blob: 18f26efc65f9964845ed43234879b4a03b420205 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrContext.h"
#include "GrAARectRenderer.h"
#include "GrAtlasTextContext.h"
#include "GrBatch.h"
#include "GrBatchFontCache.h"
#include "GrBatchTarget.h"
#include "GrBatchTest.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrGpuResource.h"
#include "GrGpuResourcePriv.h"
#include "GrDrawTargetCaps.h"
#include "GrGpu.h"
#include "GrImmediateDrawTarget.h"
#include "GrIndexBuffer.h"
#include "GrInOrderDrawBuffer.h"
#include "GrLayerCache.h"
#include "GrOvalRenderer.h"
#include "GrPathRenderer.h"
#include "GrPathUtils.h"
#include "GrRenderTargetPriv.h"
#include "GrResourceCache.h"
#include "GrResourceProvider.h"
#include "GrSoftwarePathRenderer.h"
#include "GrStencilAndCoverTextContext.h"
#include "GrStrokeInfo.h"
#include "GrSurfacePriv.h"
#include "GrTextBlobCache.h"
#include "GrTexturePriv.h"
#include "GrTraceMarker.h"
#include "GrTracing.h"
#include "GrVertices.h"
#include "SkDashPathPriv.h"
#include "SkConfig8888.h"
#include "SkGr.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "SkTLazy.h"
#include "SkTLS.h"
#include "SkTraceEvent.h"
#include "effects/GrConfigConversionEffect.h"
#include "effects/GrDashingEffect.h"
#include "effects/GrSingleTextureEffect.h"
#define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this)
#define RETURN_IF_ABANDONED if (!fDrawBuffer) { return; }
#define RETURN_FALSE_IF_ABANDONED if (!fDrawBuffer) { return false; }
#define RETURN_NULL_IF_ABANDONED if (!fDrawBuffer) { return NULL; }
class GrContext::AutoCheckFlush {
public:
AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(context); }
~AutoCheckFlush() {
if (fContext->fFlushToReduceCacheSize) {
fContext->flush();
}
}
private:
GrContext* fContext;
};
GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext,
const Options* opts) {
GrContext* context;
if (NULL == opts) {
context = SkNEW_ARGS(GrContext, (Options()));
} else {
context = SkNEW_ARGS(GrContext, (*opts));
}
if (context->init(backend, backendContext)) {
return context;
} else {
context->unref();
return NULL;
}
}
static int32_t gNextID = 1;
static int32_t next_id() {
int32_t id;
do {
id = sk_atomic_inc(&gNextID);
} while (id == SK_InvalidGenID);
return id;
}
GrContext::GrContext(const Options& opts) : fOptions(opts), fUniqueID(next_id()) {
fGpu = NULL;
fResourceCache = NULL;
fResourceProvider = NULL;
fPathRendererChain = NULL;
fSoftwarePathRenderer = NULL;
fBatchFontCache = NULL;
fDrawBuffer = NULL;
fFlushToReduceCacheSize = false;
fAARectRenderer = NULL;
fOvalRenderer = NULL;
fMaxTextureSizeOverride = 1 << 20;
}
bool GrContext::init(GrBackend backend, GrBackendContext backendContext) {
SkASSERT(NULL == fGpu);
fGpu = GrGpu::Create(backend, backendContext, this);
if (NULL == fGpu) {
return false;
}
this->initCommon();
return true;
}
void GrContext::initCommon() {
fResourceCache = SkNEW(GrResourceCache);
fResourceCache->setOverBudgetCallback(OverBudgetCB, this);
fResourceProvider = SkNEW_ARGS(GrResourceProvider, (fGpu, fResourceCache));
fLayerCache.reset(SkNEW_ARGS(GrLayerCache, (this)));
fAARectRenderer = SkNEW(GrAARectRenderer);
fOvalRenderer = SkNEW(GrOvalRenderer);
fDidTestPMConversions = false;
#ifdef IMMEDIATE_MODE
fDrawBuffer = SkNEW_ARGS(GrImmediateDrawTarget, (this));
#else
fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (this));
#endif
// GrBatchFontCache will eventually replace GrFontCache
fBatchFontCache = SkNEW_ARGS(GrBatchFontCache, (this));
fTextBlobCache.reset(SkNEW_ARGS(GrTextBlobCache, (TextBlobCacheOverBudgetCB, this)));
}
GrContext::~GrContext() {
if (NULL == fGpu) {
return;
}
this->flush();
for (int i = 0; i < fCleanUpData.count(); ++i) {
(*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo);
}
SkDELETE(fResourceProvider);
SkDELETE(fResourceCache);
SkDELETE(fBatchFontCache);
SkDELETE(fDrawBuffer);
fAARectRenderer->unref();
fOvalRenderer->unref();
fGpu->unref();
SkSafeUnref(fPathRendererChain);
SkSafeUnref(fSoftwarePathRenderer);
}
void GrContext::abandonContext() {
fResourceProvider->abandon();
// abandon first to so destructors
// don't try to free the resources in the API.
