blob: a4a719b8da1066a87ea23dfa7e9af69db3711f41 [file] [log] [blame]
// Copyright 2020 Google LLC.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#ifndef SkVM_opts_DEFINED
#define SkVM_opts_DEFINED
#include "include/private/SkVx.h"
#include "src/core/SkVM.h"
namespace SK_OPTS_NS {
inline void interpret_skvm(const skvm::InterpreterInstruction insts[], const int ninsts,
const int nregs, const int loop,
const int strides[], const int nargs,
int n, void* args[]) {
using namespace skvm;
// We'll operate in SIMT style, knocking off K-size chunks from n while possible.
// We noticed quad-pumping is slower than single-pumping and both were slower than double.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
constexpr int K = 16;
#else
constexpr int K = 8;
#endif
using I32 = skvx::Vec<K, int>;
using F32 = skvx::Vec<K, float>;
using U32 = skvx::Vec<K, uint32_t>;
using U16 = skvx::Vec<K, uint16_t>;
using U8 = skvx::Vec<K, uint8_t>;
union Slot {
F32 f32;
I32 i32;
U32 u32;
};
Slot few_regs[16];
std::unique_ptr<char[]> many_regs;
Slot* regs = few_regs;
if (nregs > (int)SK_ARRAY_COUNT(few_regs)) {
// Annoyingly we can't trust that malloc() or new will work with Slot because
// the skvx::Vec types may have alignment greater than what they provide.
// We'll overallocate one extra register so we can align manually.
many_regs.reset(new char[ sizeof(Slot) * (nregs + 1) ]);
uintptr_t addr = (uintptr_t)many_regs.get();
addr += alignof(Slot) -
(addr & (alignof(Slot) - 1));
SkASSERT((addr & (alignof(Slot) - 1)) == 0);
regs = (Slot*)addr;
}
auto r = [&](Reg id) -> Slot& {
SkASSERT(0 <= id && id < nregs);
return regs[id];
};
auto arg = [&](int ix) {
SkASSERT(0 <= ix && ix < nargs);
return args[ix];
};
// Step each argument pointer ahead by its stride a number of times.
auto step_args = [&](int times) {
for (int i = 0; i < nargs; i++) {
args[i] = (void*)( (char*)args[i] + times * strides[i] );
}
};
int start = 0,
stride;
for ( ; n > 0; start = loop, n -= stride, step_args(stride)) {
stride = n >= K ? K : 1;
for (int i = start; i < ninsts; i++) {
InterpreterInstruction inst = insts[i];
// d = op(x,y/imm,z/imm)
Reg d = inst.d,
x = inst.x,
y = inst.y,
z = inst.z;
int immy = inst.immy,
immz = inst.immz;
// Ops that interact with memory need to know whether we're stride=1 or K,
// but all non-memory ops can run the same code no matter the stride.
switch (2*(int)inst.op + (stride == K ? 1 : 0)) {
default: SkUNREACHABLE;
#define STRIDE_1(op) case 2*(int)op
#define STRIDE_K(op) case 2*(int)op + 1
STRIDE_1(Op::store8 ): memcpy(arg(immy), &r(x).i32, 1); break;
STRIDE_1(Op::store16): memcpy(arg(immy), &r(x).i32, 2); break;
STRIDE_1(Op::store32): memcpy(arg(immy), &r(x).i32, 4); break;
STRIDE_K(Op::store8 ): skvx::cast<uint8_t> (r(x).i32).store(arg(immy)); break;
STRIDE_K(Op::store16): skvx::cast<uint16_t>(r(x).i32).store(arg(immy)); break;
STRIDE_K(Op::store32): (r(x).i32).store(arg(immy)); break;
STRIDE_1(Op::load8 ): r(d).i32 = 0; memcpy(&r(d).i32, arg(immy), 1); break;
STRIDE_1(Op::load16): r(d).i32 = 0; memcpy(&r(d).i32, arg(immy), 2); break;
STRIDE_1(Op::load32): r(d).i32 = 0; memcpy(&r(d).i32, arg(immy), 4); break;
STRIDE_K(Op::load8 ): r(d).i32= skvx::cast<int>(U8 ::Load(arg(immy))); break;
STRIDE_K(Op::load16): r(d).i32= skvx::cast<int>(U16::Load(arg(immy))); break;
STRIDE_K(Op::load32): r(d).i32= I32::Load(arg(immy)) ; break;
// The pointer we base our gather on is loaded indirectly from a uniform:
// - arg(immy) is the uniform holding our gather base pointer somewhere;
// - (const uint8_t*)arg(immy) + immz points to the gather base pointer;
// - memcpy() loads the gather base and into a pointer of the right type.
// After all that we have an ordinary (uniform) pointer `ptr` to load from,
// and we then gather from it using the varying indices in r(x).
