blob: fe874dcc0f2ddea266b97e0bd5578231ef168bc2 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "bench/SKPBench.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#include "tools/flags/CommandLineFlags.h"
// These CPU tile sizes are not good per se, but they are similar to what Chrome uses.
static DEFINE_int(CPUbenchTileW, 256, "Tile width used for CPU SKP playback.");
static DEFINE_int(CPUbenchTileH, 256, "Tile height used for CPU SKP playback.");
static DEFINE_int(GPUbenchTileW, 1600, "Tile width used for GPU SKP playback.");
static DEFINE_int(GPUbenchTileH, 512, "Tile height used for GPU SKP playback.");
SKPBench::SKPBench(const char* name, const SkPicture* pic, const SkIRect& clip, SkScalar scale,
bool doLooping)
: fPic(SkRef(pic))
, fClip(clip)
, fScale(scale)
, fName(name)
, fDoLooping(doLooping) {
fUniqueName.printf("%s_%.2g", name, scale); // Scale makes this unqiue for perf.skia.org traces.
}
SKPBench::~SKPBench() {
for (int i = 0; i < fSurfaces.count(); ++i) {
fSurfaces[i]->unref();
}
}
const char* SKPBench::onGetName() {
return fName.c_str();
}
const char* SKPBench::onGetUniqueName() {
return fUniqueName.c_str();
}
void SKPBench::onPerCanvasPreDraw(SkCanvas* canvas) {
SkIRect bounds = canvas->getDeviceClipBounds();
bounds.intersect(fClip);
bounds.intersect(fPic->cullRect().roundOut());
SkAssertResult(!bounds.isEmpty());
const bool gpu = canvas->recordingContext() != nullptr;
int tileW = gpu ? FLAGS_GPUbenchTileW : FLAGS_CPUbenchTileW,
tileH = gpu ? FLAGS_GPUbenchTileH : FLAGS_CPUbenchTileH;
tileW = std::min(tileW, bounds.width());
tileH = std::min(tileH, bounds.height());
int xTiles = SkScalarCeilToInt(bounds.width() / SkIntToScalar(tileW));
int yTiles = SkScalarCeilToInt(bounds.height() / SkIntToScalar(tileH));
fSurfaces.reserve_back(xTiles * yTiles);
fTileRects.setReserve(xTiles * yTiles);
SkImageInfo ii = canvas->imageInfo().makeWH(tileW, tileH);
for (int y = bounds.fTop; y < bounds.fBottom; y += tileH) {
for (int x = bounds.fLeft; x < bounds.fRight; x += tileW) {
const SkIRect tileRect = SkIRect::MakeXYWH(x, y, tileW, tileH);
*fTileRects.append() = tileRect;
fSurfaces.emplace_back(canvas->makeSurface(ii));
// Never want the contents of a tile to include stuff the parent
// canvas clips out
SkRect clip = SkRect::Make(bounds);
clip.offset(-SkIntToScalar(tileRect.fLeft), -SkIntToScalar(tileRect.fTop));
fSurfaces.back()->getCanvas()->clipRect(clip);
fSurfaces.back()->getCanvas()->setMatrix(canvas->getLocalToDevice());
fSurfaces.back()->getCanvas()->scale(fScale, fScale);
}
}
}
void SKPBench::onPerCanvasPostDraw(SkCanvas* canvas) {
// Draw the last set of tiles into the main canvas in case we're
// saving the images
for (int i = 0; i < fTileRects.count(); ++i) {
sk_sp<SkImage> image(fSurfaces[i]->makeImageSnapshot());
canvas->drawImage(image,
SkIntToScalar(fTileRects[i].fLeft), SkIntToScalar(fTileRects[i].fTop));
}
fSurfaces.reset();
fTileRects.rewind();
}
bool SKPBench::isSuitableFor(Backend backend) {
return backend != kNonRendering_Backend;
}
SkIPoint SKPBench::onGetSize() {
return SkIPoint::Make(fClip.width(), fClip.height());
}
void SKPBench::onDraw(int loops, SkCanvas* canvas) {
SkASSERT(fDoLooping || 1 == loops);
while (1) {
this->drawPicture();
if (0 == --loops) {
break;
}
auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext()
: nullptr;
// Ensure the GrContext doesn't combine ops across draw loops.
if (direct) {
direct->flushAndSubmit();
}
}
}
void SKPBench::drawMPDPicture() {
// TODO: remove me
}
void SKPBench::drawPicture() {
for (int j = 0; j < fTileRects.count(); ++j) {
const SkMatrix trans = SkMatrix::Translate(-fTileRects[j].fLeft / fScale,
-fTileRects[j].fTop / fScale);
fSurfaces[j]->getCanvas()->drawPicture(fPic.get(), &trans, nullptr);
}
for (int j = 0; j < fTileRects.count(); ++j) {
fSurfaces[j]->flush();
}
}
#include "src/gpu/ganesh/GrGpu.h"
static void draw_pic_for_stats(SkCanvas* canvas,
GrDirectContext* dContext,
const SkPicture* picture,
SkTArray<SkString>* keys,
SkTArray<double>* values) {
dContext->priv().resetGpuStats();
dContext->priv().resetContextStats();
canvas->drawPicture(picture);
dContext->flush();
dContext->priv().dumpGpuStatsKeyValuePairs(keys, values);
dContext->priv().dumpCacheStatsKeyValuePairs(keys, values);
dContext->priv().dumpContextStatsKeyValuePairs(keys, values);
}
void SKPBench::getGpuStats(SkCanvas* canvas, SkTArray<SkString>* keys, SkTArray<double>* values) {
// we do a special single draw and then dump the key / value pairs
auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext()
: nullptr;
if (!direct) {
return;
}
// TODO refactor this out if we want to test other subclasses of skpbench
direct->flushAndSubmit();
direct->freeGpuResources();
direct->resetContext();
direct->priv().getGpu()->resetShaderCacheForTesting();
draw_pic_for_stats(canvas, direct, fPic.get(), keys, values);
}
bool SKPBench::getDMSAAStats(GrRecordingContext* rContext) {
if (!rContext || !rContext->asDirectContext()) {
return false;
}
// Clear the current DMSAA stats then do a single tiled draw that resets them to the specific
// values for our SKP.
rContext->asDirectContext()->flushAndSubmit();
rContext->priv().dmsaaStats() = {};
this->drawPicture(); // Draw tiled for DMSAA stats.
rContext->asDirectContext()->flush();
return true;
}