fResourceCache->abandonAll();
fGpu->contextAbandoned();
// a path renderer may be holding onto resources that
// are now unusable
SkSafeSetNull(fPathRendererChain);
SkSafeSetNull(fSoftwarePathRenderer);
SkDELETE(fDrawBuffer);
fDrawBuffer = NULL;
fBatchFontCache->freeAll();
fLayerCache->freeAll();
fTextBlobCache->freeAll();
}
void GrContext::resetContext(uint32_t state) {
fGpu->markContextDirty(state);
}
void GrContext::freeGpuResources() {
this->flush();
if (fDrawBuffer) {
fDrawBuffer->purgeResources();
}
fBatchFontCache->freeAll();
fLayerCache->freeAll();
// a path renderer may be holding onto resources
SkSafeSetNull(fPathRendererChain);
SkSafeSetNull(fSoftwarePathRenderer);
fResourceCache->purgeAllUnlocked();
}
void GrContext::getResourceCacheUsage(int* resourceCount, size_t* resourceBytes) const {
if (resourceCount) {
*resourceCount = fResourceCache->getBudgetedResourceCount();
}
if (resourceBytes) {
*resourceBytes = fResourceCache->getBudgetedResourceBytes();
}
}
GrTextContext* GrContext::createTextContext(GrRenderTarget* renderTarget,
SkGpuDevice* gpuDevice,
const SkDeviceProperties&
leakyProperties,
bool enableDistanceFieldFonts) {
if (fGpu->caps()->shaderCaps()->pathRenderingSupport() && renderTarget->isMultisampled()) {
GrStencilAttachment* sb = renderTarget->renderTargetPriv().attachStencilAttachment();
if (sb) {
return GrStencilAndCoverTextContext::Create(this, gpuDevice, leakyProperties);
}
}
return GrAtlasTextContext::Create(this, gpuDevice, leakyProperties, enableDistanceFieldFonts);
}
////////////////////////////////////////////////////////////////////////////////
bool GrContext::isConfigTexturable(GrPixelConfig config) const {
return fGpu->caps()->isConfigTexturable(config);
}
bool GrContext::npotTextureTileSupport() const {
return fGpu->caps()->npotTextureTileSupport();
}
void GrContext::OverBudgetCB(void* data) {
SkASSERT(data);
GrContext* context = reinterpret_cast<GrContext*>(data);
// Flush the InOrderDrawBuffer to possibly free up some textures
context->fFlushToReduceCacheSize = true;
}
void GrContext::TextBlobCacheOverBudgetCB(void* data) {
SkASSERT(data);
// Unlike the GrResourceCache, TextBlobs are drawn at the SkGpuDevice level, therefore they
// cannot use fFlushTorReduceCacheSize because it uses AutoCheckFlush. The solution is to move
// drawText calls to below the GrContext level, but this is not trivial because they call
// drawPath on SkGpuDevice
GrContext* context = reinterpret_cast<GrContext*>(data);
context->flush();
}
int GrContext::getMaxTextureSize() const {
return SkTMin(fGpu->caps()->maxTextureSize(), fMaxTextureSizeOverride);
}
int GrContext::getMaxRenderTargetSize() const {
return fGpu->caps()->maxRenderTargetSize();
}
int GrContext::getMaxSampleCount() const {
return fGpu->caps()->maxSampleCount();
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::clear(const SkIRect* rect,
const GrColor color,
bool canIgnoreRect,
GrRenderTarget* renderTarget) {
RETURN_IF_ABANDONED
ASSERT_OWNED_RESOURCE(renderTarget);
SkASSERT(renderTarget);
AutoCheckFlush acf(this);
GR_CREATE_TRACE_MARKER_CONTEXT("GrContext::clear", this);
GrDrawTarget* target = this->prepareToDraw();
if (NULL == target) {
return;
}
target->clear(rect, color, canIgnoreRect, renderTarget);
}
void GrContext::drawPaint(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& origPaint,
const SkMatrix& viewMatrix) {
RETURN_IF_ABANDONED
// set rect to be big enough to fill the space, but not super-huge, so we
// don't overflow fixed-point implementations
SkRect r;
r.setLTRB(0, 0,
SkIntToScalar(rt->width()),
SkIntToScalar(rt->height()));
SkTCopyOnFirstWrite<GrPaint> paint(origPaint);
// by definition this fills the entire clip, no need for AA
if (paint->isAntiAlias()) {
paint.writable()->setAntiAlias(false);
}
bool isPerspective = viewMatrix.hasPerspective();
// We attempt to map r by the inverse matrix and draw that. mapRect will
// map the four corners and bound them with a new rect. This will not
// produce a correct result for some perspective matrices.
if (!isPerspective) {
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
SkDebugf("Could not invert matrix\n");
return;
}
inverse.mapRect(&r);
this->drawRect(rt, clip, *paint, viewMatrix, r);
} else {
SkMatrix localMatrix;
if (!viewMatrix.invert(&localMatrix)) {
SkDebugf("Could not invert matrix\n");
return;
}
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawPaintWithPerspective", target);
target->drawRect(&pipelineBuilder,
paint->getColor(),
SkMatrix::I(),
r,
NULL,
&localMatrix);
}
}
////////////////////////////////////////////////////////////////////////////////
static inline bool is_irect(const SkRect& r) {
return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) &&
SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom);
}
static bool apply_aa_to_rect(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
SkRect* devBoundRect,
const SkRect& rect,
SkScalar strokeWidth,
const SkMatrix& combinedMatrix,
GrColor color) {
if (pipelineBuilder->getRenderTarget()->isMultisampled()) {
return false;
}
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
if (strokeWidth >= 0) {
#endif
if (!combinedMatrix.preservesAxisAlignment()) {
return false;
}
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
} else {
if (!combinedMatrix.preservesRightAngles()) {
return false;
}
}
#endif
combinedMatrix.mapRect(devBoundRect, rect);
if (!combinedMatrix.rectStaysRect()) {
return true;
}
if (strokeWidth < 0) {
return !is_irect(*devBoundRect);
}
return true;
}
static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) {
return point.fX >= rect.fLeft && point.fX <= rect.fRight &&
point.fY >= rect.fTop && point.fY <= rect.fBottom;
}
class StrokeRectBatch : public GrBatch {
public:
struct Geometry {
GrColor fColor;
SkMatrix fViewMatrix;
SkRect fRect;
SkScalar fStrokeWidth;
};
static GrBatch* Create(const Geometry& geometry, bool snapToPixelCenters) {
return SkNEW_ARGS(StrokeRectBatch, (geometry, snapToPixelCenters));
}
const char* name() const override { return "StrokeRectBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setKnownSingleComponent(0xff);
}
void initBatchTracker(const GrPipelineInfo& init) override {
// Handle any color overrides
if (init.fColorIgnored) {
fGeoData[0].fColor = GrColor_ILLEGAL;
} else if (GrColor_ILLEGAL != init.fOverrideColor) {
fGeoData[0].fColor = init.fOverrideColor;
}
// setup batch properties
fBatch.fColorIgnored = init.fColorIgnored;
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
fBatch.fCoverageIgnored = init.fCoverageIgnored;
}
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
SkAutoTUnref<const GrGeometryProcessor> gp(
GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType,
this->color(),
this->usesLocalCoords(),
this->coverageIgnored(),
this->viewMatrix(),
SkMatrix::I()));
batchTarget->initDraw(gp, pipeline);
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(GrDefaultGeoProcFactory::PositionAttr));
Geometry& args = fGeoData[0];
int vertexCount = kVertsPerHairlineRect;
if (args.fStrokeWidth > 0) {
vertexCount = kVertsPerStrokeRect;
}
const GrVertexBuffer* vertexBuffer;
int firstVertex;
void* verts = batchTarget->makeVertSpace(vertexStride, vertexCount,
&vertexBuffer, &firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
SkPoint* vertex = reinterpret_cast<SkPoint*>(verts);
GrPrimitiveType primType;
if (args.fStrokeWidth > 0) {;
primType = kTriangleStrip_GrPrimitiveType;
args.fRect.sort();
this->setStrokeRectStrip(vertex, args.fRect, args.fStrokeWidth);
} else {
// hairline
primType = kLineStrip_GrPrimitiveType;
vertex[0].set(args.fRect.fLeft, args.fRect.fTop);
vertex[1].set(args.fRect.fRight, args.fRect.fTop);
vertex[2].set(args.fRect.fRight, args.fRect.fBottom);
vertex[3].set(args.fRect.fLeft, args.fRect.fBottom);
vertex[4].set(args.fRect.fLeft, args.fRect.fTop);
}
GrVertices vertices;
vertices.init(primType, vertexBuffer, firstVertex, vertexCount);
batchTarget->draw(vertices);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
private:
StrokeRectBatch(const Geometry& geometry, bool snapToPixelCenters) {
this->initClassID<StrokeRectBatch>();
fBatch.fHairline = geometry.fStrokeWidth == 0;
fGeoData.push_back(geometry);
// setup bounds
fBounds = geometry.fRect;
SkScalar rad = SkScalarHalf(geometry.fStrokeWidth);
fBounds.outset(rad, rad);
geometry.fViewMatrix.mapRect(&fBounds);
// If our caller snaps to pixel centers then we have to round out the bounds
if (snapToPixelCenters) {
fBounds.roundOut();
}
}
/* create a triangle strip that strokes the specified rect. There are 8
unique vertices, but we repeat the last 2 to close up. Alternatively we
could use an indices array, and then only send 8 verts, but not sure that
would be faster.
