|  | /* | 
|  | * Copyright 2008 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "src/core/SkStrokerPriv.h" | 
|  |  | 
|  | #include "include/private/base/SkMacros.h" | 
|  | #include "include/private/base/SkTo.h" | 
|  | #include "src/core/SkGeometry.h" | 
|  | #include "src/core/SkPathPriv.h" | 
|  | #include "src/core/SkPointPriv.h" | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | enum { | 
|  | kTangent_RecursiveLimit, | 
|  | kCubic_RecursiveLimit, | 
|  | kConic_RecursiveLimit, | 
|  | kQuad_RecursiveLimit | 
|  | }; | 
|  |  | 
|  | // quads with extreme widths (e.g. (0,1) (1,6) (0,3) width=5e7) recurse to point of failure | 
|  | // largest seen for normal cubics : 5, 26 | 
|  | // largest seen for normal quads : 11 | 
|  | // 3x limits seen in practice, except for cubics (3x limit would be ~75). | 
|  | // For cubics, we never get close to 75 when running through dm. The limit of 24 | 
|  | // was chosen because it's close to the peak in a count of cubic recursion depths visited | 
|  | // (define DEBUG_CUBIC_RECURSION_DEPTHS) and no diffs were produced on gold when using it. | 
|  | static const int kRecursiveLimits[] = { 5*3, 24, 11*3, 11*3 }; | 
|  |  | 
|  | static_assert(0 == kTangent_RecursiveLimit, "cubic_stroke_relies_on_tangent_equalling_zero"); | 
|  | static_assert(1 == kCubic_RecursiveLimit, "cubic_stroke_relies_on_cubic_equalling_one"); | 
|  | static_assert(std::size(kRecursiveLimits) == kQuad_RecursiveLimit + 1, | 
|  | "recursive_limits_mismatch"); | 
|  |  | 
|  | #if defined SK_DEBUG && QUAD_STROKE_APPROX_EXTENDED_DEBUGGING | 
|  | int gMaxRecursion[std::size(kRecursiveLimits)] = { 0 }; | 
|  | #endif | 
|  | #ifndef DEBUG_QUAD_STROKER | 
|  | #define DEBUG_QUAD_STROKER 0 | 
|  | #endif | 
|  |  | 
|  | #if DEBUG_QUAD_STROKER | 
|  | /* Enable to show the decisions made in subdividing the curve -- helpful when the resulting | 
|  | stroke has more than the optimal number of quadratics and lines */ | 
|  | #define STROKER_RESULT(resultType, depth, quadPts, format, ...) \ | 
|  | SkDebugf("[%d] %s " format "\n", depth, __FUNCTION__, __VA_ARGS__), \ | 
|  | SkDebugf("  " #resultType " t=(%g,%g)\n", quadPts->fStartT, quadPts->fEndT), \ | 
|  | resultType | 
|  | #define STROKER_DEBUG_PARAMS(...) , __VA_ARGS__ | 
|  | #else | 
|  | #define STROKER_RESULT(resultType, depth, quadPts, format, ...) \ | 
|  | resultType | 
|  | #define STROKER_DEBUG_PARAMS(...) | 
|  | #endif | 
|  |  | 
|  | #ifndef DEBUG_CUBIC_RECURSION_DEPTHS | 
|  | #define DEBUG_CUBIC_RECURSION_DEPTHS 0 | 
|  | #endif | 
|  | #if DEBUG_CUBIC_RECURSION_DEPTHS | 
|  | /* Prints a histogram of recursion depths at process termination. */ | 
|  | static struct DepthHistogram { | 
|  | inline static constexpr int kMaxDepth = 75; | 
|  | int fCubicDepths[kMaxDepth + 1]; | 
|  |  | 
|  | DepthHistogram() { memset(fCubicDepths, 0, sizeof(fCubicDepths)); } | 
|  |  | 
|  | ~DepthHistogram() { | 
|  | SkDebugf("# times recursion terminated per depth:\n"); | 
|  | for (int i = 0; i <= kMaxDepth; i++) { | 
|  | SkDebugf("  depth %d: %d\n", i, fCubicDepths[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | inline void incDepth(int depth) { | 
|  | SkASSERT(depth >= 0 && depth <= kMaxDepth); | 
|  | fCubicDepths[depth]++; | 
|  | } | 
|  | } sCubicDepthHistogram; | 
|  |  | 
|  | #define DEBUG_CUBIC_RECURSION_TRACK_DEPTH(depth) sCubicDepthHistogram.incDepth(depth) | 
|  | #else | 
|  | #define DEBUG_CUBIC_RECURSION_TRACK_DEPTH(depth) (void)(depth) | 
|  | #endif | 
|  |  | 
|  | static inline bool degenerate_vector(const SkVector& v) { | 
|  | return !SkPointPriv::CanNormalize(v.fX, v.fY); | 
|  | } | 
|  |  | 
|  | static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after, SkScalar scale, | 
|  | SkScalar radius, | 
|  | SkVector* normal, SkVector* unitNormal) { | 
|  | if (!unitNormal->setNormalize((after.fX - before.fX) * scale, | 
|  | (after.fY - before.fY) * scale)) { | 
|  | return false; | 
|  | } | 
|  | SkPointPriv::RotateCCW(unitNormal); | 
|  | unitNormal->scale(radius, normal); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool set_normal_unitnormal(const SkVector& vec, | 
|  | SkScalar radius, | 
|  | SkVector* normal, SkVector* unitNormal) { | 
|  | if (!unitNormal->setNormalize(vec.fX, vec.fY)) { | 
|  | return false; | 
|  | } | 
|  | SkPointPriv::RotateCCW(unitNormal); | 
|  | unitNormal->scale(radius, normal); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | struct SkQuadConstruct {    // The state of the quad stroke under construction. | 
|  | SkPoint fQuad[3];       // the stroked quad parallel to the original curve | 
|  | SkPoint fTangentStart;  // a point tangent to fQuad[0] | 
|  | SkPoint fTangentEnd;    // a point tangent to fQuad[2] | 
|  | SkScalar fStartT;       // a segment of the original curve | 
|  | SkScalar fMidT;         //              " | 
|  | SkScalar fEndT;         //              " | 
|  | bool fStartSet;         // state to share common points across structs | 
|  | bool fEndSet;           //                     " | 
|  | bool fOppositeTangents; // set if coincident tangents have opposite directions | 
|  |  | 
|  | // return false if start and end are too close to have a unique middle | 
|  | bool init(SkScalar start, SkScalar end) { | 
|  | fStartT = start; | 
|  | fMidT = (start + end) * SK_ScalarHalf; | 
|  | fEndT = end; | 
|  | fStartSet = fEndSet = false; | 
|  | return fStartT < fMidT && fMidT < fEndT; | 
|  | } | 
|  |  | 
|  | bool initWithStart(SkQuadConstruct* parent) { | 
|  | if (!init(parent->fStartT, parent->fMidT)) { | 
|  | return false; | 
|  | } | 
|  | fQuad[0] = parent->fQuad[0]; | 
|  | fTangentStart = parent->fTangentStart; | 
|  | fStartSet = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool initWithEnd(SkQuadConstruct* parent) { | 
|  | if (!init(parent->fMidT, parent->fEndT)) { | 
|  | return false; | 
|  | } | 
|  | fQuad[2] = parent->fQuad[2]; | 
|  | fTangentEnd = parent->fTangentEnd; | 
|  | fEndSet = true; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class SkPathStroker { | 
|  | public: | 
|  | SkPathStroker(const SkPath& src, | 
|  | SkScalar radius, SkScalar miterLimit, SkPaint::Cap, | 
|  | SkPaint::Join, SkScalar resScale, | 
|  | bool canIgnoreCenter); | 
|  |  | 
|  | bool hasOnlyMoveTo() const { return 0 == fSegmentCount; } | 
|  | SkPoint moveToPt() const { return fFirstPt; } | 
|  |  | 
|  | void moveTo(const SkPoint&); | 
|  | void lineTo(const SkPoint&, const SkPath::Iter* iter = nullptr); | 
|  | void quadTo(const SkPoint&, const SkPoint&); | 
|  | void conicTo(const SkPoint&, const SkPoint&, SkScalar weight); | 
|  | void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&); | 
|  | void close(bool isLine) { this->finishContour(true, isLine); } | 
|  |  | 
|  | void done(SkPath* dst, bool isLine) { | 
|  | this->finishContour(false, isLine); | 
|  | dst->swap(fOuter); | 
|  | } | 
|  |  | 
|  | SkScalar getResScale() const { return fResScale; } | 
|  |  | 
|  | bool isCurrentContourEmpty() const { | 
|  | return fInner.isZeroLengthSincePoint(0) && | 
|  | fOuter.isZeroLengthSincePoint(fFirstOuterPtIndexInContour); | 
|  | } | 
|  |  | 
|  | private: | 
|  | SkScalar    fRadius; | 
|  | SkScalar    fInvMiterLimit; | 
|  | SkScalar    fResScale; | 
|  | SkScalar    fInvResScale; | 
|  | SkScalar    fInvResScaleSquared; | 
|  |  | 
|  | SkVector    fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal; | 
|  | SkPoint     fFirstPt, fPrevPt;  // on original path | 
|  | SkPoint     fFirstOuterPt; | 
|  | int         fFirstOuterPtIndexInContour; | 
|  | int         fSegmentCount; | 
|  | bool        fPrevIsLine; | 
|  | bool        fCanIgnoreCenter; | 
|  |  | 
|  | SkStrokerPriv::CapProc  fCapper; | 
|  | SkStrokerPriv::JoinProc fJoiner; | 
|  |  | 
|  | SkPath  fInner, fOuter, fCusper; // outer is our working answer, inner is temp | 
|  |  | 
|  | enum StrokeType { | 
|  | kOuter_StrokeType = 1,      // use sign-opposite values later to flip perpendicular axis | 
|  | kInner_StrokeType = -1 | 
