blob: 2d80bcc8c3c89cc8fa612c42ce2311da0036a2c2 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawTarget.h"
#include "GrBatch.h"
#include "GrContext.h"
#include "GrDrawTargetCaps.h"
#include "GrPath.h"
#include "GrPipeline.h"
#include "GrMemoryPool.h"
#include "GrRectBatch.h"
#include "GrRenderTarget.h"
#include "GrRenderTargetPriv.h"
#include "GrSurfacePriv.h"
#include "GrTemplates.h"
#include "GrTexture.h"
#include "GrVertexBuffer.h"
#include "SkStrokeRec.h"
////////////////////////////////////////////////////////////////////////////////
#define DEBUG_INVAL_BUFFER 0xdeadcafe
#define DEBUG_INVAL_START_IDX -1
GrDrawTarget::GrDrawTarget(GrContext* context)
: fContext(context)
, fCaps(SkRef(context->getGpu()->caps()))
, fGpuTraceMarkerCount(0)
, fFlushing(false) {
SkASSERT(context);
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawTarget::setupDstReadIfNecessary(const GrPipelineBuilder& pipelineBuilder,
const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
GrDeviceCoordTexture* dstCopy,
const SkRect* drawBounds) {
if (!pipelineBuilder.willXPNeedDstCopy(*this->caps(), colorPOI, coveragePOI)) {
return true;
}
GrRenderTarget* rt = pipelineBuilder.getRenderTarget();
if (this->caps()->textureBarrierSupport()) {
if (GrTexture* rtTex = rt->asTexture()) {
// The render target is a texture, se we can read from it directly in the shader. The XP
// will be responsible to detect this situation and request a texture barrier.
dstCopy->setTexture(rtTex);
dstCopy->setOffset(0, 0);
return true;
}
}
SkIRect copyRect;
pipelineBuilder.clip().getConservativeBounds(rt, &copyRect);
if (drawBounds) {
SkIRect drawIBounds;
drawBounds->roundOut(&drawIBounds);
if (!copyRect.intersect(drawIBounds)) {
#ifdef SK_DEBUG
GrContextDebugf(fContext, "Missed an early reject. "
"Bailing on draw from setupDstReadIfNecessary.\n");
#endif
return false;
}
} else {
#ifdef SK_DEBUG
//SkDebugf("No dev bounds when dst copy is made.\n");
#endif
}
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrSurfaceDesc desc;
if (!this->getGpu()->initCopySurfaceDstDesc(rt, &desc)) {
desc.fOrigin = kDefault_GrSurfaceOrigin;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fConfig = rt->config();
}
desc.fWidth = copyRect.width();
desc.fHeight = copyRect.height();
SkAutoTUnref<GrTexture> copy(fContext->textureProvider()->refScratchTexture(desc,
GrTextureProvider::kApprox_ScratchTexMatch));
if (!copy) {
SkDebugf("Failed to create temporary copy of destination texture.\n");
return false;
}
SkIPoint dstPoint = {0, 0};
if (this->copySurface(copy, rt, copyRect, dstPoint)) {
dstCopy->setTexture(copy);
dstCopy->setOffset(copyRect.fLeft, copyRect.fTop);
return true;
} else {
return false;
}
}
void GrDrawTarget::flush() {
if (fFlushing) {
return;
}
fFlushing = true;
this->getGpu()->saveActiveTraceMarkers();
this->onFlush();
this->getGpu()->restoreActiveTraceMarkers();
fFlushing = false;
this->reset();
}
void GrDrawTarget::drawBatch(GrPipelineBuilder* pipelineBuilder,
GrBatch* batch) {
SkASSERT(pipelineBuilder);
// TODO some kind of checkdraw, but not at this level
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreFragmentProcessors arfp;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &arfp, &ars, &scissorState, &batch->bounds())) {
return;
}
// Batch bounds are tight, so for dev copies
// TODO move this into setupDstReadIfNecessary when paths are in batch
SkRect bounds = batch->bounds();
bounds.outset(0.5f, 0.5f);
GrDrawTarget::PipelineInfo pipelineInfo(pipelineBuilder, &scissorState, batch, &bounds,
this);
if (pipelineInfo.mustSkipDraw()) {
return;
}
this->onDrawBatch(batch, pipelineInfo);
}
static const GrStencilSettings& winding_path_stencil_settings() {
GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings,
kIncClamp_StencilOp,
kIncClamp_StencilOp,
kAlwaysIfInClip_StencilFunc,
0xFFFF, 0xFFFF, 0xFFFF);
return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings);
}
static const GrStencilSettings& even_odd_path_stencil_settings() {
GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings,
kInvert_StencilOp,
kInvert_StencilOp,
kAlwaysIfInClip_StencilFunc,
0xFFFF, 0xFFFF, 0xFFFF);
return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings);
}
void GrDrawTarget::getPathStencilSettingsForFilltype(GrPathRendering::FillType fill,
const GrStencilAttachment* sb,
GrStencilSettings* outStencilSettings) {
switch (fill) {
default:
SkFAIL("Unexpected path fill.");
case GrPathRendering::kWinding_FillType:
*outStencilSettings = winding_path_stencil_settings();
break;
case GrPathRendering::kEvenOdd_FillType:
*outStencilSettings = even_odd_path_stencil_settings();
break;
}
this->clipMaskManager()->adjustPathStencilParams(sb, outStencilSettings);
}
void GrDrawTarget::stencilPath(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPath* path,
GrPathRendering::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path stenciling.