*/
void setStrokeRectStrip(SkPoint verts[10], const SkRect& rect, SkScalar width) {
const SkScalar rad = SkScalarHalf(width);
// TODO we should be able to enable this assert, but we'd have to filter these draws
// this is a bug
//SkASSERT(rad < rect.width() / 2 && rad < rect.height() / 2);
verts[0].set(rect.fLeft + rad, rect.fTop + rad);
verts[1].set(rect.fLeft - rad, rect.fTop - rad);
verts[2].set(rect.fRight - rad, rect.fTop + rad);
verts[3].set(rect.fRight + rad, rect.fTop - rad);
verts[4].set(rect.fRight - rad, rect.fBottom - rad);
verts[5].set(rect.fRight + rad, rect.fBottom + rad);
verts[6].set(rect.fLeft + rad, rect.fBottom - rad);
verts[7].set(rect.fLeft - rad, rect.fBottom + rad);
verts[8] = verts[0];
verts[9] = verts[1];
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool colorIgnored() const { return fBatch.fColorIgnored; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool hairline() const { return fBatch.fHairline; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
bool onCombineIfPossible(GrBatch* t) override {
// StrokeRectBatch* that = t->cast<StrokeRectBatch>();
// NonAA stroke rects cannot batch right now
// TODO make these batchable
return false;
}
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fHairline;
};
const static int kVertsPerHairlineRect = 5;
const static int kVertsPerStrokeRect = 10;
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
};
void GrContext::drawRect(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkRect& rect,
const GrStrokeInfo* strokeInfo) {
RETURN_IF_ABANDONED
if (strokeInfo && strokeInfo->isDashed()) {
SkPath path;
path.addRect(rect);
this->drawPath(rt, clip, paint, viewMatrix, path, *strokeInfo);
return;
}
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawRect", target);
SkScalar width = NULL == strokeInfo ? -1 : strokeInfo->getWidth();
// Check if this is a full RT draw and can be replaced with a clear. We don't bother checking
// cases where the RT is fully inside a stroke.
if (width < 0) {
SkRect rtRect;
pipelineBuilder.getRenderTarget()->getBoundsRect(&rtRect);
SkRect clipSpaceRTRect = rtRect;
bool checkClip = GrClip::kWideOpen_ClipType != clip.clipType();
if (checkClip) {
clipSpaceRTRect.offset(SkIntToScalar(clip.origin().fX),
SkIntToScalar(clip.origin().fY));
}
// Does the clip contain the entire RT?
if (!checkClip || clip.quickContains(clipSpaceRTRect)) {
SkMatrix invM;
if (!viewMatrix.invert(&invM)) {
return;
}
// Does the rect bound the RT?
SkPoint srcSpaceRTQuad[4];
invM.mapRectToQuad(srcSpaceRTQuad, rtRect);
if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[1]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[2]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[3])) {
// Will it blend?
GrColor clearColor;
if (paint.isOpaqueAndConstantColor(&clearColor)) {
target->clear(NULL, clearColor, true, rt);
return;
}
}
}
}
GrColor color = paint.getColor();
SkRect devBoundRect;
bool needAA = paint.isAntiAlias() && !pipelineBuilder.getRenderTarget()->isMultisampled();
bool doAA = needAA && apply_aa_to_rect(target, &pipelineBuilder, &devBoundRect, rect, width,
viewMatrix, color);
if (doAA) {
if (width >= 0) {
fAARectRenderer->strokeAARect(target,
&pipelineBuilder,
color,
viewMatrix,
rect,
devBoundRect,
*strokeInfo);
} else {
// filled AA rect
fAARectRenderer->fillAARect(target,
&pipelineBuilder,
color,
viewMatrix,
rect,
devBoundRect);
}
return;
}
if (width >= 0) {
StrokeRectBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fRect = rect;
geometry.fStrokeWidth = width;
// Non-AA hairlines are snapped to pixel centers to make which pixels are hit deterministic
bool snapToPixelCenters = (0 == width && !rt->isMultisampled());
SkAutoTUnref<GrBatch> batch(StrokeRectBatch::Create(geometry, snapToPixelCenters));
// Depending on sub-pixel coordinates and the particular GPU, we may lose a corner of
// hairline rects. We jam all the vertices to pixel centers to avoid this, but not when MSAA
// is enabled because it can cause ugly artifacts.
pipelineBuilder.setState(GrPipelineBuilder::kSnapVerticesToPixelCenters_Flag,
snapToPixelCenters);
target->drawBatch(&pipelineBuilder, batch);
} else {
// filled BW rect
target->drawSimpleRect(&pipelineBuilder, color, viewMatrix, rect);
}
}
void GrContext::drawNonAARectToRect(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkRect& rectToDraw,
const SkRect& localRect,
const SkMatrix* localMatrix) {
RETURN_IF_ABANDONED
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawRectToRect", target);
target->drawRect(&pipelineBuilder,
paint.getColor(),
viewMatrix,
rectToDraw,
&localRect,
localMatrix);
}
static const GrGeometryProcessor* set_vertex_attributes(bool hasLocalCoords,
bool hasColors,
int* colorOffset,
int* texOffset,
GrColor color,
const SkMatrix& viewMatrix,
bool coverageIgnored) {
*texOffset = -1;
*colorOffset = -1;
uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
if (hasLocalCoords && hasColors) {
*colorOffset = sizeof(SkPoint);
*texOffset = sizeof(SkPoint) + sizeof(GrColor);
flags |= GrDefaultGeoProcFactory::kColor_GPType |
GrDefaultGeoProcFactory::kLocalCoord_GPType;
} else if (hasLocalCoords) {
*texOffset = sizeof(SkPoint);
flags |= GrDefaultGeoProcFactory::kLocalCoord_GPType;
} else if (hasColors) {
*colorOffset = sizeof(SkPoint);
flags |= GrDefaultGeoProcFactory::kColor_GPType;
}
return GrDefaultGeoProcFactory::Create(flags, color, hasLocalCoords, coverageIgnored,
viewMatrix, SkMatrix::I());
}
class DrawVerticesBatch : public GrBatch {
public:
struct Geometry {
GrColor fColor;
SkTDArray<SkPoint> fPositions;
SkTDArray<uint16_t> fIndices;
SkTDArray<GrColor> fColors;
SkTDArray<SkPoint> fLocalCoords;
};
static GrBatch* Create(const Geometry& geometry, GrPrimitiveType primitiveType,
const SkMatrix& viewMatrix,
const SkPoint* positions, int vertexCount,
const uint16_t* indices, int indexCount,
const GrColor* colors, const SkPoint* localCoords,
const SkRect& bounds) {
return SkNEW_ARGS(DrawVerticesBatch, (geometry, primitiveType, viewMatrix, positions,
vertexCount, indices, indexCount, colors,
localCoords, bounds));
}
const char* name() const override { return "DrawVerticesBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
if (this->hasColors()) {
out->setUnknownFourComponents();
} else {
out->setKnownFourComponents(fGeoData[0].fColor);
}
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setKnownSingleComponent(0xff);
}
