|  | /* | 
|  | * Copyright 2008 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkWriter32_DEFINED | 
|  | #define SkWriter32_DEFINED | 
|  |  | 
|  | #include "include/core/SkData.h" | 
|  | #include "include/core/SkMatrix.h" | 
|  | #include "include/core/SkPath.h" | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/core/SkPoint3.h" | 
|  | #include "include/core/SkRRect.h" | 
|  | #include "include/core/SkRect.h" | 
|  | #include "include/core/SkRegion.h" | 
|  | #include "include/core/SkScalar.h" | 
|  | #include "include/core/SkStream.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "include/private/SkNoncopyable.h" | 
|  | #include "include/private/SkTemplates.h" | 
|  | #include "include/private/SkTo.h" | 
|  |  | 
|  | class SkWriter32 : SkNoncopyable { | 
|  | public: | 
|  | /** | 
|  | *  The caller can specify an initial block of storage, which the caller manages. | 
|  | * | 
|  | *  SkWriter32 will try to back reserve and write calls with this external storage until the | 
|  | *  first time an allocation doesn't fit.  From then it will use dynamically allocated storage. | 
|  | *  This used to be optional behavior, but pipe now relies on it. | 
|  | */ | 
|  | SkWriter32(void* external = nullptr, size_t externalBytes = 0) { | 
|  | this->reset(external, externalBytes); | 
|  | } | 
|  |  | 
|  | // return the current offset (will always be a multiple of 4) | 
|  | size_t bytesWritten() const { return fUsed; } | 
|  |  | 
|  | // Returns true iff all of the bytes written so far are stored in the initial storage | 
|  | // buffer provided in the constructor or the most recent call to reset. | 
|  | bool usingInitialStorage() const { return fData == fExternal; } | 
|  |  | 
|  | void reset(void* external = nullptr, size_t externalBytes = 0) { | 
|  | // we cast this pointer to int* and float* at times, so assert that it is aligned. | 
|  | SkASSERT(SkIsAlign4((uintptr_t)external)); | 
|  | // we always write multiples of 4-bytes, so truncate down the size to match that | 
|  | externalBytes &= ~3; | 
|  |  | 
|  | fData = (uint8_t*)external; | 
|  | fCapacity = externalBytes; | 
|  | fUsed = 0; | 
|  | fExternal = external; | 
|  | } | 
|  |  | 
|  | // size MUST be multiple of 4 | 
|  | uint32_t* reserve(size_t size) { | 
|  | SkASSERT(SkAlign4(size) == size); | 
|  | size_t offset = fUsed; | 
|  | size_t totalRequired = fUsed + size; | 
|  | if (totalRequired > fCapacity) { | 
|  | this->growToAtLeast(totalRequired); | 
|  | } | 
|  | fUsed = totalRequired; | 
|  | return (uint32_t*)(fData + offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Read a T record at offset, which must be a multiple of 4. Only legal if the record | 
|  | *  was written atomically using the write methods below. | 
|  | */ | 
|  | template<typename T> | 
|  | const T& readTAt(size_t offset) const { | 
|  | SkASSERT(SkAlign4(offset) == offset); | 
|  | SkASSERT(offset < fUsed); | 
|  | return *(T*)(fData + offset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record | 
|  | *  was written atomically using the write methods below. | 
|  | */ | 
|  | template<typename T> | 
|  | void overwriteTAt(size_t offset, const T& value) { | 
|  | SkASSERT(SkAlign4(offset) == offset); | 
|  | SkASSERT(offset < fUsed); | 
|  | *(T*)(fData + offset) = value; | 
|  | } | 
|  |  | 
|  | bool writeBool(bool value) { | 
|  | this->write32(value); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | void writeInt(int32_t value) { | 
|  | this->write32(value); | 
|  | } | 
|  |  | 
|  | void write8(int32_t value) { | 
|  | *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF; | 
|  | } | 
|  |  | 
|  | void write16(int32_t value) { | 
|  | *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF; | 
|  | } | 
|  |  | 
|  | void write32(int32_t value) { | 
|  | *(int32_t*)this->reserve(sizeof(value)) = value; | 
|  | } | 
|  |  | 
|  | void writeScalar(SkScalar value) { | 
|  | *(SkScalar*)this->reserve(sizeof(value)) = value; | 
|  | } | 
|  |  | 
|  | void writePoint(const SkPoint& pt) { | 
|  | *(SkPoint*)this->reserve(sizeof(pt)) = pt; | 
|  | } | 
|  |  | 
|  | void writePoint3(const SkPoint3& pt) { | 
|  | *(SkPoint3*)this->reserve(sizeof(pt)) = pt; | 
|  | } | 
|  |  | 
|  | void writeRect(const SkRect& rect) { | 
|  | *(SkRect*)this->reserve(sizeof(rect)) = rect; | 
|  | } | 
|  |  | 
|  | void writeIRect(const SkIRect& rect) { | 
|  | *(SkIRect*)this->reserve(sizeof(rect)) = rect; | 
|  | } | 
|  |  | 
|  | void writeRRect(const SkRRect& rrect) { | 
|  | rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory)); | 
|  | } | 
|  |  | 
|  | void writePath(const SkPath& path) { | 
|  | size_t size = path.writeToMemory(nullptr); | 
|  | SkASSERT(SkAlign4(size) == size); | 