|  | } fStrokeType; | 
|  |  | 
|  | enum ResultType { | 
|  | kSplit_ResultType,          // the caller should split the quad stroke in two | 
|  | kDegenerate_ResultType,     // the caller should add a line | 
|  | kQuad_ResultType,           // the caller should (continue to try to) add a quad stroke | 
|  | }; | 
|  |  | 
|  | enum ReductionType { | 
|  | kPoint_ReductionType,       // all curve points are practically identical | 
|  | kLine_ReductionType,        // the control point is on the line between the ends | 
|  | kQuad_ReductionType,        // the control point is outside the line between the ends | 
|  | kDegenerate_ReductionType,  // the control point is on the line but outside the ends | 
|  | kDegenerate2_ReductionType, // two control points are on the line but outside ends (cubic) | 
|  | kDegenerate3_ReductionType, // three areas of max curvature found (for cubic) | 
|  | }; | 
|  |  | 
|  | enum IntersectRayType { | 
|  | kCtrlPt_RayType, | 
|  | kResultType_RayType, | 
|  | }; | 
|  |  | 
|  | int fRecursionDepth;            // track stack depth to abort if numerics run amok | 
|  | bool fFoundTangents;            // do less work until tangents meet (cubic) | 
|  | bool fJoinCompleted;            // previous join was not degenerate | 
|  |  | 
|  | void addDegenerateLine(const SkQuadConstruct* ); | 
|  | static ReductionType CheckConicLinear(const SkConic& , SkPoint* reduction); | 
|  | static ReductionType CheckCubicLinear(const SkPoint cubic[4], SkPoint reduction[3], | 
|  | const SkPoint** tanPtPtr); | 
|  | static ReductionType CheckQuadLinear(const SkPoint quad[3], SkPoint* reduction); | 
|  | ResultType compareQuadConic(const SkConic& , SkQuadConstruct* ) const; | 
|  | ResultType compareQuadCubic(const SkPoint cubic[4], SkQuadConstruct* ); | 
|  | ResultType compareQuadQuad(const SkPoint quad[3], SkQuadConstruct* ); | 
|  | void conicPerpRay(const SkConic& , SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const; | 
|  | void conicQuadEnds(const SkConic& , SkQuadConstruct* ) const; | 
|  | bool conicStroke(const SkConic& , SkQuadConstruct* ); | 
|  | bool cubicMidOnLine(const SkPoint cubic[4], const SkQuadConstruct* ) const; | 
|  | void cubicPerpRay(const SkPoint cubic[4], SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const; | 
|  | void cubicQuadEnds(const SkPoint cubic[4], SkQuadConstruct* ); | 
|  | void cubicQuadMid(const SkPoint cubic[4], const SkQuadConstruct* , SkPoint* mid) const; | 
|  | bool cubicStroke(const SkPoint cubic[4], SkQuadConstruct* ); | 
|  | void init(StrokeType strokeType, SkQuadConstruct* , SkScalar tStart, SkScalar tEnd); | 
|  | ResultType intersectRay(SkQuadConstruct* , IntersectRayType  STROKER_DEBUG_PARAMS(int) ) const; | 
|  | bool ptInQuadBounds(const SkPoint quad[3], const SkPoint& pt) const; | 
|  | void quadPerpRay(const SkPoint quad[3], SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const; | 
|  | bool quadStroke(const SkPoint quad[3], SkQuadConstruct* ); | 
|  | void setConicEndNormal(const SkConic& , | 
|  | const SkVector& normalAB, const SkVector& unitNormalAB, | 
|  | SkVector* normalBC, SkVector* unitNormalBC); | 
|  | void setCubicEndNormal(const SkPoint cubic[4], | 
|  | const SkVector& normalAB, const SkVector& unitNormalAB, | 
|  | SkVector* normalCD, SkVector* unitNormalCD); | 
|  | void setQuadEndNormal(const SkPoint quad[3], | 
|  | const SkVector& normalAB, const SkVector& unitNormalAB, | 
|  | SkVector* normalBC, SkVector* unitNormalBC); | 
|  | void setRayPts(const SkPoint& tPt, SkVector* dxy, SkPoint* onPt, SkPoint* tangent) const; | 
|  | static bool SlightAngle(SkQuadConstruct* ); | 
|  | ResultType strokeCloseEnough(const SkPoint stroke[3], const SkPoint ray[2], | 
|  | SkQuadConstruct*  STROKER_DEBUG_PARAMS(int depth) ) const; | 
|  | ResultType tangentsMeet(const SkPoint cubic[4], SkQuadConstruct* ); | 
|  |  | 
|  | void    finishContour(bool close, bool isLine); | 
|  | bool    preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal, | 
|  | bool isLine); | 
|  | void    postJoinTo(const SkPoint&, const SkVector& normal, | 
|  | const SkVector& unitNormal); | 
|  |  | 
|  | void    line_to(const SkPoint& currPt, const SkVector& normal); | 
|  | }; | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | bool SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal, | 
|  | SkVector* unitNormal, bool currIsLine) { | 
|  | SkASSERT(fSegmentCount >= 0); | 
|  |  | 
|  | SkScalar    prevX = fPrevPt.fX; | 
|  | SkScalar    prevY = fPrevPt.fY; | 
|  |  | 
|  | if (!set_normal_unitnormal(fPrevPt, currPt, fResScale, fRadius, normal, unitNormal)) { | 
|  | if (SkStrokerPriv::CapFactory(SkPaint::kButt_Cap) == fCapper) { | 
|  | return false; | 
|  | } | 
|  | /* Square caps and round caps draw even if the segment length is zero. | 
|  | Since the zero length segment has no direction, set the orientation | 
|  | to upright as the default orientation */ | 
|  | normal->set(fRadius, 0); | 
|  | unitNormal->set(1, 0); | 
|  | } | 
|  |  | 
|  | if (fSegmentCount == 0) { | 
|  | fFirstNormal = *normal; | 
|  | fFirstUnitNormal = *unitNormal; | 
|  | fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY); | 
|  |  | 
|  | fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY); | 
|  | fInner.moveTo(prevX - normal->fX, prevY - normal->fY); | 
|  | } else {    // we have a previous segment | 
|  | fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal, | 
|  | fRadius, fInvMiterLimit, fPrevIsLine, currIsLine); | 
|  | } | 
|  | fPrevIsLine = currIsLine; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal, | 
|  | const SkVector& unitNormal) { | 
|  | fJoinCompleted = true; | 
|  | fPrevPt = currPt; | 
|  | fPrevUnitNormal = unitNormal; | 
|  | fPrevNormal = normal; | 
|  | fSegmentCount += 1; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::finishContour(bool close, bool currIsLine) { | 
|  | if (fSegmentCount > 0) { | 
|  | SkPoint pt; | 
|  |  | 
|  | if (close) { | 
|  | fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, | 
|  | fFirstUnitNormal, fRadius, fInvMiterLimit, | 
|  | fPrevIsLine, currIsLine); | 
|  | fOuter.close(); | 
|  |  | 
|  | if (fCanIgnoreCenter) { | 
|  | // If we can ignore the center just make sure the larger of the two paths | 
|  | // is preserved and don't add the smaller one. | 
|  | if (fInner.getBounds().contains(fOuter.getBounds())) { | 
|  | fInner.swap(fOuter); | 
|  | } | 
|  | } else { | 
|  | // now add fInner as its own contour | 
|  | fInner.getLastPt(&pt); | 
|  | fOuter.moveTo(pt.fX, pt.fY); | 
|  | fOuter.reversePathTo(fInner); | 
|  | fOuter.close(); | 
|  | } | 
|  | } else {    // add caps to start and end | 
|  | // cap the end | 
|  | fInner.getLastPt(&pt); | 
|  | fCapper(&fOuter, fPrevPt, fPrevNormal, pt, | 
|  | currIsLine ? &fInner : nullptr); | 
|  | fOuter.reversePathTo(fInner); | 
|  | // cap the start | 
|  | fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt, | 
|  | fPrevIsLine ? &fInner : nullptr); | 
|  | fOuter.close(); | 
|  | } | 
|  | if (!fCusper.isEmpty()) { | 
|  | fOuter.addPath(fCusper); | 
|  | fCusper.rewind(); | 
|  | } | 
|  | } | 
|  | // since we may re-use fInner, we rewind instead of reset, to save on | 
|  | // reallocating its internal storage. | 
|  | fInner.rewind(); | 
|  | fSegmentCount = -1; | 
|  | fFirstOuterPtIndexInContour = fOuter.countPoints(); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | SkPathStroker::SkPathStroker(const SkPath& src, | 
|  | SkScalar radius, SkScalar miterLimit, | 
|  | SkPaint::Cap cap, SkPaint::Join join, SkScalar resScale, | 
|  | bool canIgnoreCenter) | 
|  | : fRadius(radius) | 
|  | , fResScale(resScale) | 
|  | , fCanIgnoreCenter(canIgnoreCenter) { | 
|  |  | 
|  | /*  This is only used when join is miter_join, but we initialize it here | 
|  | so that it is always defined, to fis valgrind warnings. | 
|  | */ | 
|  | fInvMiterLimit = 0; | 
|  |  | 
|  | if (join == SkPaint::kMiter_Join) { | 
|  | if (miterLimit <= SK_Scalar1) { | 
|  | join = SkPaint::kBevel_Join; | 
|  | } else { | 