void initBatchTracker(const GrPipelineInfo& init) override {
// Handle any color overrides
if (init.fColorIgnored) {
fGeoData[0].fColor = GrColor_ILLEGAL;
} else if (GrColor_ILLEGAL != init.fOverrideColor) {
fGeoData[0].fColor = init.fOverrideColor;
}
// setup batch properties
fBatch.fColorIgnored = init.fColorIgnored;
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
fBatch.fCoverageIgnored = init.fCoverageIgnored;
}
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
int colorOffset = -1, texOffset = -1;
SkAutoTUnref<const GrGeometryProcessor> gp(
set_vertex_attributes(this->hasLocalCoords(), this->hasColors(), &colorOffset,
&texOffset, this->color(), this->viewMatrix(),
this->coverageIgnored()));
batchTarget->initDraw(gp, pipeline);
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(SkPoint) + (this->hasLocalCoords() ? sizeof(SkPoint) : 0)
+ (this->hasColors() ? sizeof(GrColor) : 0));
int instanceCount = fGeoData.count();
const GrVertexBuffer* vertexBuffer;
int firstVertex;
void* verts = batchTarget->makeVertSpace(vertexStride, this->vertexCount(),
&vertexBuffer, &firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
const GrIndexBuffer* indexBuffer = NULL;
int firstIndex = 0;
uint16_t* indices = NULL;
if (this->hasIndices()) {
indices = batchTarget->makeIndexSpace(this->indexCount(), &indexBuffer, &firstIndex);
if (!indices) {
SkDebugf("Could not allocate indices\n");
return;
}
}
int indexOffset = 0;
int vertexOffset = 0;
for (int i = 0; i < instanceCount; i++) {
const Geometry& args = fGeoData[i];
// TODO we can actually cache this interleaved and then just memcopy
if (this->hasIndices()) {
for (int j = 0; j < args.fIndices.count(); ++j, ++indexOffset) {
*(indices + indexOffset) = args.fIndices[j] + vertexOffset;
}
}
for (int j = 0; j < args.fPositions.count(); ++j) {
*((SkPoint*)verts) = args.fPositions[j];
if (this->hasColors()) {
*(GrColor*)((intptr_t)verts + colorOffset) = args.fColors[j];
}
if (this->hasLocalCoords()) {
*(SkPoint*)((intptr_t)verts + texOffset) = args.fLocalCoords[j];
}
verts = (void*)((intptr_t)verts + vertexStride);
vertexOffset++;
}
}
GrVertices vertices;
if (this->hasIndices()) {
vertices.initIndexed(this->primitiveType(), vertexBuffer, indexBuffer, firstVertex,
firstIndex, this->vertexCount(), this->indexCount());
} else {
vertices.init(this->primitiveType(), vertexBuffer, firstVertex, this->vertexCount());
}
batchTarget->draw(vertices);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
private:
DrawVerticesBatch(const Geometry& geometry, GrPrimitiveType primitiveType,
const SkMatrix& viewMatrix,
const SkPoint* positions, int vertexCount,
const uint16_t* indices, int indexCount,
const GrColor* colors, const SkPoint* localCoords, const SkRect& bounds) {
this->initClassID<DrawVerticesBatch>();
SkASSERT(positions);
fBatch.fViewMatrix = viewMatrix;
Geometry& installedGeo = fGeoData.push_back(geometry);
installedGeo.fPositions.append(vertexCount, positions);
if (indices) {
installedGeo.fIndices.append(indexCount, indices);
fBatch.fHasIndices = true;
} else {
fBatch.fHasIndices = false;
}
if (colors) {
installedGeo.fColors.append(vertexCount, colors);
fBatch.fHasColors = true;
} else {
fBatch.fHasColors = false;
}
if (localCoords) {
installedGeo.fLocalCoords.append(vertexCount, localCoords);
fBatch.fHasLocalCoords = true;
} else {
fBatch.fHasLocalCoords = false;
}
fBatch.fVertexCount = vertexCount;
fBatch.fIndexCount = indexCount;
fBatch.fPrimitiveType = primitiveType;
this->setBounds(bounds);
}
GrPrimitiveType primitiveType() const { return fBatch.fPrimitiveType; }
bool batchablePrimitiveType() const {
return kTriangles_GrPrimitiveType == fBatch.fPrimitiveType ||
kLines_GrPrimitiveType == fBatch.fPrimitiveType ||
kPoints_GrPrimitiveType == fBatch.fPrimitiveType;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool colorIgnored() const { return fBatch.fColorIgnored; }
const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; }
bool hasColors() const { return fBatch.fHasColors; }
bool hasIndices() const { return fBatch.fHasIndices; }
bool hasLocalCoords() const { return fBatch.fHasLocalCoords; }
int vertexCount() const { return fBatch.fVertexCount; }
int indexCount() const { return fBatch.fIndexCount; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
bool onCombineIfPossible(GrBatch* t) override {
DrawVerticesBatch* that = t->cast<DrawVerticesBatch>();
if (!this->batchablePrimitiveType() || this->primitiveType() != that->primitiveType()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
// We currently use a uniform viewmatrix for this batch
if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
if (this->hasColors() != that->hasColors()) {
return false;
}
if (this->hasIndices() != that->hasIndices()) {
return false;
}
if (this->hasLocalCoords() != that->hasLocalCoords()) {
return false;
}
if (!this->hasColors() && this->color() != that->color()) {
return false;
}
if (this->color() != that->color()) {
fBatch.fColor = GrColor_ILLEGAL;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
fBatch.fVertexCount += that->vertexCount();
fBatch.fIndexCount += that->indexCount();
this->joinBounds(that->bounds());
return true;
}
struct BatchTracker {
GrPrimitiveType fPrimitiveType;
SkMatrix fViewMatrix;
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fHasColors;
bool fHasIndices;
bool fHasLocalCoords;
int fVertexCount;
int fIndexCount;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
};
void GrContext::drawVertices(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
GrPrimitiveType primitiveType,
int vertexCount,
const SkPoint positions[],
const SkPoint texCoords[],
const GrColor colors[],
const uint16_t indices[],
int indexCount) {
RETURN_IF_ABANDONED
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawVertices", target);
// TODO clients should give us bounds
SkRect bounds;
if (!bounds.setBoundsCheck(positions, vertexCount)) {
SkDebugf("drawVertices call empty bounds\n");
return;
}
viewMatrix.mapRect(&bounds);
// If we don't have AA then we outset for a half pixel in each direction to account for
// snapping
if (!paint.isAntiAlias()) {
bounds.outset(0.5f, 0.5f);
}
DrawVerticesBatch::Geometry geometry;
geometry.fColor = paint.getColor();
SkAutoTUnref<GrBatch> batch(DrawVerticesBatch::Create(geometry, primitiveType, viewMatrix,
positions, vertexCount, indices,
indexCount, colors, texCoords,
bounds));
target->drawBatch(&pipelineBuilder, batch);
