|  |  | 
|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | // This is a GPU-backend specific test. It relies on static intializers to work | 
|  |  | 
|  | #include "SkTypes.h" | 
|  |  | 
|  | #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS | 
|  |  | 
|  | #include "GrAutoLocaleSetter.h" | 
|  | #include "GrBatchTest.h" | 
|  | #include "GrContextFactory.h" | 
|  | #include "GrDrawingManager.h" | 
|  | #include "GrInvariantOutput.h" | 
|  | #include "GrPipeline.h" | 
|  | #include "GrResourceProvider.h" | 
|  | #include "GrTest.h" | 
|  | #include "GrXferProcessor.h" | 
|  | #include "SkChecksum.h" | 
|  | #include "SkRandom.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | #include "batches/GrDrawBatch.h" | 
|  |  | 
|  | #include "effects/GrConfigConversionEffect.h" | 
|  | #include "effects/GrPorterDuffXferProcessor.h" | 
|  | #include "effects/GrXfermodeFragmentProcessor.h" | 
|  |  | 
|  | #include "gl/GrGLGpu.h" | 
|  | #include "glsl/GrGLSLFragmentProcessor.h" | 
|  | #include "glsl/GrGLSLFragmentShaderBuilder.h" | 
|  | #include "glsl/GrGLSLProgramBuilder.h" | 
|  |  | 
|  | /* | 
|  | * A dummy processor which just tries to insert a massive key and verify that it can retrieve the | 
|  | * whole thing correctly | 
|  | */ | 
|  | static const uint32_t kMaxKeySize = 1024; | 
|  |  | 
|  | class GLBigKeyProcessor : public GrGLSLFragmentProcessor { | 
|  | public: | 
|  | GLBigKeyProcessor(const GrProcessor&) {} | 
|  |  | 
|  | virtual void emitCode(EmitArgs& args) override { | 
|  | // pass through | 
|  | GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; | 
|  | if (args.fInputColor) { | 
|  | fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor); | 
|  | } else { | 
|  | fragBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { | 
|  | for (uint32_t i = 0; i < kMaxKeySize; i++) { | 
|  | b->add32(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef GrGLSLFragmentProcessor INHERITED; | 
|  | }; | 
|  |  | 
|  | class BigKeyProcessor : public GrFragmentProcessor { | 
|  | public: | 
|  | static GrFragmentProcessor* Create() { | 
|  | return new BigKeyProcessor; | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "Big Ole Key"; } | 
|  |  | 
|  | GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { | 
|  | return new GLBigKeyProcessor(*this); | 
|  | } | 
|  |  | 
|  | private: | 
|  | BigKeyProcessor() { | 
|  | this->initClassID<BigKeyProcessor>(); | 
|  | } | 
|  | virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps, | 
|  | GrProcessorKeyBuilder* b) const override { | 
|  | GLBigKeyProcessor::GenKey(*this, caps, b); | 
|  | } | 
|  | bool onIsEqual(const GrFragmentProcessor&) const override { return true; } | 
|  | void onComputeInvariantOutput(GrInvariantOutput* inout) const override { } | 
|  |  | 
|  | GR_DECLARE_FRAGMENT_PROCESSOR_TEST; | 
|  |  | 
|  | typedef GrFragmentProcessor INHERITED; | 
|  | }; | 
|  |  | 
|  | GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); | 
|  |  | 
|  | const GrFragmentProcessor* BigKeyProcessor::TestCreate(GrProcessorTestData*) { | 
|  | return BigKeyProcessor::Create(); | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | class BlockInputFragmentProcessor : public GrFragmentProcessor { | 
|  | public: | 
|  | static GrFragmentProcessor* Create(const GrFragmentProcessor* fp) { | 