|  | fInvMiterLimit = SkScalarInvert(miterLimit); | 
|  | } | 
|  | } | 
|  | fCapper = SkStrokerPriv::CapFactory(cap); | 
|  | fJoiner = SkStrokerPriv::JoinFactory(join); | 
|  | fSegmentCount = -1; | 
|  | fFirstOuterPtIndexInContour = 0; | 
|  | fPrevIsLine = false; | 
|  |  | 
|  | // Need some estimate of how large our final result (fOuter) | 
|  | // and our per-contour temp (fInner) will be, so we don't spend | 
|  | // extra time repeatedly growing these arrays. | 
|  | // | 
|  | // 3x for result == inner + outer + join (swag) | 
|  | // 1x for inner == 'wag' (worst contour length would be better guess) | 
|  | fOuter.incReserve(src.countPoints() * 3); | 
|  | fOuter.setIsVolatile(true); | 
|  | fInner.incReserve(src.countPoints()); | 
|  | fInner.setIsVolatile(true); | 
|  | // TODO : write a common error function used by stroking and filling | 
|  | // The '4' below matches the fill scan converter's error term | 
|  | fInvResScale = SkScalarInvert(resScale * 4); | 
|  | fInvResScaleSquared = fInvResScale * fInvResScale; | 
|  | fRecursionDepth = 0; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::moveTo(const SkPoint& pt) { | 
|  | if (fSegmentCount > 0) { | 
|  | this->finishContour(false, false); | 
|  | } | 
|  | fSegmentCount = 0; | 
|  | fFirstPt = fPrevPt = pt; | 
|  | fJoinCompleted = false; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) { | 
|  | fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY); | 
|  | fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY); | 
|  | } | 
|  |  | 
|  | static bool has_valid_tangent(const SkPath::Iter* iter) { | 
|  | SkPath::Iter copy = *iter; | 
|  | SkPath::Verb verb; | 
|  | SkPoint pts[4]; | 
|  | while ((verb = copy.next(pts))) { | 
|  | switch (verb) { | 
|  | case SkPath::kMove_Verb: | 
|  | return false; | 
|  | case SkPath::kLine_Verb: | 
|  | if (pts[0] == pts[1]) { | 
|  | continue; | 
|  | } | 
|  | return true; | 
|  | case SkPath::kQuad_Verb: | 
|  | case SkPath::kConic_Verb: | 
|  | if (pts[0] == pts[1] && pts[0] == pts[2]) { | 
|  | continue; | 
|  | } | 
|  | return true; | 
|  | case SkPath::kCubic_Verb: | 
|  | if (pts[0] == pts[1] && pts[0] == pts[2] && pts[0] == pts[3]) { | 
|  | continue; | 
|  | } | 
|  | return true; | 
|  | case SkPath::kClose_Verb: | 
|  | case SkPath::kDone_Verb: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::lineTo(const SkPoint& currPt, const SkPath::Iter* iter) { | 
|  | bool teenyLine = SkPointPriv::EqualsWithinTolerance(fPrevPt, currPt, SK_ScalarNearlyZero * fInvResScale); | 
|  | if (SkStrokerPriv::CapFactory(SkPaint::kButt_Cap) == fCapper && teenyLine) { | 
|  | return; | 
|  | } | 
|  | if (teenyLine && (fJoinCompleted || (iter && has_valid_tangent(iter)))) { | 
|  | return; | 
|  | } | 
|  | SkVector    normal, unitNormal; | 
|  |  | 
|  | if (!this->preJoinTo(currPt, &normal, &unitNormal, true)) { | 
|  | return; | 
|  | } | 
|  | this->line_to(currPt, normal); | 
|  | this->postJoinTo(currPt, normal, unitNormal); | 
|  | } | 
|  |  | 
|  | void SkPathStroker::setQuadEndNormal(const SkPoint quad[3], const SkVector& normalAB, | 
|  | const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC) { | 
|  | if (!set_normal_unitnormal(quad[1], quad[2], fResScale, fRadius, normalBC, unitNormalBC)) { | 
|  | *normalBC = normalAB; | 
|  | *unitNormalBC = unitNormalAB; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkPathStroker::setConicEndNormal(const SkConic& conic, const SkVector& normalAB, | 
|  | const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC) { | 
|  | setQuadEndNormal(conic.fPts, normalAB, unitNormalAB, normalBC, unitNormalBC); | 
|  | } | 
|  |  | 
|  | void SkPathStroker::setCubicEndNormal(const SkPoint cubic[4], const SkVector& normalAB, | 
|  | const SkVector& unitNormalAB, SkVector* normalCD, SkVector* unitNormalCD) { | 
|  | SkVector    ab = cubic[1] - cubic[0]; | 
|  | SkVector    cd = cubic[3] - cubic[2]; | 
|  |  | 
|  | bool    degenerateAB = degenerate_vector(ab); | 
|  | bool    degenerateCD = degenerate_vector(cd); | 
|  |  | 
|  | if (degenerateAB && degenerateCD) { | 
|  | goto DEGENERATE_NORMAL; | 
|  | } | 
|  |  | 
|  | if (degenerateAB) { | 
|  | ab = cubic[2] - cubic[0]; | 
|  | degenerateAB = degenerate_vector(ab); | 
|  | } | 
|  | if (degenerateCD) { | 
|  | cd = cubic[3] - cubic[1]; | 
|  | degenerateCD = degenerate_vector(cd); | 
|  | } | 
|  | if (degenerateAB || degenerateCD) { | 
|  | DEGENERATE_NORMAL: | 
|  | *normalCD = normalAB; | 
|  | *unitNormalCD = unitNormalAB; | 
|  | return; | 
|  | } | 
|  | SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD)); | 
|  | } | 
|  |  | 
|  | void SkPathStroker::init(StrokeType strokeType, SkQuadConstruct* quadPts, SkScalar tStart, | 
|  | SkScalar tEnd) { | 
|  | fStrokeType = strokeType; | 
|  | fFoundTangents = false; | 
|  | quadPts->init(tStart, tEnd); | 
|  | } | 
|  |  | 
|  | // returns the distance squared from the point to the line | 
|  | static SkScalar pt_to_line(const SkPoint& pt, const SkPoint& lineStart, const SkPoint& lineEnd) { | 
|  | SkVector dxy = lineEnd - lineStart; | 
|  | SkVector ab0 = pt - lineStart; | 
|  | SkScalar numer = dxy.dot(ab0); | 
|  | SkScalar denom = dxy.dot(dxy); | 
|  | SkScalar t = sk_ieee_float_divide(numer, denom); | 
|  | if (t >= 0 && t <= 1) { | 
|  | SkPoint hit; | 
|  | hit.fX = lineStart.fX * (1 - t) + lineEnd.fX * t; | 
|  | hit.fY = lineStart.fY * (1 - t) + lineEnd.fY * t; | 
|  | return SkPointPriv::DistanceToSqd(hit, pt); | 
|  | } else { | 
|  | return SkPointPriv::DistanceToSqd(pt, lineStart); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Given a cubic, determine if all four points are in a line. | 
|  | Return true if the inner points is close to a line connecting the outermost points. | 
|  |  | 
|  | Find the outermost point by looking for the largest difference in X or Y. | 
|  | Given the indices of the outermost points, and that outer_1 is greater than outer_2, | 
|  | this table shows the index of the smaller of the remaining points: | 
|  |  | 
|  | outer_2 | 
|  | 0    1    2    3 | 
|  | outer_1     ---------------- | 
|  | 0     |  -    2    1    1 | 
|  | 1     |  -    -    0    0 | 
|  | 2     |  -    -    -    0 | 
|  | 3     |  -    -    -    - | 
|  |  | 
|  | If outer_1 == 0 and outer_2 == 1, the smaller of the remaining indices (2 and 3) is 2. | 
|  |  | 
|  | This table can be collapsed to: (1 + (2 >> outer_2)) >> outer_1 | 
|  |  | 
|  | Given three indices (outer_1 outer_2 mid_1) from 0..3, the remaining index is: | 
|  |  | 
|  | mid_2 == (outer_1 ^ outer_2 ^ mid_1) | 
|  | */ | 
|  | static bool cubic_in_line(const SkPoint cubic[4]) { | 
|  | SkScalar ptMax = -1; | 
|  | int outer1 SK_INIT_TO_AVOID_WARNING; | 
|  | int outer2 SK_INIT_TO_AVOID_WARNING; | 
|  | for (int index = 0; index < 3; ++index) { | 
|  | for (int inner = index + 1; inner < 4; ++inner) { | 
|  | SkVector testDiff = cubic[inner] - cubic[index]; | 
|  | SkScalar testMax = std::max(SkScalarAbs(testDiff.fX), SkScalarAbs(testDiff.fY)); | 
|  | if (ptMax < testMax) { | 
|  | outer1 = index; | 
|  | outer2 = inner; | 
|  | ptMax = testMax; | 
|  | } | 
|  | } | 
|  | } | 
|  | SkASSERT(outer1 >= 0 && outer1 <= 2); | 
|  | SkASSERT(outer2 >= 1 && outer2 <= 3); | 
|  | SkASSERT(outer1 < outer2); | 
|  | int mid1 = (1 + (2 >> outer2)) >> outer1; | 
|  | SkASSERT(mid1 >= 0 && mid1 <= 2); | 
|  | SkASSERT(outer1 != mid1 && outer2 != mid1); | 
|  | int mid2 = outer1 ^ outer2 ^ mid1; | 
|  | SkASSERT(mid2 >= 1 && mid2 <= 3); | 
|  | SkASSERT(mid2 != outer1 && mid2 != outer2 && mid2 != mid1); | 
|  | SkASSERT(((1 << outer1) | (1 << outer2) | (1 << mid1) | (1 << mid2)) == 0x0f); | 
|  | SkScalar lineSlop = ptMax * ptMax * 0.00001f;  // this multiplier is pulled out of the air | 
|  | return pt_to_line(cubic[mid1], cubic[outer1], cubic[outer2]) <= lineSlop | 
|  | && pt_to_line(cubic[mid2], cubic[outer1], cubic[outer2]) <= lineSlop; | 
|  | } | 
|  |  | 
|  | /* Given quad, see if all there points are in a line. | 