SkASSERT(path);
SkASSERT(this->caps()->shaderCaps()->pathRenderingSupport());
SkASSERT(pipelineBuilder);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreFragmentProcessors arfp;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &arfp, &ars, &scissorState, NULL)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
GrStencilAttachment* sb = rt->renderTargetPriv().attachStencilAttachment();
this->getPathStencilSettingsForFilltype(fill, sb, &stencilSettings);
this->onStencilPath(*pipelineBuilder, pathProc, path, scissorState, stencilSettings);
}
void GrDrawTarget::drawPath(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPath* path,
GrPathRendering::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path rendering.
SkASSERT(path);
SkASSERT(this->caps()->shaderCaps()->pathRenderingSupport());
SkASSERT(pipelineBuilder);
SkRect devBounds = path->getBounds();
pathProc->viewMatrix().mapRect(&devBounds);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreFragmentProcessors arfp;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &arfp, &ars, &scissorState, &devBounds)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
GrStencilAttachment* sb = rt->renderTargetPriv().attachStencilAttachment();
this->getPathStencilSettingsForFilltype(fill, sb, &stencilSettings);
GrDrawTarget::PipelineInfo pipelineInfo(pipelineBuilder, &scissorState, pathProc, &devBounds,
this);
if (pipelineInfo.mustSkipDraw()) {
return;
}
this->onDrawPath(pathProc, path, stencilSettings, pipelineInfo);
}
void GrDrawTarget::drawPaths(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPathRange* pathRange,
const void* indices,
PathIndexType indexType,
const float transformValues[],
PathTransformType transformType,
int count,
GrPathRendering::FillType fill) {
SkASSERT(this->caps()->shaderCaps()->pathRenderingSupport());
SkASSERT(pathRange);
SkASSERT(indices);
SkASSERT(0 == reinterpret_cast<long>(indices) % GrPathRange::PathIndexSizeInBytes(indexType));
SkASSERT(transformValues);
SkASSERT(pipelineBuilder);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreFragmentProcessors arfp;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &arfp, &ars, &scissorState, NULL)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
GrStencilAttachment* sb = rt->renderTargetPriv().attachStencilAttachment();
this->getPathStencilSettingsForFilltype(fill, sb, &stencilSettings);
// Don't compute a bounding box for dst copy texture, we'll opt
// instead for it to just copy the entire dst. Realistically this is a moot
// point, because any context that supports NV_path_rendering will also
// support NV_blend_equation_advanced.
GrDrawTarget::PipelineInfo pipelineInfo(pipelineBuilder, &scissorState, pathProc, NULL, this);
if (pipelineInfo.mustSkipDraw()) {
return;
}
this->onDrawPaths(pathProc, pathRange, indices, indexType, transformValues,
transformType, count, stencilSettings, pipelineInfo);
}
void GrDrawTarget::drawRect(GrPipelineBuilder* pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkRect* localRect,
const SkMatrix* localMatrix) {
SkAutoTUnref<GrBatch> batch(GrRectBatch::Create(color, viewMatrix, rect, localRect,
localMatrix));
this->drawBatch(pipelineBuilder, batch);
}
void GrDrawTarget::clear(const SkIRect* rect,
GrColor color,
bool canIgnoreRect,
GrRenderTarget* renderTarget) {
if (fCaps->useDrawInsteadOfClear()) {
// This works around a driver bug with clear by drawing a rect instead.