|  | return new BlockInputFragmentProcessor(fp); | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "Block Input"; } | 
|  |  | 
|  | GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLFP; } | 
|  |  | 
|  | private: | 
|  | class GLFP : public GrGLSLFragmentProcessor { | 
|  | public: | 
|  | void emitCode(EmitArgs& args) override { | 
|  | this->emitChild(0, nullptr, args); | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef GrGLSLFragmentProcessor INHERITED; | 
|  | }; | 
|  |  | 
|  | BlockInputFragmentProcessor(const GrFragmentProcessor* child) { | 
|  | this->initClassID<BlockInputFragmentProcessor>(); | 
|  | this->registerChildProcessor(child); | 
|  | } | 
|  |  | 
|  | void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {} | 
|  |  | 
|  | bool onIsEqual(const GrFragmentProcessor&) const override { return true; } | 
|  |  | 
|  | void onComputeInvariantOutput(GrInvariantOutput* inout) const override { | 
|  | inout->setToOther(kRGBA_GrColorComponentFlags, GrColor_WHITE, | 
|  | GrInvariantOutput::kWillNot_ReadInput); | 
|  | this->childProcessor(0).computeInvariantOutput(inout); | 
|  | } | 
|  |  | 
|  | typedef GrFragmentProcessor INHERITED; | 
|  | }; | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /* | 
|  | * Begin test code | 
|  | */ | 
|  | static const int kRenderTargetHeight = 1; | 
|  | static const int kRenderTargetWidth = 1; | 
|  |  | 
|  | static GrRenderTarget* random_render_target(GrTextureProvider* textureProvider, SkRandom* random, | 
|  | const GrCaps* caps) { | 
|  | // setup render target | 
|  | GrTextureParams params; | 
|  | GrSurfaceDesc texDesc; | 
|  | texDesc.fWidth = kRenderTargetWidth; | 
|  | texDesc.fHeight = kRenderTargetHeight; | 
|  | texDesc.fFlags = kRenderTarget_GrSurfaceFlag; | 
|  | texDesc.fConfig = kRGBA_8888_GrPixelConfig; | 
|  | texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin : | 
|  | kBottomLeft_GrSurfaceOrigin; | 
|  | texDesc.fSampleCnt = random->nextBool() == true ? SkTMin(4, caps->maxSampleCount()) : 0; | 
|  |  | 
|  | GrUniqueKey key; | 
|  | static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); | 
|  | GrUniqueKey::Builder builder(&key, kDomain, 2); | 
|  | builder[0] = texDesc.fOrigin; | 
|  | builder[1] = texDesc.fSampleCnt; | 
|  | builder.finish(); | 
|  |  | 
|  | GrTexture* texture = textureProvider->findAndRefTextureByUniqueKey(key); | 
|  | if (!texture) { | 
|  | texture = textureProvider->createTexture(texDesc, true); | 
|  | if (texture) { | 
|  | textureProvider->assignUniqueKeyToTexture(key, texture); | 
|  | } | 
|  | } | 
|  | return texture ? texture->asRenderTarget() : nullptr; | 
|  | } | 
|  |  | 
|  | static void set_random_xpf(GrPipelineBuilder* pipelineBuilder, GrProcessorTestData* d) { | 
|  | SkAutoTUnref<const GrXPFactory> xpf(GrProcessorTestFactory<GrXPFactory>::Create(d)); | 
|  | SkASSERT(xpf); | 
|  | pipelineBuilder->setXPFactory(xpf.get()); | 
|  | } | 
|  |  | 
|  | static const GrFragmentProcessor* create_random_proc_tree(GrProcessorTestData* d, | 
|  | int minLevels, int maxLevels) { | 
|  | SkASSERT(1 <= minLevels); | 
|  | SkASSERT(minLevels <= maxLevels); | 
|  |  | 
|  | // Return a leaf node if maxLevels is 1 or if we randomly chose to terminate. | 
|  | // If returning a leaf node, make sure that it doesn't have children (e.g. another | 
|  | // GrComposeEffect) | 