|  | Return true if the inside point is close to a line connecting the outermost points. | 
|  |  | 
|  | Find the outermost point by looking for the largest difference in X or Y. | 
|  | Since the XOR of the indices is 3  (0 ^ 1 ^ 2) | 
|  | the missing index equals: outer_1 ^ outer_2 ^ 3 | 
|  | */ | 
|  | static bool quad_in_line(const SkPoint quad[3]) { | 
|  | SkScalar ptMax = -1; | 
|  | int outer1 SK_INIT_TO_AVOID_WARNING; | 
|  | int outer2 SK_INIT_TO_AVOID_WARNING; | 
|  | for (int index = 0; index < 2; ++index) { | 
|  | for (int inner = index + 1; inner < 3; ++inner) { | 
|  | SkVector testDiff = quad[inner] - quad[index]; | 
|  | SkScalar testMax = std::max(SkScalarAbs(testDiff.fX), SkScalarAbs(testDiff.fY)); | 
|  | if (ptMax < testMax) { | 
|  | outer1 = index; | 
|  | outer2 = inner; | 
|  | ptMax = testMax; | 
|  | } | 
|  | } | 
|  | } | 
|  | SkASSERT(outer1 >= 0 && outer1 <= 1); | 
|  | SkASSERT(outer2 >= 1 && outer2 <= 2); | 
|  | SkASSERT(outer1 < outer2); | 
|  | int mid = outer1 ^ outer2 ^ 3; | 
|  | const float kCurvatureSlop = 0.000005f;  // this multiplier is pulled out of the air | 
|  | SkScalar lineSlop =  ptMax * ptMax * kCurvatureSlop; | 
|  | return pt_to_line(quad[mid], quad[outer1], quad[outer2]) <= lineSlop; | 
|  | } | 
|  |  | 
|  | static bool conic_in_line(const SkConic& conic) { | 
|  | return quad_in_line(conic.fPts); | 
|  | } | 
|  |  | 
|  | SkPathStroker::ReductionType SkPathStroker::CheckCubicLinear(const SkPoint cubic[4], | 
|  | SkPoint reduction[3], const SkPoint** tangentPtPtr) { | 
|  | bool degenerateAB = degenerate_vector(cubic[1] - cubic[0]); | 
|  | bool degenerateBC = degenerate_vector(cubic[2] - cubic[1]); | 
|  | bool degenerateCD = degenerate_vector(cubic[3] - cubic[2]); | 
|  | if (degenerateAB & degenerateBC & degenerateCD) { | 
|  | return kPoint_ReductionType; | 
|  | } | 
|  | if (degenerateAB + degenerateBC + degenerateCD == 2) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | if (!cubic_in_line(cubic)) { | 
|  | *tangentPtPtr = degenerateAB ? &cubic[2] : &cubic[1]; | 
|  | return kQuad_ReductionType; | 
|  | } | 
|  | SkScalar tValues[3]; | 
|  | int count = SkFindCubicMaxCurvature(cubic, tValues); | 
|  | int rCount = 0; | 
|  | // Now loop over the t-values, and reject any that evaluate to either end-point | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkScalar t = tValues[index]; | 
|  | if (0 >= t || t >= 1) { | 
|  | continue; | 
|  | } | 
|  | SkEvalCubicAt(cubic, t, &reduction[rCount], nullptr, nullptr); | 
|  | if (reduction[rCount] != cubic[0] && reduction[rCount] != cubic[3]) { | 
|  | ++rCount; | 
|  | } | 
|  | } | 
|  | if (rCount == 0) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | static_assert(kQuad_ReductionType + 1 == kDegenerate_ReductionType, "enum_out_of_whack"); | 
|  | static_assert(kQuad_ReductionType + 2 == kDegenerate2_ReductionType, "enum_out_of_whack"); | 
|  | static_assert(kQuad_ReductionType + 3 == kDegenerate3_ReductionType, "enum_out_of_whack"); | 
|  |  | 
|  | return (ReductionType) (kQuad_ReductionType + rCount); | 
|  | } | 
|  |  | 
|  | SkPathStroker::ReductionType SkPathStroker::CheckConicLinear(const SkConic& conic, | 
|  | SkPoint* reduction) { | 
|  | bool degenerateAB = degenerate_vector(conic.fPts[1] - conic.fPts[0]); | 
|  | bool degenerateBC = degenerate_vector(conic.fPts[2] - conic.fPts[1]); | 
|  | if (degenerateAB & degenerateBC) { | 
|  | return kPoint_ReductionType; | 
|  | } | 
|  | if (degenerateAB | degenerateBC) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | if (!conic_in_line(conic)) { | 
|  | return kQuad_ReductionType; | 
|  | } | 
|  | // SkFindConicMaxCurvature would be a better solution, once we know how to | 
|  | // implement it. Quad curvature is a reasonable substitute | 
|  | SkScalar t = SkFindQuadMaxCurvature(conic.fPts); | 
|  | if (0 == t) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | conic.evalAt(t, reduction, nullptr); | 
|  | return kDegenerate_ReductionType; | 
|  | } | 
|  |  | 
|  | SkPathStroker::ReductionType SkPathStroker::CheckQuadLinear(const SkPoint quad[3], | 
|  | SkPoint* reduction) { | 
|  | bool degenerateAB = degenerate_vector(quad[1] - quad[0]); | 
|  | bool degenerateBC = degenerate_vector(quad[2] - quad[1]); | 
|  | if (degenerateAB & degenerateBC) { | 
|  | return kPoint_ReductionType; | 
|  | } | 
|  | if (degenerateAB | degenerateBC) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | if (!quad_in_line(quad)) { | 
|  | return kQuad_ReductionType; | 
|  | } | 
|  | SkScalar t = SkFindQuadMaxCurvature(quad); | 
|  | if (0 == t || 1 == t) { | 
|  | return kLine_ReductionType; | 
|  | } | 
|  | *reduction = SkEvalQuadAt(quad, t); | 
|  | return kDegenerate_ReductionType; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::conicTo(const SkPoint& pt1, const SkPoint& pt2, SkScalar weight) { | 
|  | const SkConic conic(fPrevPt, pt1, pt2, weight); | 
|  | SkPoint reduction; | 
|  | ReductionType reductionType = CheckConicLinear(conic, &reduction); | 
|  | if (kPoint_ReductionType == reductionType) { | 
|  | /* If the stroke consists of a moveTo followed by a degenerate curve, treat it | 
|  | as if it were followed by a zero-length line. Lines without length | 
|  | can have square and round end caps. */ | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | if (kLine_ReductionType == reductionType) { | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | if (kDegenerate_ReductionType == reductionType) { | 
|  | this->lineTo(reduction); | 
|  | SkStrokerPriv::JoinProc saveJoiner = fJoiner; | 
|  | fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join); | 
|  | this->lineTo(pt2); | 
|  | fJoiner = saveJoiner; | 
|  | return; | 
|  | } | 
|  | SkASSERT(kQuad_ReductionType == reductionType); | 
|  | SkVector normalAB, unitAB, normalBC, unitBC; | 
|  | if (!this->preJoinTo(pt1, &normalAB, &unitAB, false)) { | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | SkQuadConstruct quadPts; | 
|  | this->init(kOuter_StrokeType, &quadPts, 0, 1); | 
|  | (void) this->conicStroke(conic, &quadPts); | 
|  | this->init(kInner_StrokeType, &quadPts, 0, 1); | 
|  | (void) this->conicStroke(conic, &quadPts); | 
|  | this->setConicEndNormal(conic, normalAB, unitAB, &normalBC, &unitBC); | 
|  | this->postJoinTo(pt2, normalBC, unitBC); | 
|  | } | 
|  |  | 
|  | void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) { | 
|  | const SkPoint quad[3] = { fPrevPt, pt1, pt2 }; | 
|  | SkPoint reduction; | 
|  | ReductionType reductionType = CheckQuadLinear(quad, &reduction); | 
|  | if (kPoint_ReductionType == reductionType) { | 
|  | /* If the stroke consists of a moveTo followed by a degenerate curve, treat it | 
|  | as if it were followed by a zero-length line. Lines without length | 
|  | can have square and round end caps. */ | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | if (kLine_ReductionType == reductionType) { | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | if (kDegenerate_ReductionType == reductionType) { | 
|  | this->lineTo(reduction); | 
|  | SkStrokerPriv::JoinProc saveJoiner = fJoiner; | 
|  | fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join); | 
|  | this->lineTo(pt2); | 
|  | fJoiner = saveJoiner; | 
|  | return; | 
|  | } | 
|  | SkASSERT(kQuad_ReductionType == reductionType); | 
|  | SkVector normalAB, unitAB, normalBC, unitBC; | 
|  | if (!this->preJoinTo(pt1, &normalAB, &unitAB, false)) { | 
|  | this->lineTo(pt2); | 
|  | return; | 
|  | } | 
|  | SkQuadConstruct quadPts; | 
|  | this->init(kOuter_StrokeType, &quadPts, 0, 1); | 
|  | (void) this->quadStroke(quad, &quadPts); | 
|  | this->init(kInner_StrokeType, &quadPts, 0, 1); | 
|  | (void) this->quadStroke(quad, &quadPts); | 
|  | this->setQuadEndNormal(quad, normalAB, unitAB, &normalBC, &unitBC); | 
|  |  | 
|  | this->postJoinTo(pt2, normalBC, unitBC); | 
|  | } | 
|  |  | 
|  | // Given a point on the curve and its derivative, scale the derivative by the radius, and | 
|  | // compute the perpendicular point and its tangent. | 
|  | void SkPathStroker::setRayPts(const SkPoint& tPt, SkVector* dxy, SkPoint* onPt, | 
