blob: 47be6901c232986306e0b5e9e24a12ba75fa698c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/image/SkImage_Lazy.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkData.h"
#include "include/core/SkImageGenerator.h"
#include "src/core/SkBitmapCache.h"
#include "src/core/SkCachedData.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkNextID.h"
#if SK_SUPPORT_GPU
#include "include/private/GrRecordingContext.h"
#include "include/private/GrResourceKey.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrImageTextureMaker.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrSamplerState.h"
#include "src/gpu/GrYUVProvider.h"
#include "src/gpu/SkGr.h"
#endif
// Ref-counted tuple(SkImageGenerator, SkMutex) which allows sharing one generator among N images
class SharedGenerator final : public SkNVRefCnt<SharedGenerator> {
public:
static sk_sp<SharedGenerator> Make(std::unique_ptr<SkImageGenerator> gen) {
return gen ? sk_sp<SharedGenerator>(new SharedGenerator(std::move(gen))) : nullptr;
}
// This is thread safe. It is a const field set in the constructor.
const SkImageInfo& getInfo() { return fGenerator->getInfo(); }
private:
explicit SharedGenerator(std::unique_ptr<SkImageGenerator> gen)
: fGenerator(std::move(gen)) {
SkASSERT(fGenerator);
}
friend class ScopedGenerator;
friend class SkImage_Lazy;
std::unique_ptr<SkImageGenerator> fGenerator;
SkMutex fMutex;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::Validator::Validator(sk_sp<SharedGenerator> gen, const SkIRect* subset,
const SkColorType* colorType, sk_sp<SkColorSpace> colorSpace)
: fSharedGenerator(std::move(gen)) {
if (!fSharedGenerator) {
return;
}
// The following generator accessors are safe without acquiring the mutex (const getters).
// TODO: refactor to use a ScopedGenerator instead, for clarity.
const SkImageInfo& info = fSharedGenerator->fGenerator->getInfo();
if (info.isEmpty()) {
fSharedGenerator.reset();
return;
}
fUniqueID = fSharedGenerator->fGenerator->uniqueID();
const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height());
if (subset) {
if (!bounds.contains(*subset)) {
fSharedGenerator.reset();
return;
}
if (*subset != bounds) {
// we need a different uniqueID since we really are a subset of the raw generator
fUniqueID = SkNextID::ImageID();
}
} else {
subset = &bounds;
}
fInfo = info.makeDimensions(subset->size());
fOrigin = SkIPoint::Make(subset->x(), subset->y());
if (colorType || colorSpace) {
if (colorType) {
fInfo = fInfo.makeColorType(*colorType);
}
if (colorSpace) {
fInfo = fInfo.makeColorSpace(colorSpace);
}
fUniqueID = SkNextID::ImageID();
}
}
///////////////////////////////////////////////////////////////////////////////
// Helper for exclusive access to a shared generator.
class SkImage_Lazy::ScopedGenerator {
public:
ScopedGenerator(const sk_sp<SharedGenerator>& gen)
: fSharedGenerator(gen)
, fAutoAquire(gen->fMutex) {}
SkImageGenerator* operator->() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
operator SkImageGenerator*() const {
fSharedGenerator->fMutex.assertHeld();
return fSharedGenerator->fGenerator.get();
}
private:
const sk_sp<SharedGenerator>& fSharedGenerator;
SkAutoMutexExclusive fAutoAquire;
};
///////////////////////////////////////////////////////////////////////////////
SkImage_Lazy::SkImage_Lazy(Validator* validator)
: INHERITED(validator->fInfo, validator->fUniqueID)
, fSharedGenerator(std::move(validator->fSharedGenerator))
, fOrigin(validator->fOrigin) {
SkASSERT(fSharedGenerator);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static bool generate_pixels(SkImageGenerator* gen, const SkPixmap& pmap, int originX, int originY) {
const int genW = gen->getInfo().width();
const int genH = gen->getInfo().height();
const SkIRect srcR = SkIRect::MakeWH(genW, genH);
const SkIRect dstR = SkIRect::MakeXYWH(originX, originY, pmap.width(), pmap.height());
if (!srcR.contains(dstR)) {
return false;
}
// If they are requesting a subset, we have to have a temp allocation for full image, and