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::drawRRect(GrRenderTarget*rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const GrStrokeInfo& strokeInfo) {
RETURN_IF_ABANDONED
if (rrect.isEmpty()) {
return;
}
if (strokeInfo.isDashed()) {
SkPath path;
path.addRRect(rrect);
this->drawPath(rt, clip, paint, viewMatrix, path, strokeInfo);
return;
}
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawRRect", target);
GrColor color = paint.getColor();
if (!fOvalRenderer->drawRRect(target,
&pipelineBuilder,
color,
viewMatrix,
paint.isAntiAlias(),
rrect,
strokeInfo)) {
SkPath path;
path.addRRect(rrect);
this->internalDrawPath(target, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(),
path, strokeInfo);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::drawDRRect(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkRRect& outer,
const SkRRect& inner) {
RETURN_IF_ABANDONED
if (outer.isEmpty()) {
return;
}
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
GR_CREATE_TRACE_MARKER("GrContext::drawDRRect", target);
GrColor color = paint.getColor();
if (!fOvalRenderer->drawDRRect(target,
&pipelineBuilder,
color,
viewMatrix,
paint.isAntiAlias(),
outer,
inner)) {
SkPath path;
path.addRRect(inner);
path.addRRect(outer);
path.setFillType(SkPath::kEvenOdd_FillType);
GrStrokeInfo fillRec(SkStrokeRec::kFill_InitStyle);
this->internalDrawPath(target, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(),
path, fillRec);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::drawOval(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkRect& oval,
const GrStrokeInfo& strokeInfo) {
RETURN_IF_ABANDONED
if (oval.isEmpty()) {
return;
}
if (strokeInfo.isDashed()) {
SkPath path;
path.addOval(oval);
this->drawPath(rt, clip, paint, viewMatrix, path, strokeInfo);
return;
}
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER("GrContext::drawOval", target);
GrColor color = paint.getColor();
if (!fOvalRenderer->drawOval(target,
&pipelineBuilder,
color,
viewMatrix,
paint.isAntiAlias(),
oval,
strokeInfo)) {
SkPath path;
path.addOval(oval);
this->internalDrawPath(target, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(),
path, strokeInfo);
}
}
// Can 'path' be drawn as a pair of filled nested rectangles?
static bool is_nested_rects(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
const SkPath& path,
const SkStrokeRec& stroke,
SkRect rects[2]) {
SkASSERT(stroke.isFillStyle());
if (path.isInverseFillType()) {
return false;
}
// TODO: this restriction could be lifted if we were willing to apply
// the matrix to all the points individually rather than just to the rect
if (!viewMatrix.preservesAxisAlignment()) {
return false;
}
SkPath::Direction dirs[2];
if (!path.isNestedFillRects(rects, dirs)) {
return false;
}
if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) {
// The two rects need to be wound opposite to each other
return false;
}
// Right now, nested rects where the margin is not the same width
// all around do not render correctly
const SkScalar* outer = rects[0].asScalars();
const SkScalar* inner = rects[1].asScalars();
bool allEq = true;
SkScalar margin = SkScalarAbs(outer[0] - inner[0]);
bool allGoE1 = margin >= SK_Scalar1;
for (int i = 1; i < 4; ++i) {
SkScalar temp = SkScalarAbs(outer[i] - inner[i]);
if (temp < SK_Scalar1) {
allGoE1 = false;
}
if (!SkScalarNearlyEqual(margin, temp)) {
allEq = false;
}
}
return allEq || allGoE1;
}
void GrContext::drawPath(GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStrokeInfo& strokeInfo) {
RETURN_IF_ABANDONED
if (path.isEmpty()) {
if (path.isInverseFillType()) {
this->drawPaint(rt, clip, paint, viewMatrix);
}
return;
}
GrColor color = paint.getColor();
// Note that internalDrawPath may sw-rasterize the path into a scratch texture.
// Scratch textures can be recycled after they are returned to the texture
// cache. This presents a potential hazard for buffered drawing. However,
// the writePixels that uploads to the scratch will perform a flush so we're
// OK.
AutoCheckFlush acf(this);
GrPipelineBuilder pipelineBuilder;
GrDrawTarget* target = this->prepareToDraw(&pipelineBuilder, rt, clip, &paint, &acf);
if (NULL == target) {
return;
}
GR_CREATE_TRACE_MARKER1("GrContext::drawPath", target, "Is Convex", path.isConvex());
if (!strokeInfo.isDashed()) {
bool useCoverageAA = paint.isAntiAlias() &&
!pipelineBuilder.getRenderTarget()->isMultisampled();
if (useCoverageAA && strokeInfo.getWidth() < 0 && !path.isConvex()) {
// Concave AA paths are expensive - try to avoid them for special cases
SkRect rects[2];
if (is_nested_rects(target, &pipelineBuilder, color, viewMatrix, path, strokeInfo,
rects)) {
fAARectRenderer->fillAANestedRects(target, &pipelineBuilder, color, viewMatrix,
rects);
return;
}
}
SkRect ovalRect;
bool isOval = path.isOval(&ovalRect);
if (isOval && !path.isInverseFillType()) {
if (fOvalRenderer->drawOval(target,
&pipelineBuilder,
color,
viewMatrix,
paint.isAntiAlias(),
ovalRect,
strokeInfo)) {
return;
}
}
}
this->internalDrawPath(target, &pipelineBuilder, viewMatrix, color, paint.isAntiAlias(),
path, strokeInfo);
}
void GrContext::internalDrawPath(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
const SkMatrix& viewMatrix,
GrColor color,
bool useAA,
const SkPath& path,
const GrStrokeInfo& strokeInfo) {
RETURN_IF_ABANDONED
SkASSERT(!path.isEmpty());
GR_CREATE_TRACE_MARKER("GrContext::internalDrawPath", target);
// An Assumption here is that path renderer would use some form of tweaking
// the src color (either the input alpha or in the frag shader) to implement
// aa. If we have some future driver-mojo path AA that can do the right
// thing WRT to the blend then we'll need some query on the PR.
bool useCoverageAA = useAA &&
!pipelineBuilder->getRenderTarget()->isMultisampled();
GrPathRendererChain::DrawType type =
useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType :
GrPathRendererChain::kColor_DrawType;
const SkPath* pathPtr = &path;
SkTLazy<SkPath> tmpPath;
const GrStrokeInfo* strokeInfoPtr = &strokeInfo;
// Try a 1st time without stroking the path and without allowing the SW renderer
GrPathRenderer* pr = this->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr,
*strokeInfoPtr, false, type);
GrStrokeInfo dashlessStrokeInfo(strokeInfo, false);
if (NULL == pr && strokeInfo.isDashed()) {
// It didn't work above, so try again with dashed stroke converted to a dashless stroke.
