFan::kNo,
fPath.countVerbs(), *stencilPipeline,
*args.fCaps);
} else {
fTessellator = GrPathWedgeTessellator::Make(args.fArena, fViewMatrix,
SK_PMColor4fTRANSPARENT, fPath.countVerbs(),
*stencilPipeline, *args.fCaps);
}
fStencilPathProgram = GrTessellationShader::MakeProgram(args, fTessellator->shader(),
stencilPipeline, stencilPathSettings);
if (!(fPathFlags & PathFlags::kStencilOnly)) {
// Create a program that draws a bounding box over the path and fills its stencil coverage
// into the color buffer.
auto* bboxShader = args.fArena->make<BoundingBoxShader>(fViewMatrix, fColor,
*args.fCaps->shaderCaps());
auto* bboxPipeline = GrTessellationShader::MakePipeline(args, fAAType,
std::move(appliedClip),
std::move(fProcessors));
auto* bboxStencil =
GrPathTessellationShader::TestAndResetStencilSettings(fPath.isInverseFillType());
fCoverBBoxProgram = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
args.fArena,
bboxPipeline,
args.fWriteView,
bboxShader,
GrPrimitiveType::kTriangleStrip,
args.fXferBarrierFlags,
args.fColorLoadOp,
bboxStencil);
}
}
void GrPathStencilCoverOp::onPrePrepare(GrRecordingContext* context,
const GrSurfaceProxyView& writeView, GrAppliedClip* clip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) {
this->prePreparePrograms({context->priv().recordTimeAllocator(), writeView, &dstProxyView,
renderPassXferBarriers, colorLoadOp, context->priv().caps()},
(clip) ? std::move(*clip) : GrAppliedClip::Disabled());
if (fStencilFanProgram) {
context->priv().recordProgramInfo(fStencilFanProgram);
}
if (fStencilPathProgram) {
context->priv().recordProgramInfo(fStencilPathProgram);
}
if (fCoverBBoxProgram) {
context->priv().recordProgramInfo(fCoverBBoxProgram);
}
}
GR_DECLARE_STATIC_UNIQUE_KEY(gUnitQuadBufferKey);
void GrPathStencilCoverOp::onPrepare(GrOpFlushState* flushState) {
if (!fTessellator) {
this->prePreparePrograms({flushState->allocator(), flushState->writeView(),
&flushState->dstProxyView(), flushState->renderPassBarriers(),
flushState->colorLoadOp(), &flushState->caps()},
flushState->detachAppliedClip());
if (!fTessellator) {
return;
}
}
if (fStencilFanProgram) {
// The inner fan isn't built into the tessellator. Generate a standard Redbook fan with a
// middle-out topology.
GrEagerDynamicVertexAllocator vertexAlloc(flushState, &fFanBuffer, &fFanBaseVertex);
int maxFanTriangles = fPath.countVerbs() - 2; // n - 2 triangles make an n-gon.
GrVertexWriter triangleVertexWriter = vertexAlloc.lock<SkPoint>(maxFanTriangles * 3);
fFanVertexCount = 3 * GrMiddleOutPolygonTriangulator::WritePathInnerFan(
&triangleVertexWriter, 0, 0, fPath);
SkASSERT(fFanVertexCount <= maxFanTriangles * 3);
vertexAlloc.unlock(fFanVertexCount);
}
fTessellator->prepare(flushState, this->bounds(), fPath);
if (fCoverBBoxProgram) {
GrVertexWriter vertexWriter = flushState->makeVertexSpace(sizeof(SkRect), 1, &fBBoxBuffer,
&fBBoxBaseInstance);
if (fPath.isInverseFillType()) {
// Fill the entire backing store to make sure we clear every stencil value back to 0. If
// there is a scissor it will have already clipped the stencil draw.
auto rtBounds = flushState->writeView().asRenderTargetProxy()->backingStoreBoundsRect();
SkASSERT(rtBounds == fOriginalDrawBounds);
SkRect pathSpaceRTBounds;
if (SkMatrixPriv::InverseMapRect(fViewMatrix, &pathSpaceRTBounds, rtBounds)) {
vertexWriter.write(pathSpaceRTBounds);
} else {
vertexWriter.write(fPath.getBounds());
}
} else {
vertexWriter.write(fPath.getBounds());
}
}
if (!flushState->caps().shaderCaps()->vertexIDSupport()) {
constexpr static SkPoint kUnitQuad[4] = {{0,0}, {0,1}, {1,0}, {1,1}};
GR_DEFINE_STATIC_UNIQUE_KEY(gUnitQuadBufferKey);
fBBoxVertexBufferIfNoIDSupport = flushState->resourceProvider()->findOrMakeStaticBuffer(
GrGpuBufferType::kVertex, sizeof(kUnitQuad), kUnitQuad, gUnitQuadBufferKey);
}
}
void GrPathStencilCoverOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
if (!fTessellator) {
return;
}
// Stencil the inner fan, if any.
if (fFanVertexCount > 0) {
SkASSERT(fStencilFanProgram);
SkASSERT(fFanBuffer);
flushState->bindPipelineAndScissorClip(*fStencilFanProgram, this->bounds());
flushState->bindBuffers(nullptr, nullptr, fFanBuffer);
flushState->draw(fFanVertexCount, fFanBaseVertex);
}
// Stencil the rest of the path.
SkASSERT(fStencilPathProgram);
flushState->bindPipelineAndScissorClip(*fStencilPathProgram, this->bounds());
fTessellator->draw(flushState);
if (flushState->caps().requiresManualFBBarrierAfterTessellatedStencilDraw()) {
flushState->gpu()->insertManualFramebufferBarrier(); // http://skbug.com/9739
}
// Fill in the bounding box (if not in stencil-only mode).
if (fCoverBBoxProgram) {
flushState->bindPipelineAndScissorClip(*fCoverBBoxProgram, this->bounds());
flushState->bindTextures(fCoverBBoxProgram->geomProc(), nullptr,
fCoverBBoxProgram->pipeline());
flushState->bindBuffers(nullptr, fBBoxBuffer, fBBoxVertexBufferIfNoIDSupport);
flushState->drawInstanced(1, fBBoxBaseInstance, 4, 0);
}
}