// then copy the subset into their allocation
SkBitmap full;
SkPixmap fullPM;
const SkPixmap* dstPM = &pmap;
if (srcR != dstR) {
if (!full.tryAllocPixels(pmap.info().makeWH(genW, genH))) {
return false;
}
if (!full.peekPixels(&fullPM)) {
return false;
}
dstPM = &fullPM;
}
if (!gen->getPixels(dstPM->info(), dstPM->writable_addr(), dstPM->rowBytes())) {
return false;
}
if (srcR != dstR) {
if (!full.readPixels(pmap, originX, originY)) {
return false;
}
}
return true;
}
bool SkImage_Lazy::getROPixels(SkBitmap* bitmap, SkImage::CachingHint chint) const {
auto check_output_bitmap = [bitmap]() {
SkASSERT(bitmap->isImmutable());
SkASSERT(bitmap->getPixels());
(void)bitmap;
};
auto desc = SkBitmapCacheDesc::Make(this);
if (SkBitmapCache::Find(desc, bitmap)) {
check_output_bitmap();
return true;
}
if (SkImage::kAllow_CachingHint == chint) {
SkPixmap pmap;
SkBitmapCache::RecPtr cacheRec = SkBitmapCache::Alloc(desc, this->imageInfo(), &pmap);
if (!cacheRec ||
!generate_pixels(ScopedGenerator(fSharedGenerator), pmap,
fOrigin.x(), fOrigin.y())) {
return false;
}
SkBitmapCache::Add(std::move(cacheRec), bitmap);
this->notifyAddedToRasterCache();
} else {
if (!bitmap->tryAllocPixels(this->imageInfo()) ||
!generate_pixels(ScopedGenerator(fSharedGenerator), bitmap->pixmap(), fOrigin.x(),
fOrigin.y())) {
return false;
}
bitmap->setImmutable();
}
check_output_bitmap();
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_Lazy::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB,
int srcX, int srcY, CachingHint chint) const {
SkBitmap bm;
if (this->getROPixels(&bm, chint)) {
return bm.readPixels(dstInfo, dstPixels, dstRB, srcX, srcY);
}
return false;
}
sk_sp<SkData> SkImage_Lazy::onRefEncoded() const {
ScopedGenerator generator(fSharedGenerator);
return generator->refEncodedData();
}
bool SkImage_Lazy::onIsValid(GrContext* context) const {
ScopedGenerator generator(fSharedGenerator);
return generator->isValid(context);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
GrSurfaceProxyView SkImage_Lazy::refView(GrRecordingContext* context, GrMipMapped mipMapped) const {
if (!context) {
return {};
}
GrImageTextureMaker textureMaker(context, this, GrImageTexGenPolicy::kDraw);
return textureMaker.view(mipMapped);
}
#endif
sk_sp<SkImage> SkImage_Lazy::onMakeSubset(GrRecordingContext* context,
const SkIRect& subset) const {
SkASSERT(this->bounds().contains(subset));
SkASSERT(this->bounds() != subset);
const SkIRect generatorSubset = subset.makeOffset(fOrigin);
const SkColorType colorType = this->colorType();
Validator validator(fSharedGenerator, &generatorSubset, &colorType, this->refColorSpace());
return validator ? sk_sp<SkImage>(new SkImage_Lazy(&validator)) : nullptr;
}
sk_sp<SkImage> SkImage_Lazy::onMakeColorTypeAndColorSpace(GrRecordingContext*,
SkColorType targetCT,
sk_sp<SkColorSpace> targetCS) const {
SkAutoMutexExclusive autoAquire(fOnMakeColorTypeAndSpaceMutex);
if (fOnMakeColorTypeAndSpaceResult &&
targetCT == fOnMakeColorTypeAndSpaceResult->colorType() &&
SkColorSpace::Equals(targetCS.get(), fOnMakeColorTypeAndSpaceResult->colorSpace())) {
return fOnMakeColorTypeAndSpaceResult;
}
const SkIRect generatorSubset =
SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), this->width(), this->height());
Validator validator(fSharedGenerator, &generatorSubset, &targetCT, targetCS);
sk_sp<SkImage> result = validator ? sk_sp<SkImage>(new SkImage_Lazy(&validator)) : nullptr;
if (result) {
fOnMakeColorTypeAndSpaceResult = result;
}
return result;
}
sk_sp<SkImage> SkImage_Lazy::onReinterpretColorSpace(sk_sp<SkColorSpace> newCS) const {
// TODO: The correct thing is to clone the generator, and modify its color space. That's hard,
// because we don't have a clone method, and generator is public (and derived-from by clients).
// So do the simple/inefficient thing here, and fallback to raster when this is called.
// We allocate the bitmap with the new color space, then generate the image using the original.