if (!strokeInfo.applyDashToPath(tmpPath.init(), &dashlessStrokeInfo, *pathPtr)) {
return;
}
pathPtr = tmpPath.get();
if (pathPtr->isEmpty()) {
return;
}
strokeInfoPtr = &dashlessStrokeInfo;
pr = this->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr, *strokeInfoPtr,
false, type);
}
if (NULL == pr) {
if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(*strokeInfoPtr, viewMatrix, NULL) &&
!strokeInfoPtr->isFillStyle()) {
// It didn't work above, so try again with stroke converted to a fill.
if (!tmpPath.isValid()) {
tmpPath.init();
}
dashlessStrokeInfo.setResScale(SkScalarAbs(viewMatrix.getMaxScale()));
if (!dashlessStrokeInfo.applyToPath(tmpPath.get(), *pathPtr)) {
return;
}
pathPtr = tmpPath.get();
if (pathPtr->isEmpty()) {
return;
}
dashlessStrokeInfo.setFillStyle();
strokeInfoPtr = &dashlessStrokeInfo;
}
// This time, allow SW renderer
pr = this->getPathRenderer(target, pipelineBuilder, viewMatrix, *pathPtr, *strokeInfoPtr,
true, type);
}
if (NULL == pr) {
#ifdef SK_DEBUG
SkDebugf("Unable to find path renderer compatible with path.\n");
#endif
return;
}
pr->drawPath(target, pipelineBuilder, color, viewMatrix, *pathPtr, *strokeInfoPtr, useCoverageAA);
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::flush(int flagsBitfield) {
if (NULL == fDrawBuffer) {
return;
}
if (kDiscard_FlushBit & flagsBitfield) {
fDrawBuffer->reset();
} else {
fDrawBuffer->flush();
}
fResourceCache->notifyFlushOccurred();
fFlushToReduceCacheSize = false;
}
bool sw_convert_to_premul(GrPixelConfig srcConfig, int width, int height, size_t inRowBytes,
const void* inPixels, size_t outRowBytes, void* outPixels) {
SkSrcPixelInfo srcPI;
if (!GrPixelConfig2ColorAndProfileType(srcConfig, &srcPI.fColorType, NULL)) {
return false;
}
srcPI.fAlphaType = kUnpremul_SkAlphaType;
srcPI.fPixels = inPixels;
srcPI.fRowBytes = inRowBytes;
SkDstPixelInfo dstPI;
dstPI.fColorType = srcPI.fColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = outPixels;
dstPI.fRowBytes = outRowBytes;
return srcPI.convertPixelsTo(&dstPI, width, height);
}
bool GrContext::writeSurfacePixels(GrSurface* surface,
int left, int top, int width, int height,
GrPixelConfig srcConfig, const void* buffer, size_t rowBytes,
uint32_t pixelOpsFlags) {
RETURN_FALSE_IF_ABANDONED
{
GrTexture* texture = NULL;
if (!(kUnpremul_PixelOpsFlag & pixelOpsFlags) && (texture = surface->asTexture()) &&
fGpu->canWriteTexturePixels(texture, srcConfig)) {
if (!(kDontFlush_PixelOpsFlag & pixelOpsFlags) &&
surface->surfacePriv().hasPendingIO()) {
this->flush();
}
return fGpu->writeTexturePixels(texture, left, top, width, height,
srcConfig, buffer, rowBytes);
// Don't need to check kFlushWrites_PixelOp here, we just did a direct write so the
// upload is already flushed.
}
}
// If we didn't do a direct texture write then we upload the pixels to a texture and draw.
GrRenderTarget* renderTarget = surface->asRenderTarget();
if (NULL == renderTarget) {
return false;
}
// We ignore the preferred config unless it is a R/B swap of the src config. In that case
// we will upload the original src data to a scratch texture but we will spoof it as the swapped
// config. This scratch will then have R and B swapped. We correct for this by swapping again
// when drawing the scratch to the dst using a conversion effect.
bool swapRAndB = false;
GrPixelConfig writeConfig = srcConfig;
if (GrPixelConfigSwapRAndB(srcConfig) ==
fGpu->preferredWritePixelsConfig(srcConfig, renderTarget->config())) {
writeConfig = GrPixelConfigSwapRAndB(srcConfig);
swapRAndB = true;
}
GrSurfaceDesc desc;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = writeConfig;
SkAutoTUnref<GrTexture> texture(this->textureProvider()->refScratchTexture(desc,
GrTextureProvider::kApprox_ScratchTexMatch));
if (!texture) {
return false;
}
SkAutoTUnref<const GrFragmentProcessor> fp;
SkMatrix textureMatrix;
textureMatrix.setIDiv(texture->width(), texture->height());
// allocate a tmp buffer and sw convert the pixels to premul
SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0);
if (kUnpremul_PixelOpsFlag & pixelOpsFlags) {
if (!GrPixelConfigIs8888(srcConfig)) {
return false;
}
fp.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix));
// handle the unpremul step on the CPU if we couldn't create an effect to do it.
if (NULL == fp) {
size_t tmpRowBytes = 4 * width;
tmpPixels.reset(width * height);
if (!sw_convert_to_premul(srcConfig, width, height, rowBytes, buffer, tmpRowBytes,
tmpPixels.get())) {
return false;
}
rowBytes = tmpRowBytes;
buffer = tmpPixels.get();
}
}
if (NULL == fp) {
fp.reset(GrConfigConversionEffect::Create(texture,
swapRAndB,
GrConfigConversionEffect::kNone_PMConversion,
textureMatrix));
}
// Even if the client told us not to flush, we still flush here. The client may have known that
// writes to the original surface caused no data hazards, but they can't know that the scratch
// we just got is safe.
if (texture->surfacePriv().hasPendingIO()) {
this->flush();
}
if (!fGpu->writeTexturePixels(texture, 0, 0, width, height,
writeConfig, buffer, rowBytes)) {
return false;
}
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top));
// This function can be called in the midst of drawing another object (e.g., when uploading a
// SW-rasterized clip while issuing a draw). So we push the current geometry state before
// drawing a rect to the render target.
// The bracket ensures we pop the stack if we wind up flushing below.
{
GrDrawTarget* drawTarget = this->prepareToDraw();
if (!drawTarget) {
return false;
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.addColorProcessor(fp);
pipelineBuilder.setRenderTarget(renderTarget);
drawTarget->drawSimpleRect(&pipelineBuilder,
GrColor_WHITE,
matrix,
SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)));
}
if (kFlushWrites_PixelOp & pixelOpsFlags) {
this->flushSurfaceWrites(surface);
}
return true;
}
// toggles between RGBA and BGRA
static SkColorType toggle_colortype32(SkColorType ct) {
if (kRGBA_8888_SkColorType == ct) {
return kBGRA_8888_SkColorType;
} else {
SkASSERT(kBGRA_8888_SkColorType == ct);
return kRGBA_8888_SkColorType;
}
}
bool GrContext::readRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig dstConfig, void* buffer, size_t rowBytes,
uint32_t flags) {
RETURN_FALSE_IF_ABANDONED
ASSERT_OWNED_RESOURCE(target);
SkASSERT(target);
if (!(kDontFlush_PixelOpsFlag & flags) && target->surfacePriv().hasPendingWrite()) {
this->flush();
}
// Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul.