|  | SkPoint* tangent) const { | 
|  | if (!dxy->setLength(fRadius)) { | 
|  | dxy->set(fRadius, 0); | 
|  | } | 
|  | SkScalar axisFlip = SkIntToScalar(fStrokeType);  // go opposite ways for outer, inner | 
|  | onPt->fX = tPt.fX + axisFlip * dxy->fY; | 
|  | onPt->fY = tPt.fY - axisFlip * dxy->fX; | 
|  | if (tangent) { | 
|  | tangent->fX = onPt->fX + dxy->fX; | 
|  | tangent->fY = onPt->fY + dxy->fY; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a conic and t, return the point on curve, its perpendicular, and the perpendicular tangent. | 
|  | // Returns false if the perpendicular could not be computed (because the derivative collapsed to 0) | 
|  | void SkPathStroker::conicPerpRay(const SkConic& conic, SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const { | 
|  | SkVector dxy; | 
|  | conic.evalAt(t, tPt, &dxy); | 
|  | if (dxy.fX == 0 && dxy.fY == 0) { | 
|  | dxy = conic.fPts[2] - conic.fPts[0]; | 
|  | } | 
|  | this->setRayPts(*tPt, &dxy, onPt, tangent); | 
|  | } | 
|  |  | 
|  | // Given a conic and a t range, find the start and end if they haven't been found already. | 
|  | void SkPathStroker::conicQuadEnds(const SkConic& conic, SkQuadConstruct* quadPts) const { | 
|  | if (!quadPts->fStartSet) { | 
|  | SkPoint conicStartPt; | 
|  | this->conicPerpRay(conic, quadPts->fStartT, &conicStartPt, &quadPts->fQuad[0], | 
|  | &quadPts->fTangentStart); | 
|  | quadPts->fStartSet = true; | 
|  | } | 
|  | if (!quadPts->fEndSet) { | 
|  | SkPoint conicEndPt; | 
|  | this->conicPerpRay(conic, quadPts->fEndT, &conicEndPt, &quadPts->fQuad[2], | 
|  | &quadPts->fTangentEnd); | 
|  | quadPts->fEndSet = true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given a cubic and t, return the point on curve, its perpendicular, and the perpendicular tangent. | 
|  | void SkPathStroker::cubicPerpRay(const SkPoint cubic[4], SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const { | 
|  | SkVector dxy; | 
|  | SkPoint chopped[7]; | 
|  | SkEvalCubicAt(cubic, t, tPt, &dxy, nullptr); | 
|  | if (dxy.fX == 0 && dxy.fY == 0) { | 
|  | const SkPoint* cPts = cubic; | 
|  | if (SkScalarNearlyZero(t)) { | 
|  | dxy = cubic[2] - cubic[0]; | 
|  | } else if (SkScalarNearlyZero(1 - t)) { | 
|  | dxy = cubic[3] - cubic[1]; | 
|  | } else { | 
|  | // If the cubic inflection falls on the cusp, subdivide the cubic | 
|  | // to find the tangent at that point. | 
|  | SkChopCubicAt(cubic, chopped, t); | 
|  | dxy = chopped[3] - chopped[2]; | 
|  | if (dxy.fX == 0 && dxy.fY == 0) { | 
|  | dxy = chopped[3] - chopped[1]; | 
|  | cPts = chopped; | 
|  | } | 
|  | } | 
|  | if (dxy.fX == 0 && dxy.fY == 0) { | 
|  | dxy = cPts[3] - cPts[0]; | 
|  | } | 
|  | } | 
|  | setRayPts(*tPt, &dxy, onPt, tangent); | 
|  | } | 
|  |  | 
|  | // Given a cubic and a t range, find the start and end if they haven't been found already. | 
|  | void SkPathStroker::cubicQuadEnds(const SkPoint cubic[4], SkQuadConstruct* quadPts) { | 
|  | if (!quadPts->fStartSet) { | 
|  | SkPoint cubicStartPt; | 
|  | this->cubicPerpRay(cubic, quadPts->fStartT, &cubicStartPt, &quadPts->fQuad[0], | 
|  | &quadPts->fTangentStart); | 
|  | quadPts->fStartSet = true; | 
|  | } | 
|  | if (!quadPts->fEndSet) { | 
|  | SkPoint cubicEndPt; | 
|  | this->cubicPerpRay(cubic, quadPts->fEndT, &cubicEndPt, &quadPts->fQuad[2], | 
|  | &quadPts->fTangentEnd); | 
|  | quadPts->fEndSet = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkPathStroker::cubicQuadMid(const SkPoint cubic[4], const SkQuadConstruct* quadPts, | 
|  | SkPoint* mid) const { | 
|  | SkPoint cubicMidPt; | 
|  | this->cubicPerpRay(cubic, quadPts->fMidT, &cubicMidPt, mid, nullptr); | 
|  | } | 
|  |  | 
|  | // Given a quad and t, return the point on curve, its perpendicular, and the perpendicular tangent. | 
|  | void SkPathStroker::quadPerpRay(const SkPoint quad[3], SkScalar t, SkPoint* tPt, SkPoint* onPt, | 
|  | SkPoint* tangent) const { | 
|  | SkVector dxy; | 
|  | SkEvalQuadAt(quad, t, tPt, &dxy); | 
|  | if (dxy.fX == 0 && dxy.fY == 0) { | 
|  | dxy = quad[2] - quad[0]; | 
|  | } | 
|  | setRayPts(*tPt, &dxy, onPt, tangent); | 
|  | } | 
|  |  | 
|  | // Find the intersection of the stroke tangents to construct a stroke quad. | 
|  | // Return whether the stroke is a degenerate (a line), a quad, or must be split. | 
|  | // Optionally compute the quad's control point. | 
|  | SkPathStroker::ResultType SkPathStroker::intersectRay(SkQuadConstruct* quadPts, | 
|  | IntersectRayType intersectRayType  STROKER_DEBUG_PARAMS(int depth)) const { | 
|  | const SkPoint& start = quadPts->fQuad[0]; | 
|  | const SkPoint& end = quadPts->fQuad[2]; | 
|  | SkVector aLen = quadPts->fTangentStart - start; | 
|  | SkVector bLen = quadPts->fTangentEnd - end; | 
|  | /* Slopes match when denom goes to zero: | 
|  | axLen / ayLen ==                   bxLen / byLen | 
|  | (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen | 
|  | byLen  * axLen         ==  ayLen          * bxLen | 
|  | byLen  * axLen         -   ayLen          * bxLen         ( == denom ) | 
|  | */ | 
|  | SkScalar denom = aLen.cross(bLen); | 
|  | if (denom == 0 || !SkScalarIsFinite(denom)) { | 
|  | quadPts->fOppositeTangents = aLen.dot(bLen) < 0; | 
|  | return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts, "denom == 0"); | 
|  | } | 
|  | quadPts->fOppositeTangents = false; | 
|  | SkVector ab0 = start - end; | 
|  | SkScalar numerA = bLen.cross(ab0); | 
|  | SkScalar numerB = aLen.cross(ab0); | 
|  | if ((numerA >= 0) == (numerB >= 0)) { // if the control point is outside the quad ends | 
|  | // if the perpendicular distances from the quad points to the opposite tangent line | 
|  | // are small, a straight line is good enough | 
|  | SkScalar dist1 = pt_to_line(start, end, quadPts->fTangentEnd); | 
|  | SkScalar dist2 = pt_to_line(end, start, quadPts->fTangentStart); | 
|  | if (std::max(dist1, dist2) <= fInvResScaleSquared) { | 
|  | return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts, | 
|  | "std::max(dist1=%g, dist2=%g) <= fInvResScaleSquared", dist1, dist2); | 
|  | } | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, | 
|  | "(numerA=%g >= 0) == (numerB=%g >= 0)", numerA, numerB); | 
|  | } | 
|  | // check to see if the denominator is teeny relative to the numerator | 
|  | // if the offset by one will be lost, the ratio is too large | 
|  | numerA /= denom; | 
|  | bool validDivide = numerA > numerA - 1; | 
|  | if (validDivide) { | 
|  | if (kCtrlPt_RayType == intersectRayType) { | 
|  | SkPoint* ctrlPt = &quadPts->fQuad[1]; | 
|  | // the intersection of the tangents need not be on the tangent segment | 
|  | // so 0 <= numerA <= 1 is not necessarily true | 
|  | ctrlPt->fX = start.fX * (1 - numerA) + quadPts->fTangentStart.fX * numerA; | 
|  | ctrlPt->fY = start.fY * (1 - numerA) + quadPts->fTangentStart.fY * numerA; | 
|  | } | 
|  | return STROKER_RESULT(kQuad_ResultType, depth, quadPts, | 
|  | "(numerA=%g >= 0) != (numerB=%g >= 0)", numerA, numerB); | 
|  | } | 
|  | quadPts->fOppositeTangents = aLen.dot(bLen) < 0; | 
|  | // if the lines are parallel, straight line is good enough | 
|  | return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts, | 
|  | "SkScalarNearlyZero(denom=%g)", denom); | 
|  | } | 
|  |  | 
|  | // Given a cubic and a t-range, determine if the stroke can be described by a quadratic. | 
|  | SkPathStroker::ResultType SkPathStroker::tangentsMeet(const SkPoint cubic[4], | 
|  | SkQuadConstruct* quadPts) { | 
|  | this->cubicQuadEnds(cubic, quadPts); | 
|  | return this->intersectRay(quadPts, kResultType_RayType  STROKER_DEBUG_PARAMS(fRecursionDepth)); | 
|  | } | 
|  |  | 
|  | // Intersect the line with the quad and return the t values on the quad where the line crosses. | 
|  | static int intersect_quad_ray(const SkPoint line[2], const SkPoint quad[3], SkScalar roots[2]) { | 
|  | SkVector vec = line[1] - line[0]; | 
|  | SkScalar r[3]; | 
|  | for (int n = 0; n < 3; ++n) { | 
|  | r[n] = (quad[n].fY - line[0].fY) * vec.fX - (quad[n].fX - line[0].fX) * vec.fY; | 