SkBitmap bitmap;
if (bitmap.tryAllocPixels(this->imageInfo().makeColorSpace(std::move(newCS)))) {
SkPixmap pixmap = bitmap.pixmap();
pixmap.setColorSpace(this->refColorSpace());
if (generate_pixels(ScopedGenerator(fSharedGenerator), pixmap, fOrigin.x(), fOrigin.y())) {
bitmap.setImmutable();
return SkImage::MakeFromBitmap(bitmap);
}
}
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromGenerator(std::unique_ptr<SkImageGenerator> generator,
const SkIRect* subset) {
SkImage_Lazy::Validator
validator(SharedGenerator::Make(std::move(generator)), subset, nullptr, nullptr);
return validator ? sk_make_sp<SkImage_Lazy>(&validator) : nullptr;
}
sk_sp<SkImage> SkImage::DecodeToRaster(const void* encoded, size_t length, const SkIRect* subset) {
// The generator will not outlive this function, so we can wrap the encoded data without copy
auto gen = SkImageGenerator::MakeFromEncoded(SkData::MakeWithoutCopy(encoded, length));
if (!gen) {
return nullptr;
}
SkImageInfo info = gen->getInfo();
if (info.isEmpty()) {
return nullptr;
}
SkIPoint origin = {0, 0};
if (subset) {
if (!SkIRect::MakeWH(info.width(), info.height()).contains(*subset)) {
return nullptr;
}
info = info.makeDimensions(subset->size());
origin = {subset->x(), subset->y()};
}
size_t rb = info.minRowBytes();
if (rb == 0) {
return nullptr; // rb was too big
}
size_t size = info.computeByteSize(rb);
if (size == SIZE_MAX) {
return nullptr;
}
auto data = SkData::MakeUninitialized(size);
SkPixmap pmap(info, data->writable_data(), rb);
if (!generate_pixels(gen.get(), pmap, origin.x(), origin.y())) {
return nullptr;
}
return SkImage::MakeRasterData(info, data, rb);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class Generator_GrYUVProvider : public GrYUVProvider {
public:
Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {}
private:
uint32_t onGetID() const override { return fGen->uniqueID(); }
bool onQueryYUVA8(SkYUVASizeInfo* sizeInfo,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* colorSpace) const override {
return fGen->queryYUVA8(sizeInfo, yuvaIndices, colorSpace);
}
bool onGetYUVA8Planes(const SkYUVASizeInfo& sizeInfo,
const SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
void* planes[]) override {
return fGen->getYUVA8Planes(sizeInfo, yuvaIndices, planes);
}
SkImageGenerator* fGen;
typedef GrYUVProvider INHERITED;
};
sk_sp<SkCachedData> SkImage_Lazy::getPlanes(SkYUVASizeInfo* yuvaSizeInfo,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* yuvColorSpace,
const void* planes[SkYUVASizeInfo::kMaxCount]) {
ScopedGenerator generator(fSharedGenerator);
Generator_GrYUVProvider provider(generator);
sk_sp<SkCachedData> data = provider.getPlanes(yuvaSizeInfo, yuvaIndices, yuvColorSpace, planes);
if (!data) {
return nullptr;
}
return data;
}
/*
* We have 4 ways to try to return a texture (in sorted order)
*
* 1. Check the cache for a pre-existing one
* 2. Ask the generator to natively create one
* 3. Ask the generator to return YUV planes, which the GPU can convert
* 4. Ask the generator to return RGB(A) data, which the GPU can convert
*/
GrSurfaceProxyView SkImage_Lazy::lockTextureProxyView(GrRecordingContext* ctx,
GrImageTexGenPolicy texGenPolicy,
GrMipMapped mipMapped) const {
// Values representing the various texture lock paths we can take. Used for logging the path
// taken to a histogram.
enum LockTexturePath {
kFailure_LockTexturePath,
kPreExisting_LockTexturePath,
kNative_LockTexturePath,
kCompressed_LockTexturePath, // Deprecated
kYUV_LockTexturePath,
kRGBA_LockTexturePath,
};
enum { kLockTexturePathCount = kRGBA_LockTexturePath + 1 };
GrUniqueKey key;
if (texGenPolicy == GrImageTexGenPolicy::kDraw) {
GrMakeKeyFromImageID(&key, this->uniqueID(), SkIRect::MakeSize(this->dimensions()));
}
const GrCaps* caps = ctx->priv().caps();
GrProxyProvider* proxyProvider = ctx->priv().proxyProvider();
auto installKey = [&](const GrSurfaceProxyView& view) {
SkASSERT(view && view.asTextureProxy());
if (key.isValid()) {
auto listener = GrMakeUniqueKeyInvalidationListener(&key, ctx->priv().contextID());
this->addUniqueIDListener(std::move(listener));
proxyProvider->assignUniqueKeyToProxy(key, view.asTextureProxy());
}
};
auto ct = this->colorTypeOfLockTextureProxy(caps);
// 1. Check the cache for a pre-existing one.