// If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll
// either do the flipY by drawing into a scratch with a matrix or on the cpu after the read.
bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top,
width, height, dstConfig,
rowBytes);
// We ignore the preferred config if it is different than our config unless it is an R/B swap.
// In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped
// config. Then we will call readPixels on the scratch with the swapped config. The swaps during
// the draw cancels out the fact that we call readPixels with a config that is R/B swapped from
// dstConfig.
GrPixelConfig readConfig = dstConfig;
bool swapRAndB = false;
if (GrPixelConfigSwapRAndB(dstConfig) ==
fGpu->preferredReadPixelsConfig(dstConfig, target->config())) {
readConfig = GrPixelConfigSwapRAndB(readConfig);
swapRAndB = true;
}
bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags);
if (unpremul && !GrPixelConfigIs8888(dstConfig)) {
// The unpremul flag is only allowed for these two configs.
return false;
}
SkAutoTUnref<GrTexture> tempTexture;
// If the src is a texture and we would have to do conversions after read pixels, we instead
// do the conversions by drawing the src to a scratch texture. If we handle any of the
// conversions in the draw we set the corresponding bool to false so that we don't reapply it
// on the read back pixels.
GrTexture* src = target->asTexture();
if (src && (swapRAndB || unpremul || flipY)) {
// Make the scratch a render so we can read its pixels.
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = readConfig;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
// When a full read back is faster than a partial we could always make the scratch exactly
// match the passed rect. However, if we see many different size rectangles we will trash
// our texture cache and pay the cost of creating and destroying many textures. So, we only
// request an exact match when the caller is reading an entire RT.
GrTextureProvider::ScratchTexMatch match = GrTextureProvider::kApprox_ScratchTexMatch;
if (0 == left &&
0 == top &&
target->width() == width &&
target->height() == height &&
fGpu->fullReadPixelsIsFasterThanPartial()) {
match = GrTextureProvider::kExact_ScratchTexMatch;
}
tempTexture.reset(this->textureProvider()->refScratchTexture(desc, match));
if (tempTexture) {
// compute a matrix to perform the draw
SkMatrix textureMatrix;
textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top);
textureMatrix.postIDiv(src->width(), src->height());
SkAutoTUnref<const GrFragmentProcessor> fp;
if (unpremul) {
fp.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix));
if (fp) {
unpremul = false; // we no longer need to do this on CPU after the read back.
}
}
// If we failed to create a PM->UPM effect and have no other conversions to perform then
// there is no longer any point to using the scratch.
if (fp || flipY || swapRAndB) {
if (!fp) {
fp.reset(GrConfigConversionEffect::Create(
src, swapRAndB, GrConfigConversionEffect::kNone_PMConversion,
textureMatrix));
}
swapRAndB = false; // we will handle the swap in the draw.
// We protect the existing geometry here since it may not be
// clear to the caller that a draw operation (i.e., drawSimpleRect)
// can be invoked in this method
{
GrPipelineBuilder pipelineBuilder;
SkASSERT(fp);
pipelineBuilder.addColorProcessor(fp);
pipelineBuilder.setRenderTarget(tempTexture->asRenderTarget());
SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height));
fDrawBuffer->drawSimpleRect(&pipelineBuilder,
GrColor_WHITE,
SkMatrix::I(),
rect);
// we want to read back from the scratch's origin
left = 0;
top = 0;
target = tempTexture->asRenderTarget();
}
this->flushSurfaceWrites(target);
}
}
}
if (!fGpu->readPixels(target,
left, top, width, height,
readConfig, buffer, rowBytes)) {
return false;
}
// Perform any conversions we weren't able to perform using a scratch texture.
if (unpremul || swapRAndB) {
SkDstPixelInfo dstPI;
if (!GrPixelConfig2ColorAndProfileType(dstConfig, &dstPI.fColorType, NULL)) {
return false;
}
dstPI.fAlphaType = kUnpremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = rowBytes;
SkSrcPixelInfo srcPI;
srcPI.fColorType = swapRAndB ? toggle_colortype32(dstPI.fColorType) : dstPI.fColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = buffer;
srcPI.fRowBytes = rowBytes;
return srcPI.convertPixelsTo(&dstPI, width, height);
}
return true;
}
void GrContext::prepareSurfaceForExternalRead(GrSurface* surface) {
RETURN_IF_ABANDONED
SkASSERT(surface);
ASSERT_OWNED_RESOURCE(surface);
if (surface->surfacePriv().hasPendingIO()) {
this->flush();
}
GrRenderTarget* rt = surface->asRenderTarget();
if (fGpu && rt) {
fGpu->resolveRenderTarget(rt);
}
}
void GrContext::discardRenderTarget(GrRenderTarget* renderTarget) {
RETURN_IF_ABANDONED
SkASSERT(renderTarget);
ASSERT_OWNED_RESOURCE(renderTarget);
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw();
if (NULL == target) {
return;
}
target->discard(renderTarget);
}
void GrContext::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint, uint32_t pixelOpsFlags) {
RETURN_IF_ABANDONED
if (NULL == src || NULL == dst) {
return;
}
ASSERT_OWNED_RESOURCE(src);
ASSERT_OWNED_RESOURCE(dst);
// Since we're going to the draw target and not GPU, no need to check kNoFlush
// here.
GrDrawTarget* target = this->prepareToDraw();
if (NULL == target) {
return;
}
target->copySurface(dst, src, srcRect, dstPoint);
if (kFlushWrites_PixelOp & pixelOpsFlags) {
this->flush();
}
}
void GrContext::flushSurfaceWrites(GrSurface* surface) {
RETURN_IF_ABANDONED
if (surface->surfacePriv().hasPendingWrite()) {
this->flush();
}
}
GrDrawTarget* GrContext::prepareToDraw(GrPipelineBuilder* pipelineBuilder,
GrRenderTarget* rt,
const GrClip& clip,
const GrPaint* paint,
const AutoCheckFlush* acf) {
if (NULL == fGpu || NULL == fDrawBuffer) {
return NULL;
}
ASSERT_OWNED_RESOURCE(rt);
SkASSERT(rt && paint && acf);
pipelineBuilder->setFromPaint(*paint, rt, clip);
return fDrawBuffer;
}
GrDrawTarget* GrContext::prepareToDraw() {
if (NULL == fGpu) {
return NULL;
}
return fDrawBuffer;
}
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
GrPathRenderer* GrContext::getPathRenderer(const GrDrawTarget* target,
const GrPipelineBuilder* pipelineBuilder,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStrokeInfo& stroke,
bool allowSW,
GrPathRendererChain::DrawType drawType,
GrPathRendererChain::StencilSupport* stencilSupport) {
if (NULL == fPathRendererChain) {
fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this));
}
GrPathRenderer* pr = fPathRendererChain->getPathRenderer(target,
pipelineBuilder,
viewMatrix,
path,
stroke,
drawType,
stencilSupport);
if (NULL == pr && allowSW) {
if (NULL == fSoftwarePathRenderer) {
fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this));
}
pr = fSoftwarePathRenderer;
}
return pr;
}
////////////////////////////////////////////////////////////////////////////////
bool GrContext::isConfigRenderable(GrPixelConfig config, bool withMSAA) const {
return fGpu->caps()->isConfigRenderable(config, withMSAA);
}
int GrContext::getRecommendedSampleCount(GrPixelConfig config,
SkScalar dpi) const {
if (!this->isConfigRenderable(config, true)) {
return 0;
}
int chosenSampleCount = 0;
if (fGpu->caps()->shaderCaps()->pathRenderingSupport()) {
if (dpi >= 250.0f) {
chosenSampleCount = 4;
} else {
chosenSampleCount = 16;
}
}
return chosenSampleCount <= fGpu->caps()->maxSampleCount() ?