|  | const float terminateProbability = 0.3f; | 
|  | if (1 == minLevels) { | 
|  | bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability); | 
|  | if (terminate) { | 
|  | const GrFragmentProcessor* fp; | 
|  | while (true) { | 
|  | fp = GrProcessorTestFactory<GrFragmentProcessor>::Create(d); | 
|  | SkASSERT(fp); | 
|  | if (0 == fp->numChildProcessors()) { | 
|  | break; | 
|  | } | 
|  | fp->unref(); | 
|  | } | 
|  | return fp; | 
|  | } | 
|  | } | 
|  | // If we didn't terminate, choose either the left or right subtree to fulfill | 
|  | // the minLevels requirement of this tree; the other child can have as few levels as it wants. | 
|  | // Also choose a random xfer mode that's supported by CreateFrom2Procs(). | 
|  | if (minLevels > 1) { | 
|  | --minLevels; | 
|  | } | 
|  | SkAutoTUnref<const GrFragmentProcessor> minLevelsChild(create_random_proc_tree(d, minLevels, | 
|  | maxLevels - 1)); | 
|  | SkAutoTUnref<const GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1, | 
|  | maxLevels - 1)); | 
|  | SkXfermode::Mode mode = static_cast<SkXfermode::Mode>(d->fRandom->nextRangeU(0, | 
|  | SkXfermode::kLastCoeffMode)); | 
|  | const GrFragmentProcessor* fp; | 
|  | if (d->fRandom->nextF() < 0.5f) { | 
|  | fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(minLevelsChild, otherChild, mode); | 
|  | SkASSERT(fp); | 
|  | } else { | 
|  | fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(otherChild, minLevelsChild, mode); | 
|  | SkASSERT(fp); | 
|  | } | 
|  | return fp; | 
|  | } | 
|  |  | 
|  | static void set_random_color_coverage_stages(GrPipelineBuilder* pipelineBuilder, | 
|  | GrProcessorTestData* d, int maxStages) { | 
|  | // Randomly choose to either create a linear pipeline of procs or create one proc tree | 
|  | const float procTreeProbability = 0.5f; | 
|  | if (d->fRandom->nextF() < procTreeProbability) { | 
|  | // A full tree with 5 levels (31 nodes) may exceed the max allowed length of the gl | 
|  | // processor key; maxTreeLevels should be a number from 1 to 4 inclusive. | 
|  | const int maxTreeLevels = 4; | 
|  | SkAutoTUnref<const GrFragmentProcessor> fp( | 
|  | create_random_proc_tree(d, 2, maxTreeLevels)); | 
|  | pipelineBuilder->addColorFragmentProcessor(fp); | 
|  | } else { | 
|  | int numProcs = d->fRandom->nextULessThan(maxStages + 1); | 
|  | int numColorProcs = d->fRandom->nextULessThan(numProcs + 1); | 
|  |  | 
|  | for (int s = 0; s < numProcs;) { | 
|  | SkAutoTUnref<const GrFragmentProcessor> fp( | 
|  | GrProcessorTestFactory<GrFragmentProcessor>::Create(d)); | 
|  | SkASSERT(fp); | 
|  |  | 
|  | // finally add the stage to the correct pipeline in the drawstate | 
|  | if (s < numColorProcs) { | 
|  | pipelineBuilder->addColorFragmentProcessor(fp); | 
|  | } else { | 
|  | pipelineBuilder->addCoverageFragmentProcessor(fp); | 
|  | } | 
|  | ++s; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_random_state(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { | 
|  | int state = 0; | 
|  | for (int i = 1; i <= GrPipelineBuilder::kLast_Flag; i <<= 1) { | 
|  | state |= random->nextBool() * i; | 
|  | } | 
|  |  | 
|  | // If we don't have an MSAA rendertarget then we have to disable useHWAA | 
|  | if ((state | GrPipelineBuilder::kHWAntialias_Flag) && | 
|  | !pipelineBuilder->getRenderTarget()->isUnifiedMultisampled()) { | 