if (key.isValid()) {
auto proxy = proxyProvider->findOrCreateProxyByUniqueKey(key);
if (proxy) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kPreExisting_LockTexturePath,
kLockTexturePathCount);
GrSwizzle swizzle = caps->getReadSwizzle(proxy->backendFormat(), ct);
GrSurfaceProxyView view(std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle);
if (mipMapped == GrMipMapped::kNo ||
view.asTextureProxy()->mipMapped() == GrMipMapped::kYes) {
return view;
} else {
// We need a mipped proxy, but we found a cached proxy that wasn't mipped. Thus we
// generate a new mipped surface and copy the original proxy into the base layer. We
// will then let the gpu generate the rest of the mips.
auto mippedView = GrCopyBaseMipMapToView(ctx, view);
if (!mippedView) {
// We failed to make a mipped proxy with the base copied into it. This could
// have been from failure to make the proxy or failure to do the copy. Thus we
// will fall back to just using the non mipped proxy; See skbug.com/7094.
return view;
}
proxyProvider->removeUniqueKeyFromProxy(view.asTextureProxy());
installKey(mippedView);
return mippedView;
}
}
}
// 2. Ask the generator to natively create one.
{
ScopedGenerator generator(fSharedGenerator);
if (auto view = generator->generateTexture(ctx, this->imageInfo(), fOrigin, mipMapped,
texGenPolicy)) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kNative_LockTexturePath,
kLockTexturePathCount);
installKey(view);
return view;
}
}
// 3. Ask the generator to return YUV planes, which the GPU can convert. If we will be mipping
// the texture we skip this step so the CPU generate non-planar MIP maps for us.
if (mipMapped == GrMipMapped::kNo && !ctx->priv().options().fDisableGpuYUVConversion) {
SkColorType colorType = this->colorType();
ScopedGenerator generator(fSharedGenerator);
Generator_GrYUVProvider provider(generator);
// The pixels in the texture will be in the generator's color space.
// If onMakeColorTypeAndColorSpace has been called then this will not match this image's
// color space. To correct this, apply a color space conversion from the generator's color
// space to this image's color space.
SkColorSpace* generatorColorSpace = fSharedGenerator->fGenerator->getInfo().colorSpace();
SkColorSpace* thisColorSpace = this->colorSpace();
// TODO: Update to create the mipped surface in the YUV generator and draw the base
// layer directly into the mipped surface.
SkBudgeted budgeted = texGenPolicy == GrImageTexGenPolicy::kNew_Uncached_Unbudgeted
? SkBudgeted::kNo
: SkBudgeted::kYes;
auto view = provider.refAsTextureProxyView(ctx, this->imageInfo().dimensions(),
SkColorTypeToGrColorType(colorType),
generatorColorSpace, thisColorSpace, budgeted);
if (view) {
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kYUV_LockTexturePath,
kLockTexturePathCount);
installKey(view);
return view;
}
}
// 4. Ask the generator to return a bitmap, which the GPU can convert.
auto hint = texGenPolicy == GrImageTexGenPolicy::kDraw ? CachingHint::kAllow_CachingHint
: CachingHint::kDisallow_CachingHint;
if (SkBitmap bitmap; this->getROPixels(&bitmap, hint)) {
// We always pass uncached here because we will cache it external to the maker based on
// *our* cache policy. We're just using the maker to generate the texture.
auto makerPolicy = texGenPolicy == GrImageTexGenPolicy::kNew_Uncached_Unbudgeted
? GrImageTexGenPolicy::kNew_Uncached_Unbudgeted
: GrImageTexGenPolicy::kNew_Uncached_Budgeted;
GrBitmapTextureMaker bitmapMaker(ctx, bitmap, makerPolicy);
auto view = bitmapMaker.view(mipMapped);
if (view) {
installKey(view);
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kRGBA_LockTexturePath,
kLockTexturePathCount);
return view;
}
}
SK_HISTOGRAM_ENUMERATION("LockTexturePath", kFailure_LockTexturePath, kLockTexturePathCount);
return {};
}
GrColorType SkImage_Lazy::colorTypeOfLockTextureProxy(const GrCaps* caps) const {
GrColorType ct = SkColorTypeToGrColorType(this->colorType());
GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kNo);
if (!format.isValid()) {
ct = GrColorType::kRGBA_8888;
}
return ct;
}
#if SK_SUPPORT_GPU
void SkImage_Lazy::addUniqueIDListener(sk_sp<SkIDChangeListener> listener) const {
bool singleThreaded = this->unique();
fUniqueIDListeners.add(std::move(listener), singleThreaded);
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::DecodeToTexture(GrContext* ctx, const void* encoded, size_t length,
const SkIRect* subset) {
// img will not survive this function, so we don't need to copy/own the encoded data,
auto img = MakeFromEncoded(SkData::MakeWithoutCopy(encoded, length), subset);
if (!img) {
return nullptr;
}
return img->makeTextureImage(ctx);
}
#endif