|  | } | 
|  | SkScalar A = r[2]; | 
|  | SkScalar B = r[1]; | 
|  | SkScalar C = r[0]; | 
|  | A += C - 2 * B;  // A = a - 2*b + c | 
|  | B -= C;  // B = -(b - c) | 
|  | return SkFindUnitQuadRoots(A, 2 * B, C, roots); | 
|  | } | 
|  |  | 
|  | // Return true if the point is close to the bounds of the quad. This is used as a quick reject. | 
|  | bool SkPathStroker::ptInQuadBounds(const SkPoint quad[3], const SkPoint& pt) const { | 
|  | SkScalar xMin = std::min(std::min(quad[0].fX, quad[1].fX), quad[2].fX); | 
|  | if (pt.fX + fInvResScale < xMin) { | 
|  | return false; | 
|  | } | 
|  | SkScalar xMax = std::max(std::max(quad[0].fX, quad[1].fX), quad[2].fX); | 
|  | if (pt.fX - fInvResScale > xMax) { | 
|  | return false; | 
|  | } | 
|  | SkScalar yMin = std::min(std::min(quad[0].fY, quad[1].fY), quad[2].fY); | 
|  | if (pt.fY + fInvResScale < yMin) { | 
|  | return false; | 
|  | } | 
|  | SkScalar yMax = std::max(std::max(quad[0].fY, quad[1].fY), quad[2].fY); | 
|  | if (pt.fY - fInvResScale > yMax) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool points_within_dist(const SkPoint& nearPt, const SkPoint& farPt, SkScalar limit) { | 
|  | return SkPointPriv::DistanceToSqd(nearPt, farPt) <= limit * limit; | 
|  | } | 
|  |  | 
|  | static bool sharp_angle(const SkPoint quad[3]) { | 
|  | SkVector smaller = quad[1] - quad[0]; | 
|  | SkVector larger = quad[1] - quad[2]; | 
|  | SkScalar smallerLen = SkPointPriv::LengthSqd(smaller); | 
|  | SkScalar largerLen = SkPointPriv::LengthSqd(larger); | 
|  | if (smallerLen > largerLen) { | 
|  | using std::swap; | 
|  | swap(smaller, larger); | 
|  | largerLen = smallerLen; | 
|  | } | 
|  | if (!smaller.setLength(largerLen)) { | 
|  | return false; | 
|  | } | 
|  | SkScalar dot = smaller.dot(larger); | 
|  | return dot > 0; | 
|  | } | 
|  |  | 
|  | SkPathStroker::ResultType SkPathStroker::strokeCloseEnough(const SkPoint stroke[3], | 
|  | const SkPoint ray[2], SkQuadConstruct* quadPts  STROKER_DEBUG_PARAMS(int depth)) const { | 
|  | SkPoint strokeMid = SkEvalQuadAt(stroke, SK_ScalarHalf); | 
|  | // measure the distance from the curve to the quad-stroke midpoint, compare to radius | 
|  | if (points_within_dist(ray[0], strokeMid, fInvResScale)) {  // if the difference is small | 
|  | if (sharp_angle(quadPts->fQuad)) { | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, | 
|  | "sharp_angle (1) =%g,%g, %g,%g, %g,%g", | 
|  | quadPts->fQuad[0].fX, quadPts->fQuad[0].fY, | 
|  | quadPts->fQuad[1].fX, quadPts->fQuad[1].fY, | 
|  | quadPts->fQuad[2].fX, quadPts->fQuad[2].fY); | 
|  | } | 
|  | return STROKER_RESULT(kQuad_ResultType, depth, quadPts, | 
|  | "points_within_dist(ray[0]=%g,%g, strokeMid=%g,%g, fInvResScale=%g)", | 
|  | ray[0].fX, ray[0].fY, strokeMid.fX, strokeMid.fY, fInvResScale); | 
|  | } | 
|  | // measure the distance to quad's bounds (quick reject) | 
|  | // an alternative : look for point in triangle | 
|  | if (!ptInQuadBounds(stroke, ray[0])) {  // if far, subdivide | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, | 
|  | "!pt_in_quad_bounds(stroke=(%g,%g %g,%g %g,%g), ray[0]=%g,%g)", | 
|  | stroke[0].fX, stroke[0].fY, stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY, | 
|  | ray[0].fX, ray[0].fY); | 
|  | } | 
|  | // measure the curve ray distance to the quad-stroke | 
|  | SkScalar roots[2]; | 
|  | int rootCount = intersect_quad_ray(ray, stroke, roots); | 
|  | if (rootCount != 1) { | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, | 
|  | "rootCount=%d != 1", rootCount); | 
|  | } | 
|  | SkPoint quadPt = SkEvalQuadAt(stroke, roots[0]); | 
|  | SkScalar error = fInvResScale * (SK_Scalar1 - SkScalarAbs(roots[0] - 0.5f) * 2); | 
|  | if (points_within_dist(ray[0], quadPt, error)) {  // if the difference is small, we're done | 
|  | if (sharp_angle(quadPts->fQuad)) { | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, | 
|  | "sharp_angle (2) =%g,%g, %g,%g, %g,%g", | 
|  | quadPts->fQuad[0].fX, quadPts->fQuad[0].fY, | 
|  | quadPts->fQuad[1].fX, quadPts->fQuad[1].fY, | 
|  | quadPts->fQuad[2].fX, quadPts->fQuad[2].fY); | 
|  | } | 
|  | return STROKER_RESULT(kQuad_ResultType, depth, quadPts, | 
|  | "points_within_dist(ray[0]=%g,%g, quadPt=%g,%g, error=%g)", | 
|  | ray[0].fX, ray[0].fY, quadPt.fX, quadPt.fY, error); | 
|  | } | 
|  | // otherwise, subdivide | 
|  | return STROKER_RESULT(kSplit_ResultType, depth, quadPts, "%s", "fall through"); | 
|  | } | 
|  |  | 
|  | SkPathStroker::ResultType SkPathStroker::compareQuadCubic(const SkPoint cubic[4], | 
|  | SkQuadConstruct* quadPts) { | 
|  | // get the quadratic approximation of the stroke | 
|  | this->cubicQuadEnds(cubic, quadPts); | 
|  | ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth) ); | 
|  | if (resultType != kQuad_ResultType) { | 
|  | return resultType; | 
|  | } | 
|  | // project a ray from the curve to the stroke | 
|  | SkPoint ray[2];  // points near midpoint on quad, midpoint on cubic | 
|  | this->cubicPerpRay(cubic, quadPts->fMidT, &ray[1], &ray[0], nullptr); | 
|  | return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth)); | 
|  | } | 
|  |  | 
|  | SkPathStroker::ResultType SkPathStroker::compareQuadConic(const SkConic& conic, | 
|  | SkQuadConstruct* quadPts) const { | 
|  | // get the quadratic approximation of the stroke | 
|  | this->conicQuadEnds(conic, quadPts); | 
|  | ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth) ); | 
|  | if (resultType != kQuad_ResultType) { | 
|  | return resultType; | 
|  | } | 
|  | // project a ray from the curve to the stroke | 
|  | SkPoint ray[2];  // points near midpoint on quad, midpoint on conic | 
|  | this->conicPerpRay(conic, quadPts->fMidT, &ray[1], &ray[0], nullptr); | 
|  | return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth)); | 
|  | } | 
|  |  | 
|  | SkPathStroker::ResultType SkPathStroker::compareQuadQuad(const SkPoint quad[3], | 
|  | SkQuadConstruct* quadPts) { | 
|  | // get the quadratic approximation of the stroke | 
|  | if (!quadPts->fStartSet) { | 
|  | SkPoint quadStartPt; | 
|  | this->quadPerpRay(quad, quadPts->fStartT, &quadStartPt, &quadPts->fQuad[0], | 
|  | &quadPts->fTangentStart); | 
|  | quadPts->fStartSet = true; | 
|  | } | 
|  | if (!quadPts->fEndSet) { | 
|  | SkPoint quadEndPt; | 
|  | this->quadPerpRay(quad, quadPts->fEndT, &quadEndPt, &quadPts->fQuad[2], | 
|  | &quadPts->fTangentEnd); | 
|  | quadPts->fEndSet = true; | 
|  | } | 
|  | ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth)); | 
|  | if (resultType != kQuad_ResultType) { | 
|  | return resultType; | 
|  | } | 
|  | // project a ray from the curve to the stroke | 
|  | SkPoint ray[2]; | 
|  | this->quadPerpRay(quad, quadPts->fMidT, &ray[1], &ray[0], nullptr); | 
|  | return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts | 
|  | STROKER_DEBUG_PARAMS(fRecursionDepth)); | 
|  | } | 
|  |  | 
|  | void SkPathStroker::addDegenerateLine(const SkQuadConstruct* quadPts) { | 
|  | const SkPoint* quad = quadPts->fQuad; | 
|  | SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner; | 
|  | path->lineTo(quad[2].fX, quad[2].fY); | 
|  | } | 
|  |  | 
|  | bool SkPathStroker::cubicMidOnLine(const SkPoint cubic[4], const SkQuadConstruct* quadPts) const { | 
|  | SkPoint strokeMid; | 
|  | this->cubicQuadMid(cubic, quadPts, &strokeMid); | 
|  | SkScalar dist = pt_to_line(strokeMid, quadPts->fQuad[0], quadPts->fQuad[2]); | 
|  | return dist < fInvResScaleSquared; | 
|  | } | 
|  |  | 
|  | bool SkPathStroker::cubicStroke(const SkPoint cubic[4], SkQuadConstruct* quadPts) { | 
|  | if (!fFoundTangents) { | 
|  | ResultType resultType = this->tangentsMeet(cubic, quadPts); | 
|  | if (kQuad_ResultType != resultType) { | 
|  | if ((kDegenerate_ResultType == resultType | 
|  | || points_within_dist(quadPts->fQuad[0], quadPts->fQuad[2], | 
|  | fInvResScale)) && cubicMidOnLine(cubic, quadPts)) { | 
|  | addDegenerateLine(quadPts); | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | fFoundTangents = true; | 
|  | } | 
|  | } | 