// The driver will ignore a clear if it is the only thing rendered to a
// target before the target is read.
SkIRect rtRect = SkIRect::MakeWH(renderTarget->width(), renderTarget->height());
if (NULL == rect || canIgnoreRect || rect->contains(rtRect)) {
rect = &rtRect;
// We first issue a discard() since that may help tilers.
this->discard(renderTarget);
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(renderTarget);
this->drawSimpleRect(&pipelineBuilder, color, SkMatrix::I(), *rect);
} else {
this->onClear(rect, color, canIgnoreRect, renderTarget);
}
}
typedef GrTraceMarkerSet::Iter TMIter;
void GrDrawTarget::saveActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fStoredTraceMarkers.count());
fStoredTraceMarkers.addSet(fActiveTraceMarkers);
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->removeGpuTraceMarker(&(*iter));
}
}
}
void GrDrawTarget::restoreActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fActiveTraceMarkers.count());
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->addGpuTraceMarker(&(*iter));
}
for (TMIter iter = fActiveTraceMarkers.begin(); iter != fActiveTraceMarkers.end(); ++iter) {
this->fStoredTraceMarkers.remove(*iter);
}
}
}
void GrDrawTarget::addGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 0);
this->fActiveTraceMarkers.add(*marker);
++fGpuTraceMarkerCount;
}
}
void GrDrawTarget::removeGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 1);
this->fActiveTraceMarkers.remove(*marker);
--fGpuTraceMarkerCount;
}
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// returns true if the read/written rect intersects the src/dst and false if not.
bool clip_srcrect_and_dstpoint(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
SkIRect* clippedSrcRect,
SkIPoint* clippedDstPoint) {
*clippedSrcRect = srcRect;
*clippedDstPoint = dstPoint;
// clip the left edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fLeft < 0) {
clippedDstPoint->fX -= clippedSrcRect->fLeft;
clippedSrcRect->fLeft = 0;
}
if (clippedDstPoint->fX < 0) {
clippedSrcRect->fLeft -= clippedDstPoint->fX;
clippedDstPoint->fX = 0;
}
// clip the top edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fTop < 0) {
clippedDstPoint->fY -= clippedSrcRect->fTop;
clippedSrcRect->fTop = 0;
}
if (clippedDstPoint->fY < 0) {
clippedSrcRect->fTop -= clippedDstPoint->fY;
clippedDstPoint->fY = 0;
}
// clip the right edge to the src and dst bounds.
if (clippedSrcRect->fRight > src->width()) {
clippedSrcRect->fRight = src->width();
}
if (clippedDstPoint->fX + clippedSrcRect->width() > dst->width()) {
clippedSrcRect->fRight = clippedSrcRect->fLeft + dst->width() - clippedDstPoint->fX;
}
// clip the bottom edge to the src and dst bounds.
if (clippedSrcRect->fBottom > src->height()) {
clippedSrcRect->fBottom = src->height();
}
if (clippedDstPoint->fY + clippedSrcRect->height() > dst->height()) {
clippedSrcRect->fBottom = clippedSrcRect->fTop + dst->height() - clippedDstPoint->fY;
}
// The above clipping steps may have inverted the rect if it didn't intersect either the src or
// dst bounds.
return !clippedSrcRect->isEmpty();
}
}
bool GrDrawTarget::copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we've already succeeded.