STRIDE_1(Op::gather8):
for (int i = 0; i < K; i++) {
const uint8_t* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = (i==0) ? ptr[ r(x).i32[i] ] : 0;
} break;
STRIDE_1(Op::gather16):
for (int i = 0; i < K; i++) {
const uint16_t* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = (i==0) ? ptr[ r(x).i32[i] ] : 0;
} break;
STRIDE_1(Op::gather32):
for (int i = 0; i < K; i++) {
const int* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = (i==0) ? ptr[ r(x).i32[i] ] : 0;
} break;
STRIDE_K(Op::gather8):
for (int i = 0; i < K; i++) {
const uint8_t* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = ptr[ r(x).i32[i] ];
} break;
STRIDE_K(Op::gather16):
for (int i = 0; i < K; i++) {
const uint16_t* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = ptr[ r(x).i32[i] ];
} break;
STRIDE_K(Op::gather32):
for (int i = 0; i < K; i++) {
const int* ptr;
memcpy(&ptr, (const uint8_t*)arg(immy) + immz, sizeof(ptr));
r(d).i32[i] = ptr[ r(x).i32[i] ];
} break;
#undef STRIDE_1
#undef STRIDE_K
// Ops that don't interact with memory should never care about the stride.
#define CASE(op) case 2*(int)op: /*fallthrough*/ case 2*(int)op+1
CASE(Op::assert_true):
#ifdef SK_DEBUG
if (!all(r(x).i32)) {
SkDebugf("inst %d, register %d\n", i, y);
for (int i = 0; i < K; i++) {
SkDebugf("\t%2d: %08x (%g)\n", i, r(y).i32[i], r(y).f32[i]);
}
}
SkASSERT(all(r(x).i32));
#endif
break;
CASE(Op::index): {
const int iota[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
static_assert(K <= SK_ARRAY_COUNT(iota), "");
r(d).i32 = n - I32::Load(iota);
} break;
CASE(Op::uniform8):
r(d).i32 = *(const uint8_t* )( (const char*)arg(immy) + immz );
break;
CASE(Op::uniform16):
r(d).i32 = *(const uint16_t*)( (const char*)arg(immy) + immz );
break;
CASE(Op::uniform32):
r(d).i32 = *(const int* )( (const char*)arg(immy) + immz );
break;
CASE(Op::splat): r(d).i32 = immy; break;
CASE(Op::add_f32): r(d).f32 = r(x).f32 + r(y).f32; break;
CASE(Op::sub_f32): r(d).f32 = r(x).f32 - r(y).f32; break;
CASE(Op::mul_f32): r(d).f32 = r(x).f32 * r(y).f32; break;
CASE(Op::div_f32): r(d).f32 = r(x).f32 / r(y).f32; break;
CASE(Op::min_f32): r(d).f32 = min(r(x).f32, r(y).f32); break;
CASE(Op::max_f32): r(d).f32 = max(r(x).f32, r(y).f32); break;
CASE(Op::fma_f32): r(d).f32 = fma(r(x).f32, r(y).f32, r(z).f32); break;
CASE(Op::fms_f32): r(d).f32 = fma(r(x).f32, r(y).f32, -r(z).f32); break;
CASE(Op::fnma_f32): r(d).f32 = fma(-r(x).f32, r(y).f32, r(z).f32); break;
CASE(Op::sqrt_f32): r(d).f32 = sqrt(r(x).f32); break;
CASE(Op::add_i32): r(d).i32 = r(x).i32 + r(y).i32; break;
CASE(Op::sub_i32): r(d).i32 = r(x).i32 - r(y).i32; break;
CASE(Op::mul_i32): r(d).i32 = r(x).i32 * r(y).i32; break;
CASE(Op::shl_i32): r(d).i32 = r(x).i32 << immy; break;
CASE(Op::sra_i32): r(d).i32 = r(x).i32 >> immy; break;
CASE(Op::shr_i32): r(d).u32 = r(x).u32 >> immy; break;
CASE(Op:: eq_f32): r(d).i32 = r(x).f32 == r(y).f32; break;
CASE(Op::neq_f32): r(d).i32 = r(x).f32 != r(y).f32; break;
CASE(Op:: gt_f32): r(d).i32 = r(x).f32 > r(y).f32; break;
CASE(Op::gte_f32): r(d).i32 = r(x).f32 >= r(y).f32; break;
CASE(Op:: eq_i32): r(d).i32 = r(x).i32 == r(y).i32; break;
CASE(Op:: gt_i32): r(d).i32 = r(x).i32 > r(y).i32; break;
CASE(Op::bit_and ): r(d).i32 = r(x).i32 & r(y).i32; break;
CASE(Op::bit_or ): r(d).i32 = r(x).i32 | r(y).i32; break;
CASE(Op::bit_xor ): r(d).i32 = r(x).i32 ^ r(y).i32; break;
CASE(Op::bit_clear): r(d).i32 = r(x).i32 & ~r(y).i32; break;
CASE(Op::select): r(d).i32 = skvx::if_then_else(r(x).i32, r(y).i32, r(z).i32);
break;
CASE(Op::pack): r(d).u32 = r(x).u32 | (r(y).u32 << immz); break;
CASE(Op::ceil): r(d).f32 = skvx::ceil(r(x).f32) ; break;
CASE(Op::floor): r(d).f32 = skvx::floor(r(x).f32) ; break;
CASE(Op::to_f32): r(d).f32 = skvx::cast<float>( r(x).i32 ); break;
CASE(Op::trunc): r(d).i32 = skvx::cast<int> ( r(x).f32 ); break;
CASE(Op::round): r(d).i32 = skvx::cast<int> (skvx::lrint(r(x).f32)); break;
#undef CASE
}
}
}
}
}
#endif//SkVM_opts_DEFINED