|  | if (fFoundTangents) { | 
|  | ResultType resultType = this->compareQuadCubic(cubic, quadPts); | 
|  | if (kQuad_ResultType == resultType) { | 
|  | SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner; | 
|  | const SkPoint* stroke = quadPts->fQuad; | 
|  | path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY); | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | return true; | 
|  | } | 
|  | if (kDegenerate_ResultType == resultType) { | 
|  | if (!quadPts->fOppositeTangents) { | 
|  | addDegenerateLine(quadPts); | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!SkScalarIsFinite(quadPts->fQuad[2].fX) || !SkScalarIsFinite(quadPts->fQuad[2].fY)) { | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | return false;  // just abort if projected quad isn't representable | 
|  | } | 
|  | #if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING | 
|  | SkDEBUGCODE(gMaxRecursion[fFoundTangents] = std::max(gMaxRecursion[fFoundTangents], | 
|  | fRecursionDepth + 1)); | 
|  | #endif | 
|  | if (++fRecursionDepth > kRecursiveLimits[fFoundTangents]) { | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | return false;  // just abort if projected quad isn't representable | 
|  | } | 
|  | SkQuadConstruct half; | 
|  | if (!half.initWithStart(quadPts)) { | 
|  | addDegenerateLine(quadPts); | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | --fRecursionDepth; | 
|  | return true; | 
|  | } | 
|  | if (!this->cubicStroke(cubic, &half)) { | 
|  | return false; | 
|  | } | 
|  | if (!half.initWithEnd(quadPts)) { | 
|  | addDegenerateLine(quadPts); | 
|  | DEBUG_CUBIC_RECURSION_TRACK_DEPTH(fRecursionDepth); | 
|  | --fRecursionDepth; | 
|  | return true; | 
|  | } | 
|  | if (!this->cubicStroke(cubic, &half)) { | 
|  | return false; | 
|  | } | 
|  | --fRecursionDepth; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkPathStroker::conicStroke(const SkConic& conic, SkQuadConstruct* quadPts) { | 
|  | ResultType resultType = this->compareQuadConic(conic, quadPts); | 
|  | if (kQuad_ResultType == resultType) { | 
|  | const SkPoint* stroke = quadPts->fQuad; | 
|  | SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner; | 
|  | path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY); | 
|  | return true; | 
|  | } | 
|  | if (kDegenerate_ResultType == resultType) { | 
|  | addDegenerateLine(quadPts); | 
|  | return true; | 
|  | } | 
|  | #if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING | 
|  | SkDEBUGCODE(gMaxRecursion[kConic_RecursiveLimit] = std::max(gMaxRecursion[kConic_RecursiveLimit], | 
|  | fRecursionDepth + 1)); | 
|  | #endif | 
|  | if (++fRecursionDepth > kRecursiveLimits[kConic_RecursiveLimit]) { | 
|  | return false;  // just abort if projected quad isn't representable | 
|  | } | 
|  | SkQuadConstruct half; | 
|  | (void) half.initWithStart(quadPts); | 
|  | if (!this->conicStroke(conic, &half)) { | 
|  | return false; | 
|  | } | 
|  | (void) half.initWithEnd(quadPts); | 
|  | if (!this->conicStroke(conic, &half)) { | 
|  | return false; | 
|  | } | 
|  | --fRecursionDepth; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkPathStroker::quadStroke(const SkPoint quad[3], SkQuadConstruct* quadPts) { | 
|  | ResultType resultType = this->compareQuadQuad(quad, quadPts); | 
|  | if (kQuad_ResultType == resultType) { | 
|  | const SkPoint* stroke = quadPts->fQuad; | 
|  | SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner; | 
|  | path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY); | 
|  | return true; | 
|  | } | 
|  | if (kDegenerate_ResultType == resultType) { | 
|  | addDegenerateLine(quadPts); | 
|  | return true; | 
|  | } | 
|  | #if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING | 
|  | SkDEBUGCODE(gMaxRecursion[kQuad_RecursiveLimit] = std::max(gMaxRecursion[kQuad_RecursiveLimit], | 
|  | fRecursionDepth + 1)); | 
|  | #endif | 
|  | if (++fRecursionDepth > kRecursiveLimits[kQuad_RecursiveLimit]) { | 
|  | return false;  // just abort if projected quad isn't representable | 
|  | } | 
|  | SkQuadConstruct half; | 
|  | (void) half.initWithStart(quadPts); | 
|  | if (!this->quadStroke(quad, &half)) { | 
|  | return false; | 
|  | } | 
|  | (void) half.initWithEnd(quadPts); | 
|  | if (!this->quadStroke(quad, &half)) { | 
|  | return false; | 
|  | } | 
|  | --fRecursionDepth; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2, | 
|  | const SkPoint& pt3) { | 
|  | const SkPoint cubic[4] = { fPrevPt, pt1, pt2, pt3 }; | 
|  | SkPoint reduction[3]; | 
|  | const SkPoint* tangentPt; | 
|  | ReductionType reductionType = CheckCubicLinear(cubic, reduction, &tangentPt); | 
|  | if (kPoint_ReductionType == reductionType) { | 
|  | /* If the stroke consists of a moveTo followed by a degenerate curve, treat it | 
|  | as if it were followed by a zero-length line. Lines without length | 
|  | can have square and round end caps. */ | 
|  | this->lineTo(pt3); | 
|  | return; | 
|  | } | 
|  | if (kLine_ReductionType == reductionType) { | 
|  | this->lineTo(pt3); | 
|  | return; | 
|  | } | 
|  | if (kDegenerate_ReductionType <= reductionType && kDegenerate3_ReductionType >= reductionType) { | 
|  | this->lineTo(reduction[0]); | 
|  | SkStrokerPriv::JoinProc saveJoiner = fJoiner; | 
|  | fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join); | 
|  | if (kDegenerate2_ReductionType <= reductionType) { | 
|  | this->lineTo(reduction[1]); | 
|  | } | 
|  | if (kDegenerate3_ReductionType == reductionType) { | 
|  | this->lineTo(reduction[2]); | 
|  | } | 
|  | this->lineTo(pt3); | 
|  | fJoiner = saveJoiner; | 
|  | return; | 
|  | } | 
|  | SkASSERT(kQuad_ReductionType == reductionType); | 
|  | SkVector normalAB, unitAB, normalCD, unitCD; | 
|  | if (!this->preJoinTo(*tangentPt, &normalAB, &unitAB, false)) { | 
|  | this->lineTo(pt3); | 
|  | return; | 
|  | } | 
|  | SkScalar tValues[2]; | 
|  | int count = SkFindCubicInflections(cubic, tValues); | 
|  | SkScalar lastT = 0; | 
|  | for (int index = 0; index <= count; ++index) { | 
|  | SkScalar nextT = index < count ? tValues[index] : 1; | 
|  | SkQuadConstruct quadPts; | 
|  | this->init(kOuter_StrokeType, &quadPts, lastT, nextT); | 
|  | (void) this->cubicStroke(cubic, &quadPts); | 
|  | this->init(kInner_StrokeType, &quadPts, lastT, nextT); | 
|  | (void) this->cubicStroke(cubic, &quadPts); | 
|  | lastT = nextT; | 
|  | } | 
|  | SkScalar cusp = SkFindCubicCusp(cubic); | 
|  | if (cusp > 0) { | 
|  | SkPoint cuspLoc; | 
|  | SkEvalCubicAt(cubic, cusp, &cuspLoc, nullptr, nullptr); | 
|  | fCusper.addCircle(cuspLoc.fX, cuspLoc.fY, fRadius); | 
|  | } | 
|  | // emit the join even if one stroke succeeded but the last one failed | 
|  | // this avoids reversing an inner stroke with a partial path followed by another moveto | 
|  | this->setCubicEndNormal(cubic, normalAB, unitAB, &normalCD, &unitCD); | 
|  |  | 
|  | this->postJoinTo(pt3, normalCD, unitCD); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | #include "src/core/SkPaintDefaults.h" | 
|  |  | 
|  | SkStroke::SkStroke() { | 
|  | fWidth      = SK_Scalar1; | 
|  | fMiterLimit = SkPaintDefaults_MiterLimit; | 
|  | fResScale   = 1; | 
|  | fCap        = SkPaint::kDefault_Cap; | 
|  | fJoin       = SkPaint::kDefault_Join; | 
|  | fDoFill     = false; | 
|  | } | 
|  |  | 
|  | SkStroke::SkStroke(const SkPaint& p) { | 
|  | fWidth      = p.getStrokeWidth(); | 
|  | fMiterLimit = p.getStrokeMiter(); | 
|  | fResScale   = 1; | 
|  | fCap        = (uint8_t)p.getStrokeCap(); | 
|  | fJoin       = (uint8_t)p.getStrokeJoin(); | 
|  | fDoFill     = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); | 
|  | } | 
|  |  | 
|  | SkStroke::SkStroke(const SkPaint& p, SkScalar width) { | 
|  | fWidth      = width; | 
|  | fMiterLimit = p.getStrokeMiter(); | 
|  | fResScale   = 1; | 
|  | fCap        = (uint8_t)p.getStrokeCap(); | 
|  | fJoin       = (uint8_t)p.getStrokeJoin(); | 
|  | fDoFill     = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); | 
|  | } | 
|  |  | 
|  | void SkStroke::setWidth(SkScalar width) { | 
|  | SkASSERT(width >= 0); | 