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
return true;
}
if (this->getGpu()->canCopySurface(dst, src, clippedSrcRect, clippedDstPoint)) {
this->onCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
return true;
}
GrRenderTarget* rt = dst->asRenderTarget();
GrTexture* tex = src->asTexture();
if ((dst == src) || !rt || !tex) {
return false;
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt);
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(clippedSrcRect.fLeft - clippedDstPoint.fX),
SkIntToScalar(clippedSrcRect.fTop - clippedDstPoint.fY));
matrix.postIDiv(tex->width(), tex->height());
pipelineBuilder.addColorTextureProcessor(tex, matrix);
SkIRect dstRect = SkIRect::MakeXYWH(clippedDstPoint.fX,
clippedDstPoint.fY,
clippedSrcRect.width(),
clippedSrcRect.height());
this->drawSimpleRect(&pipelineBuilder, GrColor_WHITE, SkMatrix::I(), dstRect);
return true;
}
bool GrDrawTarget::canCopySurface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we're guaranteed success
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
return true;
}
return ((dst != src) && dst->asRenderTarget() && src->asTexture()) ||
this->getGpu()->canCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
}
void GrDrawTarget::setupPipeline(const PipelineInfo& pipelineInfo,
GrPipeline* pipeline) {
SkNEW_PLACEMENT_ARGS(pipeline, GrPipeline, (*pipelineInfo.fPipelineBuilder,
pipelineInfo.fColorPOI,
pipelineInfo.fCoveragePOI,
*this->caps(),
*pipelineInfo.fScissor,
&pipelineInfo.fDstCopy));
}
///////////////////////////////////////////////////////////////////////////////
GrDrawTarget::PipelineInfo::PipelineInfo(GrPipelineBuilder* pipelineBuilder,
GrScissorState* scissor,
const GrPrimitiveProcessor* primProc,
const SkRect* devBounds,
GrDrawTarget* target)
: fPipelineBuilder(pipelineBuilder)
, fScissor(scissor) {
fColorPOI = fPipelineBuilder->colorProcInfo(primProc);
fCoveragePOI = fPipelineBuilder->coverageProcInfo(primProc);
if (!target->setupDstReadIfNecessary(*fPipelineBuilder, fColorPOI, fCoveragePOI,
&fDstCopy, devBounds)) {
fPipelineBuilder = NULL;
}
}
GrDrawTarget::PipelineInfo::PipelineInfo(GrPipelineBuilder* pipelineBuilder,
GrScissorState* scissor,
const GrBatch* batch,
const SkRect* devBounds,
GrDrawTarget* target)
: fPipelineBuilder(pipelineBuilder)
, fScissor(scissor) {
fColorPOI = fPipelineBuilder->colorProcInfo(batch);
fCoveragePOI = fPipelineBuilder->coverageProcInfo(batch);
if (!target->setupDstReadIfNecessary(*fPipelineBuilder, fColorPOI, fCoveragePOI,
&fDstCopy, devBounds)) {
fPipelineBuilder = NULL;
}
}
///////////////////////////////////////////////////////////////////////////////
void GrShaderCaps::reset() {
fShaderDerivativeSupport = false;
fGeometryShaderSupport = false;
fPathRenderingSupport = false;
fDstReadInShaderSupport = false;
fDualSourceBlendingSupport = false;
fShaderPrecisionVaries = false;
}
GrShaderCaps& GrShaderCaps::operator=(const GrShaderCaps& other) {
fShaderDerivativeSupport = other.fShaderDerivativeSupport;
fGeometryShaderSupport = other.fGeometryShaderSupport;
fPathRenderingSupport = other.fPathRenderingSupport;
fDstReadInShaderSupport = other.fDstReadInShaderSupport;
fDualSourceBlendingSupport = other.fDualSourceBlendingSupport;
fShaderPrecisionVaries = other.fShaderPrecisionVaries;
for (int s = 0; s < kGrShaderTypeCount; ++s) {
for (int p = 0; p < kGrSLPrecisionCount; ++p) {
fFloatPrecisions[s][p] = other.fFloatPrecisions[s][p];
}
}
return *this;
}
static const char* shader_type_to_string(GrShaderType type) {
switch (type) {
case kVertex_GrShaderType:
return "vertex";
case kGeometry_GrShaderType:
return "geometry";