|  | path.writeToMemory(this->reserve(size)); | 
|  | } | 
|  |  | 
|  | void writeMatrix(const SkMatrix& matrix); | 
|  |  | 
|  | void writeRegion(const SkRegion& rgn) { | 
|  | size_t size = rgn.writeToMemory(nullptr); | 
|  | SkASSERT(SkAlign4(size) == size); | 
|  | rgn.writeToMemory(this->reserve(size)); | 
|  | } | 
|  |  | 
|  | // write count bytes (must be a multiple of 4) | 
|  | void writeMul4(const void* values, size_t size) { | 
|  | this->write(values, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Write size bytes from values. size must be a multiple of 4, though | 
|  | *  values need not be 4-byte aligned. | 
|  | */ | 
|  | void write(const void* values, size_t size) { | 
|  | SkASSERT(SkAlign4(size) == size); | 
|  | sk_careful_memcpy(this->reserve(size), values, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be | 
|  | *  filled in with zeroes. | 
|  | */ | 
|  | uint32_t* reservePad(size_t size) { | 
|  | size_t alignedSize = SkAlign4(size); | 
|  | uint32_t* p = this->reserve(alignedSize); | 
|  | if (alignedSize != size) { | 
|  | SkASSERT(alignedSize >= 4); | 
|  | p[alignedSize / 4 - 1] = 0; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Write size bytes from src, and pad to 4 byte alignment with zeroes. | 
|  | */ | 
|  | void writePad(const void* src, size_t size) { | 
|  | sk_careful_memcpy(this->reservePad(size), src, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Writes a string to the writer, which can be retrieved with SkReadBuffer::readString(). | 
|  | *  The length can be specified, or if -1 is passed, it will be computed by calling strlen(). | 
|  | *  The length must be < max size_t. | 
|  | * | 
|  | *  If you write NULL, it will be read as "". | 
|  | */ | 
|  | void writeString(const char* str, size_t len = (size_t)-1); | 
|  |  | 
|  | /** | 
|  | *  Computes the size (aligned to multiple of 4) need to write the string | 
|  | *  in a call to writeString(). If the length is not specified, it will be | 
|  | *  computed by calling strlen(). | 
|  | */ | 
|  | static size_t WriteStringSize(const char* str, size_t len = (size_t)-1); | 
|  |  | 
|  | void writeData(const SkData* data) { | 
|  | uint32_t len = data ? SkToU32(data->size()) : 0; | 
|  | this->write32(len); | 
|  | if (data) { | 
|  | this->writePad(data->data(), len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t WriteDataSize(const SkData* data) { | 
|  | return 4 + SkAlign4(data ? data->size() : 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Move the cursor back to offset bytes from the beginning. | 
|  | *  offset must be a multiple of 4 no greater than size(). | 
|  | */ | 
|  | void rewindToOffset(size_t offset) { | 
|  | SkASSERT(SkAlign4(offset) == offset); | 
|  | SkASSERT(offset <= bytesWritten()); | 
|  | fUsed = offset; | 
|  | } | 
|  |  | 
|  | // copy into a single buffer (allocated by caller). Must be at least size() | 
|  | void flatten(void* dst) const { | 
|  | memcpy(dst, fData, fUsed); | 
|  | } | 
|  |  | 
|  | bool writeToStream(SkWStream* stream) const { | 
|  | return stream->write(fData, fUsed); | 
|  | } | 
|  |  | 
|  | // read from the stream, and write up to length bytes. Return the actual | 
|  | // number of bytes written. | 
|  | size_t readFromStream(SkStream* stream, size_t length) { | 
|  | return stream->read(this->reservePad(length), length); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Captures a snapshot of the data as it is right now, and return it. | 
|  | */ | 
|  | sk_sp<SkData> snapshotAsData() const; | 
|  | private: | 
|  | void growToAtLeast(size_t size); | 
|  |  | 
|  | uint8_t* fData;                    // Points to either fInternal or fExternal. | 
|  | size_t fCapacity;                  // Number of bytes we can write to fData. | 
|  | size_t fUsed;                      // Number of bytes written. | 
|  | void* fExternal;                   // Unmanaged memory block. | 
|  | SkAutoTMalloc<uint8_t> fInternal;  // Managed memory block. | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *  Helper class to allocated SIZE bytes as part of the writer, and to provide | 
|  | *  that storage to the constructor as its initial storage buffer. | 
|  | * | 
|  | *  This wrapper ensures proper alignment rules are met for the storage. | 
|  | */ | 
|  | template <size_t SIZE> class SkSWriter32 : public SkWriter32 { | 
|  | public: | 
|  | SkSWriter32() { this->reset(); } | 
|  |  | 
|  | void reset() {this->INHERITED::reset(fData.fStorage, SIZE); } | 
|  |  | 
|  | private: | 
|  | union { | 
|  | void*   fPtrAlignment; | 
|  | double  fDoubleAlignment; | 
|  | char    fStorage[SIZE]; | 
|  | } fData; | 
|  |  | 
|  | using INHERITED = SkWriter32; | 
|  | }; | 
|  |  | 
|  | #endif |