|  | fWidth = width; | 
|  | } | 
|  |  | 
|  | void SkStroke::setMiterLimit(SkScalar miterLimit) { | 
|  | SkASSERT(miterLimit >= 0); | 
|  | fMiterLimit = miterLimit; | 
|  | } | 
|  |  | 
|  | void SkStroke::setCap(SkPaint::Cap cap) { | 
|  | SkASSERT((unsigned)cap < SkPaint::kCapCount); | 
|  | fCap = SkToU8(cap); | 
|  | } | 
|  |  | 
|  | void SkStroke::setJoin(SkPaint::Join join) { | 
|  | SkASSERT((unsigned)join < SkPaint::kJoinCount); | 
|  | fJoin = SkToU8(join); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // If src==dst, then we use a tmp path to record the stroke, and then swap | 
|  | // its contents with src when we're done. | 
|  | class AutoTmpPath { | 
|  | public: | 
|  | AutoTmpPath(const SkPath& src, SkPath** dst) : fSrc(src) { | 
|  | if (&src == *dst) { | 
|  | *dst = &fTmpDst; | 
|  | fSwapWithSrc = true; | 
|  | } else { | 
|  | (*dst)->reset(); | 
|  | fSwapWithSrc = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ~AutoTmpPath() { | 
|  | if (fSwapWithSrc) { | 
|  | fTmpDst.swap(*const_cast<SkPath*>(&fSrc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | SkPath          fTmpDst; | 
|  | const SkPath&   fSrc; | 
|  | bool            fSwapWithSrc; | 
|  | }; | 
|  |  | 
|  | void SkStroke::strokePath(const SkPath& src, SkPath* dst) const { | 
|  | SkASSERT(dst); | 
|  |  | 
|  | SkScalar radius = SkScalarHalf(fWidth); | 
|  |  | 
|  | AutoTmpPath tmp(src, &dst); | 
|  |  | 
|  | if (radius <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If src is really a rect, call our specialty strokeRect() method | 
|  | { | 
|  | SkRect rect; | 
|  | bool isClosed = false; | 
|  | SkPathDirection dir; | 
|  | if (src.isRect(&rect, &isClosed, &dir) && isClosed) { | 
|  | this->strokeRect(rect, dst, dir); | 
|  | // our answer should preserve the inverseness of the src | 
|  | if (src.isInverseFillType()) { | 
|  | SkASSERT(!dst->isInverseFillType()); | 
|  | dst->toggleInverseFillType(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can always ignore centers for stroke and fill convex line-only paths | 
|  | // TODO: remove the line-only restriction | 
|  | bool ignoreCenter = fDoFill && (src.getSegmentMasks() == SkPath::kLine_SegmentMask) && | 
|  | src.isLastContourClosed() && src.isConvex(); | 
|  |  | 
|  | SkPathStroker   stroker(src, radius, fMiterLimit, this->getCap(), this->getJoin(), | 
|  | fResScale, ignoreCenter); | 
|  | SkPath::Iter    iter(src, false); | 
|  | SkPath::Verb    lastSegment = SkPath::kMove_Verb; | 
|  |  | 
|  | for (;;) { | 
|  | SkPoint  pts[4]; | 
|  | switch (iter.next(pts)) { | 
|  | case SkPath::kMove_Verb: | 
|  | stroker.moveTo(pts[0]); | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | stroker.lineTo(pts[1], &iter); | 
|  | lastSegment = SkPath::kLine_Verb; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | stroker.quadTo(pts[1], pts[2]); | 
|  | lastSegment = SkPath::kQuad_Verb; | 
|  | break; | 
|  | case SkPath::kConic_Verb: { | 
|  | stroker.conicTo(pts[1], pts[2], iter.conicWeight()); | 
|  | lastSegment = SkPath::kConic_Verb; | 
|  | } break; | 
|  | case SkPath::kCubic_Verb: | 
|  | stroker.cubicTo(pts[1], pts[2], pts[3]); | 
|  | lastSegment = SkPath::kCubic_Verb; | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | if (SkPaint::kButt_Cap != this->getCap()) { | 
|  | /* If the stroke consists of a moveTo followed by a close, treat it | 
|  | as if it were followed by a zero-length line. Lines without length | 
|  | can have square and round end caps. */ | 
|  | if (stroker.hasOnlyMoveTo()) { | 
|  | stroker.lineTo(stroker.moveToPt()); | 
|  | goto ZERO_LENGTH; | 
|  | } | 
|  | /* If the stroke consists of a moveTo followed by one or more zero-length | 
|  | verbs, then followed by a close, treat is as if it were followed by a | 
|  | zero-length line. Lines without length can have square & round end caps. */ | 
|  | if (stroker.isCurrentContourEmpty()) { | 
|  | ZERO_LENGTH: | 
|  | lastSegment = SkPath::kLine_Verb; | 
|  | break; | 
|  | } | 
|  | } | 
|  | stroker.close(lastSegment == SkPath::kLine_Verb); | 
|  | break; | 
|  | case SkPath::kDone_Verb: | 
|  | goto DONE; | 
|  | } | 
|  | } | 
|  | DONE: | 
|  | stroker.done(dst, lastSegment == SkPath::kLine_Verb); | 
|  |  | 
|  | if (fDoFill && !ignoreCenter) { | 
|  | if (SkPathPriv::ComputeFirstDirection(src) == SkPathFirstDirection::kCCW) { | 
|  | dst->reverseAddPath(src); | 
|  | } else { | 
|  | dst->addPath(src); | 
|  | } | 
|  | } else { | 
|  | //  Seems like we can assume that a 2-point src would always result in | 
|  | //  a convex stroke, but testing has proved otherwise. | 
|  | //  TODO: fix the stroker to make this assumption true (without making | 
|  | //  it slower that the work that will be done in computeConvexity()) | 
|  | #if 0 | 
|  | // this test results in a non-convex stroke :( | 
|  | static void test(SkCanvas* canvas) { | 
|  | SkPoint pts[] = { 146.333328,  192.333328, 300.333344, 293.333344 }; | 
|  | SkPaint paint; | 
|  | paint.setStrokeWidth(7); | 
|  | paint.setStrokeCap(SkPaint::kRound_Cap); | 
|  | canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint); | 
|  | } | 
|  | #endif | 
|  | #if 0 | 
|  | if (2 == src.countPoints()) { | 
|  | dst->setIsConvex(true); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // our answer should preserve the inverseness of the src | 
|  | if (src.isInverseFillType()) { | 
|  | SkASSERT(!dst->isInverseFillType()); | 
|  | dst->toggleInverseFillType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SkPathDirection reverse_direction(SkPathDirection dir) { | 
|  | static const SkPathDirection gOpposite[] = { SkPathDirection::kCCW, SkPathDirection::kCW }; | 
|  | return gOpposite[(int)dir]; | 
|  | } | 
|  |  | 
|  | static void addBevel(SkPath* path, const SkRect& r, const SkRect& outer, SkPathDirection dir) { | 
|  | SkPoint pts[8]; | 
|  |  | 
|  | if (SkPathDirection::kCW == dir) { | 
|  | pts[0].set(r.fLeft, outer.fTop); | 
|  | pts[1].set(r.fRight, outer.fTop); | 
|  | pts[2].set(outer.fRight, r.fTop); | 
|  | pts[3].set(outer.fRight, r.fBottom); | 
|  | pts[4].set(r.fRight, outer.fBottom); | 
|  | pts[5].set(r.fLeft, outer.fBottom); | 
|  | pts[6].set(outer.fLeft, r.fBottom); | 
|  | pts[7].set(outer.fLeft, r.fTop); | 
|  | } else { | 
|  | pts[7].set(r.fLeft, outer.fTop); | 
|  | pts[6].set(r.fRight, outer.fTop); | 
|  | pts[5].set(outer.fRight, r.fTop); | 
|  | pts[4].set(outer.fRight, r.fBottom); | 
|  | pts[3].set(r.fRight, outer.fBottom); | 
|  | pts[2].set(r.fLeft, outer.fBottom); | 
|  | pts[1].set(outer.fLeft, r.fBottom); | 
|  | pts[0].set(outer.fLeft, r.fTop); | 
|  | } | 
|  | path->addPoly(pts, 8, true); | 
|  | } | 
|  |  | 
|  | void SkStroke::strokeRect(const SkRect& origRect, SkPath* dst, | 
|  | SkPathDirection dir) const { | 
|  | SkASSERT(dst != nullptr); | 
|  | dst->reset(); | 
|  |  | 
|  | SkScalar radius = SkScalarHalf(fWidth); | 
|  | if (radius <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | SkScalar rw = origRect.width(); | 
|  | SkScalar rh = origRect.height(); | 
|  | if ((rw < 0) ^ (rh < 0)) { | 
|  | dir = reverse_direction(dir); | 
|  | } | 
|  | SkRect rect(origRect); | 
|  | rect.sort(); | 
|  | // reassign these, now that we know they'll be >= 0 | 
|  | rw = rect.width(); | 
|  | rh = rect.height(); | 
|  |  | 
|  | SkRect r(rect); | 
|  | r.outset(radius, radius); | 
|  |  | 
|  | SkPaint::Join join = (SkPaint::Join)fJoin; | 
|  | if (SkPaint::kMiter_Join == join && fMiterLimit < SK_ScalarSqrt2) { | 
|  | join = SkPaint::kBevel_Join; | 
|  | } | 
|  |  | 
|  | switch (join) { | 
|  | case SkPaint::kMiter_Join: | 
|  | dst->addRect(r, dir); | 
|  | break; | 
|  | case SkPaint::kBevel_Join: | 
|  | addBevel(dst, rect, r, dir); | 
|  | break; | 
|  | case SkPaint::kRound_Join: | 
|  | dst->addRoundRect(r, radius, radius, dir); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (fWidth < std::min(rw, rh) && !fDoFill) { | 
|  | r = rect; | 
|  | r.inset(radius, radius); | 
|  | dst->addRect(r, reverse_direction(dir)); | 
|  | } | 
|  | } |