case kFragment_GrShaderType:
return "fragment";
}
return "";
}
static const char* precision_to_string(GrSLPrecision p) {
switch (p) {
case kLow_GrSLPrecision:
return "low";
case kMedium_GrSLPrecision:
return "medium";
case kHigh_GrSLPrecision:
return "high";
}
return "";
}
SkString GrShaderCaps::dump() const {
SkString r;
static const char* gNY[] = { "NO", "YES" };
r.appendf("Shader Derivative Support : %s\n", gNY[fShaderDerivativeSupport]);
r.appendf("Geometry Shader Support : %s\n", gNY[fGeometryShaderSupport]);
r.appendf("Path Rendering Support : %s\n", gNY[fPathRenderingSupport]);
r.appendf("Dst Read In Shader Support : %s\n", gNY[fDstReadInShaderSupport]);
r.appendf("Dual Source Blending Support : %s\n", gNY[fDualSourceBlendingSupport]);
r.appendf("Shader Float Precisions (varies: %s):\n", gNY[fShaderPrecisionVaries]);
for (int s = 0; s < kGrShaderTypeCount; ++s) {
GrShaderType shaderType = static_cast<GrShaderType>(s);
r.appendf("\t%s:\n", shader_type_to_string(shaderType));
for (int p = 0; p < kGrSLPrecisionCount; ++p) {
if (fFloatPrecisions[s][p].supported()) {
GrSLPrecision precision = static_cast<GrSLPrecision>(p);
r.appendf("\t\t%s: log_low: %d log_high: %d bits: %d\n",
precision_to_string(precision),
fFloatPrecisions[s][p].fLogRangeLow,
fFloatPrecisions[s][p].fLogRangeHigh,
fFloatPrecisions[s][p].fBits);
}
}
}
return r;
}
///////////////////////////////////////////////////////////////////////////////
void GrCaps::reset() {
fMipMapSupport = false;
fNPOTTextureTileSupport = false;
fTwoSidedStencilSupport = false;
fStencilWrapOpsSupport = false;
fDiscardRenderTargetSupport = false;
fReuseScratchTextures = true;
fGpuTracingSupport = false;
fCompressedTexSubImageSupport = false;
fOversizedStencilSupport = false;
fTextureBarrierSupport = false;
fUseDrawInsteadOfClear = false;
fBlendEquationSupport = kBasic_BlendEquationSupport;
fMapBufferFlags = kNone_MapFlags;
fMaxRenderTargetSize = 0;
fMaxTextureSize = 0;
fMaxSampleCount = 0;
memset(fConfigRenderSupport, 0, sizeof(fConfigRenderSupport));
memset(fConfigTextureSupport, 0, sizeof(fConfigTextureSupport));
}
GrCaps& GrCaps::operator=(const GrCaps& other) {
fMipMapSupport = other.fMipMapSupport;
fNPOTTextureTileSupport = other.fNPOTTextureTileSupport;
fTwoSidedStencilSupport = other.fTwoSidedStencilSupport;
fStencilWrapOpsSupport = other.fStencilWrapOpsSupport;
fDiscardRenderTargetSupport = other.fDiscardRenderTargetSupport;
fReuseScratchTextures = other.fReuseScratchTextures;
fGpuTracingSupport = other.fGpuTracingSupport;
fCompressedTexSubImageSupport = other.fCompressedTexSubImageSupport;
fOversizedStencilSupport = other.fOversizedStencilSupport;
fTextureBarrierSupport = other.fTextureBarrierSupport;
fUseDrawInsteadOfClear = other.fUseDrawInsteadOfClear;
fBlendEquationSupport = other.fBlendEquationSupport;
fMapBufferFlags = other.fMapBufferFlags;
fMaxRenderTargetSize = other.fMaxRenderTargetSize;
fMaxTextureSize = other.fMaxTextureSize;
fMaxSampleCount = other.fMaxSampleCount;
memcpy(fConfigRenderSupport, other.fConfigRenderSupport, sizeof(fConfigRenderSupport));
memcpy(fConfigTextureSupport, other.fConfigTextureSupport, sizeof(fConfigTextureSupport));
return *this;
}
static SkString map_flags_to_string(uint32_t flags) {
SkString str;
if (GrCaps::kNone_MapFlags == flags) {
str = "none";
} else {
SkASSERT(GrCaps::kCanMap_MapFlag & flags);
SkDEBUGCODE(flags &= ~GrCaps::kCanMap_MapFlag);
str = "can_map";
if (GrCaps::kSubset_MapFlag & flags) {
str.append(" partial");
} else {
str.append(" full");
}
SkDEBUGCODE(flags &= ~GrCaps::kSubset_MapFlag);
}
SkASSERT(0 == flags); // Make sure we handled all the flags.