|  | state &= ~GrPipelineBuilder::kHWAntialias_Flag; | 
|  | } | 
|  | pipelineBuilder->enableState(state); | 
|  | } | 
|  |  | 
|  | // right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()' | 
|  | static void set_random_stencil(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { | 
|  | GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil, | 
|  | kReplace_StencilOp, | 
|  | kReplace_StencilOp, | 
|  | kAlways_StencilFunc, | 
|  | 0xffff, | 
|  | 0xffff, | 
|  | 0xffff); | 
|  | GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil, | 
|  | kKeep_StencilOp, | 
|  | kKeep_StencilOp, | 
|  | kNever_StencilFunc, | 
|  | 0xffff, | 
|  | 0xffff, | 
|  | 0xffff); | 
|  |  | 
|  | if (random->nextBool()) { | 
|  | pipelineBuilder->setStencil(kDoesWriteStencil); | 
|  | } else { | 
|  | pipelineBuilder->setStencil(kDoesNotWriteStencil); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool GrDrawingManager::ProgramUnitTest(GrContext* context, int maxStages) { | 
|  | GrDrawingManager* drawingManager = context->drawingManager(); | 
|  |  | 
|  | // setup dummy textures | 
|  | GrSurfaceDesc dummyDesc; | 
|  | dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag; | 
|  | dummyDesc.fConfig = kSkia8888_GrPixelConfig; | 
|  | dummyDesc.fWidth = 34; | 
|  | dummyDesc.fHeight = 18; | 
|  | SkAutoTUnref<GrTexture> dummyTexture1( | 
|  | context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); | 
|  | dummyDesc.fFlags = kNone_GrSurfaceFlags; | 
|  | dummyDesc.fConfig = kAlpha_8_GrPixelConfig; | 
|  | dummyDesc.fWidth = 16; | 
|  | dummyDesc.fHeight = 22; | 
|  | SkAutoTUnref<GrTexture> dummyTexture2( | 
|  | context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); | 
|  |  | 
|  | if (!dummyTexture1 || ! dummyTexture2) { | 
|  | SkDebugf("Could not allocate dummy textures"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; | 
|  |  | 
|  | // dummy scissor state | 
|  | GrScissorState scissor; | 
|  |  | 
|  | // wide open clip | 
|  | GrClip clip; | 
|  |  | 
|  | SkRandom random; | 
|  | static const int NUM_TESTS = 2048; | 
|  | for (int t = 0; t < NUM_TESTS; t++) { | 
|  | // setup random render target(can fail) | 
|  | SkAutoTUnref<GrRenderTarget> rt(random_render_target( | 
|  | context->textureProvider(), &random, context->caps())); | 
|  | if (!rt.get()) { | 
|  | SkDebugf("Could not allocate render target"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | GrPipelineBuilder pipelineBuilder; | 
|  | pipelineBuilder.setRenderTarget(rt.get()); | 
|  | pipelineBuilder.setClip(clip); | 
|  |  | 
|  | SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context)); | 
|  | SkASSERT(batch); | 
|  |  | 
|  | GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures); | 
|  | set_random_color_coverage_stages(&pipelineBuilder, &ptd, maxStages); | 
|  | set_random_xpf(&pipelineBuilder, &ptd); | 
|  | set_random_state(&pipelineBuilder, &random); | 
|  | set_random_stencil(&pipelineBuilder, &random); | 
|  |  | 
|  | GrTestTarget tt; | 
|  | context->getTestTarget(&tt, rt); | 
|  |  | 
|  | tt.target()->drawBatch(pipelineBuilder, batch); | 
|  | } | 
|  | // Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes) | 
|  | drawingManager->flush(); | 
|  |  | 
|  | // Validate that GrFPs work correctly without an input. | 
|  | GrSurfaceDesc rtDesc; | 
|  | rtDesc.fWidth = kRenderTargetWidth; | 