chosenSampleCount : 0;
}
GrDrawTarget* GrContext::getTextTarget() {
return this->prepareToDraw();
}
namespace {
void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) {
GrConfigConversionEffect::PMConversion pmToUPM;
GrConfigConversionEffect::PMConversion upmToPM;
GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM);
*pmToUPMValue = pmToUPM;
*upmToPMValue = upmToPM;
}
}
const GrFragmentProcessor* GrContext::createPMToUPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion pmToUPM =
static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix);
} else {
return NULL;
}
}
const GrFragmentProcessor* GrContext::createUPMToPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion upmToPM =
static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix);
} else {
return NULL;
}
}
//////////////////////////////////////////////////////////////////////////////
void GrContext::getResourceCacheLimits(int* maxTextures, size_t* maxTextureBytes) const {
if (maxTextures) {
*maxTextures = fResourceCache->getMaxResourceCount();
}
if (maxTextureBytes) {
*maxTextureBytes = fResourceCache->getMaxResourceBytes();
}
}
void GrContext::setResourceCacheLimits(int maxTextures, size_t maxTextureBytes) {
fResourceCache->setLimits(maxTextures, maxTextureBytes);
}
//////////////////////////////////////////////////////////////////////////////
void GrContext::addGpuTraceMarker(const GrGpuTraceMarker* marker) {
fGpu->addGpuTraceMarker(marker);
if (fDrawBuffer) {
fDrawBuffer->addGpuTraceMarker(marker);
}
}
void GrContext::removeGpuTraceMarker(const GrGpuTraceMarker* marker) {
fGpu->removeGpuTraceMarker(marker);
if (fDrawBuffer) {
fDrawBuffer->removeGpuTraceMarker(marker);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
BATCH_TEST_DEFINE(StrokeRectBatch) {
StrokeRectBatch::Geometry geometry;
geometry.fViewMatrix = GrTest::TestMatrix(random);
geometry.fColor = GrRandomColor(random);
geometry.fRect = GrTest::TestRect(random);
geometry.fStrokeWidth = random->nextBool() ? 0.0f : 1.0f;
return StrokeRectBatch::Create(geometry, random->nextBool());
}
static uint32_t seed_vertices(GrPrimitiveType type) {
switch (type) {
case kTriangles_GrPrimitiveType:
case kTriangleStrip_GrPrimitiveType:
case kTriangleFan_GrPrimitiveType:
return 3;
case kPoints_GrPrimitiveType:
return 1;
case kLines_GrPrimitiveType:
case kLineStrip_GrPrimitiveType:
return 2;
}
SkFAIL("Incomplete switch\n");
return 0;
}
static uint32_t primitive_vertices(GrPrimitiveType type) {
switch (type) {
case kTriangles_GrPrimitiveType:
return 3;
case kLines_GrPrimitiveType:
return 2;
case kTriangleStrip_GrPrimitiveType:
case kTriangleFan_GrPrimitiveType:
case kPoints_GrPrimitiveType:
case kLineStrip_GrPrimitiveType:
return 1;
}
SkFAIL("Incomplete switch\n");
return 0;
}
static SkPoint random_point(SkRandom* random, SkScalar min, SkScalar max) {
SkPoint p;
p.fX = random->nextRangeScalar(min, max);
p.fY = random->nextRangeScalar(min, max);
return p;
}
static void randomize_params(size_t count, size_t maxVertex, SkScalar min, SkScalar max,
SkRandom* random,
SkTArray<SkPoint>* positions,
SkTArray<SkPoint>* texCoords, bool hasTexCoords,
SkTArray<GrColor>* colors, bool hasColors,
SkTArray<uint16_t>* indices, bool hasIndices) {
for (uint32_t v = 0; v < count; v++) {
positions->push_back(random_point(random, min, max));
if (hasTexCoords) {
texCoords->push_back(random_point(random, min, max));
}
if (hasColors) {
colors->push_back(GrRandomColor(random));
}
if (hasIndices) {
SkASSERT(maxVertex <= SK_MaxU16);
indices->push_back(random->nextULessThan((uint16_t)maxVertex));
}
}
}
BATCH_TEST_DEFINE(VerticesBatch) {
GrPrimitiveType type = GrPrimitiveType(random->nextULessThan(kLast_GrPrimitiveType + 1));
uint32_t primitiveCount = random->nextRangeU(1, 100);
// TODO make 'sensible' indexbuffers
SkTArray<SkPoint> positions;
SkTArray<SkPoint> texCoords;
SkTArray<GrColor> colors;
SkTArray<uint16_t> indices;
bool hasTexCoords = random->nextBool();
bool hasIndices = random->nextBool();
bool hasColors = random->nextBool();
uint32_t vertexCount = seed_vertices(type) + (primitiveCount - 1) * primitive_vertices(type);
static const SkScalar kMinVertExtent = -100.f;
static const SkScalar kMaxVertExtent = 100.f;
randomize_params(seed_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent,
random,
&positions,
&texCoords, hasTexCoords,
&colors, hasColors,
&indices, hasIndices);
for (uint32_t i = 1; i < primitiveCount; i++) {
randomize_params(primitive_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent,
random,
&positions,
&texCoords, hasTexCoords,
&colors, hasColors,
&indices, hasIndices);
}
SkMatrix viewMatrix = GrTest::TestMatrix(random);
SkRect bounds;
SkDEBUGCODE(bool result = ) bounds.setBoundsCheck(positions.begin(), vertexCount);
SkASSERT(result);
viewMatrix.mapRect(&bounds);
DrawVerticesBatch::Geometry geometry;
geometry.fColor = GrRandomColor(random);
return DrawVerticesBatch::Create(geometry, type, viewMatrix,
positions.begin(), vertexCount,
indices.begin(), hasIndices ? vertexCount : 0,
colors.begin(),
texCoords.begin(),
bounds);
}
#endif