return str;
}
SkString GrCaps::dump() const {
SkString r;
static const char* gNY[] = {"NO", "YES"};
r.appendf("MIP Map Support : %s\n", gNY[fMipMapSupport]);
r.appendf("NPOT Texture Tile Support : %s\n", gNY[fNPOTTextureTileSupport]);
r.appendf("Two Sided Stencil Support : %s\n", gNY[fTwoSidedStencilSupport]);
r.appendf("Stencil Wrap Ops Support : %s\n", gNY[fStencilWrapOpsSupport]);
r.appendf("Discard Render Target Support : %s\n", gNY[fDiscardRenderTargetSupport]);
r.appendf("Reuse Scratch Textures : %s\n", gNY[fReuseScratchTextures]);
r.appendf("Gpu Tracing Support : %s\n", gNY[fGpuTracingSupport]);
r.appendf("Compressed Update Support : %s\n", gNY[fCompressedTexSubImageSupport]);
r.appendf("Oversized Stencil Support : %s\n", gNY[fOversizedStencilSupport]);
r.appendf("Texture Barrier Support : %s\n", gNY[fTextureBarrierSupport]);
r.appendf("Draw Instead of Clear [workaround] : %s\n", gNY[fUseDrawInsteadOfClear]);
r.appendf("Max Texture Size : %d\n", fMaxTextureSize);
r.appendf("Max Render Target Size : %d\n", fMaxRenderTargetSize);
r.appendf("Max Sample Count : %d\n", fMaxSampleCount);
static const char* kBlendEquationSupportNames[] = {
"Basic",
"Advanced",
"Advanced Coherent",
};
GR_STATIC_ASSERT(0 == kBasic_BlendEquationSupport);
GR_STATIC_ASSERT(1 == kAdvanced_BlendEquationSupport);
GR_STATIC_ASSERT(2 == kAdvancedCoherent_BlendEquationSupport);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kBlendEquationSupportNames) == kLast_BlendEquationSupport + 1);
r.appendf("Blend Equation Support : %s\n",
kBlendEquationSupportNames[fBlendEquationSupport]);
r.appendf("Map Buffer Support : %s\n",
map_flags_to_string(fMapBufferFlags).c_str());
static const char* kConfigNames[] = {
"Unknown", // kUnknown_GrPixelConfig
"Alpha8", // kAlpha_8_GrPixelConfig,
"Index8", // kIndex_8_GrPixelConfig,
"RGB565", // kRGB_565_GrPixelConfig,
"RGBA444", // kRGBA_4444_GrPixelConfig,
"RGBA8888", // kRGBA_8888_GrPixelConfig,
"BGRA8888", // kBGRA_8888_GrPixelConfig,
"SRGBA8888",// kSRGBA_8888_GrPixelConfig,
"ETC1", // kETC1_GrPixelConfig,
"LATC", // kLATC_GrPixelConfig,
"R11EAC", // kR11_EAC_GrPixelConfig,
"ASTC12x12",// kASTC_12x12_GrPixelConfig,
"RGBAFloat",// kRGBA_float_GrPixelConfig
"AlphaHalf",// kAlpha_half_GrPixelConfig
};
GR_STATIC_ASSERT(0 == kUnknown_GrPixelConfig);
GR_STATIC_ASSERT(1 == kAlpha_8_GrPixelConfig);
GR_STATIC_ASSERT(2 == kIndex_8_GrPixelConfig);
GR_STATIC_ASSERT(3 == kRGB_565_GrPixelConfig);
GR_STATIC_ASSERT(4 == kRGBA_4444_GrPixelConfig);
GR_STATIC_ASSERT(5 == kRGBA_8888_GrPixelConfig);
GR_STATIC_ASSERT(6 == kBGRA_8888_GrPixelConfig);
GR_STATIC_ASSERT(7 == kSRGBA_8888_GrPixelConfig);
GR_STATIC_ASSERT(8 == kETC1_GrPixelConfig);
GR_STATIC_ASSERT(9 == kLATC_GrPixelConfig);
GR_STATIC_ASSERT(10 == kR11_EAC_GrPixelConfig);
GR_STATIC_ASSERT(11 == kASTC_12x12_GrPixelConfig);
GR_STATIC_ASSERT(12 == kRGBA_float_GrPixelConfig);
GR_STATIC_ASSERT(13 == kAlpha_half_GrPixelConfig);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kConfigNames) == kGrPixelConfigCnt);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][0]);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][1]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is renderable: %s, with MSAA: %s\n",
kConfigNames[i],
gNY[fConfigRenderSupport[i][0]],
gNY[fConfigRenderSupport[i][1]]);
}
SkASSERT(!fConfigTextureSupport[kUnknown_GrPixelConfig]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is uploadable to a texture: %s\n",
kConfigNames[i],
gNY[fConfigTextureSupport[i]]);
}
return r;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool GrClipTarget::setupClip(GrPipelineBuilder* pipelineBuilder,
GrPipelineBuilder::AutoRestoreFragmentProcessors* arfp,
GrPipelineBuilder::AutoRestoreStencil* ars,
GrScissorState* scissorState,
const SkRect* devBounds) {
return fClipMaskManager.setupClipping(pipelineBuilder,
arfp,
ars,
scissorState,
devBounds);
}