|  | rtDesc.fHeight = kRenderTargetHeight; | 
|  | rtDesc.fFlags = kRenderTarget_GrSurfaceFlag; | 
|  | rtDesc.fConfig = kRGBA_8888_GrPixelConfig; | 
|  | SkAutoTUnref<GrRenderTarget> rt( | 
|  | context->textureProvider()->createTexture(rtDesc, false)->asRenderTarget()); | 
|  | int fpFactoryCnt = GrProcessorTestFactory<GrFragmentProcessor>::Count(); | 
|  | for (int i = 0; i < fpFactoryCnt; ++i) { | 
|  | // Since FP factories internally randomize, call each 10 times. | 
|  | for (int j = 0; j < 10; ++j) { | 
|  | SkAutoTUnref<GrDrawBatch> batch(GrRandomDrawBatch(&random, context)); | 
|  | SkASSERT(batch); | 
|  | GrProcessorTestData ptd(&random, context, context->caps(), rt, dummyTextures); | 
|  | GrPipelineBuilder builder; | 
|  | builder.setXPFactory(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode))->unref(); | 
|  | builder.setRenderTarget(rt); | 
|  | builder.setClip(clip); | 
|  |  | 
|  | SkAutoTUnref<const GrFragmentProcessor> fp( | 
|  | GrProcessorTestFactory<GrFragmentProcessor>::CreateIdx(i, &ptd)); | 
|  | SkAutoTUnref<const GrFragmentProcessor> blockFP( | 
|  | BlockInputFragmentProcessor::Create(fp)); | 
|  | builder.addColorFragmentProcessor(blockFP); | 
|  |  | 
|  | GrTestTarget tt; | 
|  | context->getTestTarget(&tt, rt); | 
|  |  | 
|  | tt.target()->drawBatch(builder, batch); | 
|  | drawingManager->flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DEF_GPUTEST(GLPrograms, reporter, factory) { | 
|  | // Set a locale that would cause shader compilation to fail because of , as decimal separator. | 
|  | // skbug 3330 | 
|  | #ifdef SK_BUILD_FOR_WIN | 
|  | GrAutoLocaleSetter als("sv-SE"); | 
|  | #else | 
|  | GrAutoLocaleSetter als("sv_SE.UTF-8"); | 
|  | #endif | 
|  |  | 
|  | // We suppress prints to avoid spew | 
|  | GrContextOptions opts; | 
|  | opts.fSuppressPrints = true; | 
|  | GrContextFactory debugFactory(opts); | 
|  | for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { | 
|  | GrContext* context = debugFactory.get(static_cast<GrContextFactory::GLContextType>(type)); | 
|  | if (context) { | 
|  | GrGLGpu* gpu = static_cast<GrGLGpu*>(context->getGpu()); | 
|  |  | 
|  | /* | 
|  | * For the time being, we only support the test with desktop GL or for android on | 
|  | * ARM platforms | 
|  | * TODO When we run ES 3.00 GLSL in more places, test again | 
|  | */ | 
|  | int maxStages; | 
|  | if (kGL_GrGLStandard == gpu->glStandard() || | 
|  | kARM_GrGLVendor == gpu->ctxInfo().vendor()) { | 
|  | maxStages = 6; | 
|  | } else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() || | 
|  | kOther_GrGLRenderer == gpu->ctxInfo().renderer()) { | 
|  | maxStages = 1; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | #if SK_ANGLE | 
|  | // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. | 
|  | if (type == GrContextFactory::kANGLE_GLContextType) { | 
|  | maxStages = 2; | 
|  | } | 
|  | #endif | 
|  | #if SK_COMMAND_BUFFER | 
|  | // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. | 
|  | // TODO(hendrikw): This only needs to happen with the ANGLE comand buffer backend. | 
|  | if (type == GrContextFactory::kCommandBuffer_GLContextType) { | 
|  | maxStages = 2; | 
|  | } | 
|  | #endif | 
|  | REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(context, maxStages)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif |