blob: e5c7baccf4cd97135e9f0849dcbc2051124f0841 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrRenderTargetContext.h"
#include "include/core/SkDrawable.h"
#include "include/core/SkVertices.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/private/GrImageContext.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/SkShadowFlags.h"
#include "include/utils/SkShadowUtils.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkDrawShadowInfo.h"
#include "src/core/SkGlyphRunPainter.h"
#include "src/core/SkLatticeIter.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkRRectPriv.h"
#include "src/core/SkSurfacePriv.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrAuditTrail.h"
#include "src/gpu/GrBlurUtils.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrColor.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrDataUtils.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrImageContextPriv.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrPathRenderer.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrStencilAttachment.h"
#include "src/gpu/GrStyle.h"
#include "src/gpu/GrTracing.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrRRectEffect.h"
#include "src/gpu/geometry/GrQuad.h"
#include "src/gpu/geometry/GrQuadUtils.h"
#include "src/gpu/geometry/GrStyledShape.h"
#include "src/gpu/ops/GrAtlasTextOp.h"
#include "src/gpu/ops/GrClearOp.h"
#include "src/gpu/ops/GrDrawAtlasOp.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/ops/GrDrawVerticesOp.h"
#include "src/gpu/ops/GrDrawableOp.h"
#include "src/gpu/ops/GrFillRRectOp.h"
#include "src/gpu/ops/GrFillRectOp.h"
#include "src/gpu/ops/GrLatticeOp.h"
#include "src/gpu/ops/GrOp.h"
#include "src/gpu/ops/GrOvalOpFactory.h"
#include "src/gpu/ops/GrRegionOp.h"
#include "src/gpu/ops/GrShadowRRectOp.h"
#include "src/gpu/ops/GrStencilPathOp.h"
#include "src/gpu/ops/GrStrokeRectOp.h"
#include "src/gpu/ops/GrTextureOp.h"
#include "src/gpu/text/GrSDFTOptions.h"
#include "src/gpu/text/GrTextBlobCache.h"
#include "src/gpu/text/GrTextTarget.h"
class GrRenderTargetContext::TextTarget : public GrTextTarget {
public:
TextTarget(GrRenderTargetContext* renderTargetContext)
: GrTextTarget(renderTargetContext->width(), renderTargetContext->height(),
renderTargetContext->colorInfo())
, fRenderTargetContext(renderTargetContext) {}
void addDrawOp(const GrClip* clip, std::unique_ptr<GrAtlasTextOp> op) override {
fRenderTargetContext->addDrawOp(clip, std::move(op));
}
void drawShape(const GrClip* clip,
const SkPaint& paint,
const SkMatrixProvider& matrixProvider,
const GrStyledShape& shape) override {
GrBlurUtils::drawShapeWithMaskFilter(fRenderTargetContext->fContext, fRenderTargetContext,
clip, paint, matrixProvider, shape);
}
void makeGrPaint(GrMaskFormat maskFormat,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
GrPaint* grPaint) override {
auto context = fRenderTargetContext->fContext;
const GrColorInfo& colorInfo = fRenderTargetContext->colorInfo();
if (kARGB_GrMaskFormat == maskFormat) {
SkPaintToGrPaintWithPrimitiveColor(context, colorInfo, skPaint, matrixProvider,
grPaint);
} else {
SkPaintToGrPaint(context, colorInfo, skPaint, matrixProvider, grPaint);
}
}
GrRecordingContext* getContext() override {
return fRenderTargetContext->fContext;
}
SkGlyphRunListPainter* glyphPainter() override {
return fRenderTargetContext->glyphPainter();
}
private:
GrRenderTargetContext* fRenderTargetContext;
};
#define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this->drawingManager()->getContext())
#define ASSERT_SINGLE_OWNER GR_ASSERT_SINGLE_OWNER(this->singleOwner())
#define ASSERT_SINGLE_OWNER_PRIV GR_ASSERT_SINGLE_OWNER(fRenderTargetContext->singleOwner())
#define RETURN_IF_ABANDONED if (fContext->priv().abandoned()) { return; }
#define RETURN_IF_ABANDONED_PRIV if (fRenderTargetContext->fContext->priv().abandoned()) { return; }
#define RETURN_FALSE_IF_ABANDONED if (fContext->priv().abandoned()) { return false; }
#define RETURN_FALSE_IF_ABANDONED_PRIV if (fRenderTargetContext->fContext->priv().abandoned()) { return false; }
#define RETURN_NULL_IF_ABANDONED if (fContext->priv().abandoned()) { return nullptr; }
//////////////////////////////////////////////////////////////////////////////
class AutoCheckFlush {
public:
AutoCheckFlush(GrDrawingManager* drawingManager) : fDrawingManager(drawingManager) {
SkASSERT(fDrawingManager);
}
~AutoCheckFlush() { fDrawingManager->flushIfNecessary(); }
private:
GrDrawingManager* fDrawingManager;
};
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::Make(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
sk_sp<GrSurfaceProxy> proxy,
GrSurfaceOrigin origin,
const SkSurfaceProps* surfaceProps,
bool managedOps) {
if (!proxy) {
return nullptr;
}
const GrBackendFormat& format = proxy->backendFormat();
GrSwizzle readSwizzle, writeSwizzle;
if (colorType != GrColorType::kUnknown) {
readSwizzle = context->priv().caps()->getReadSwizzle(format, colorType);
writeSwizzle = context->priv().caps()->getWriteSwizzle(format, colorType);
}
GrSurfaceProxyView readView(proxy, origin, readSwizzle);
GrSurfaceProxyView writeView(std::move(proxy), origin, writeSwizzle);
return std::make_unique<GrRenderTargetContext>(context, std::move(readView),
std::move(writeView), colorType,
std::move(colorSpace), surfaceProps, managedOps);
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::Make(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
const GrBackendFormat& format,
int sampleCnt,
GrMipMapped mipMapped,
GrProtected isProtected,
GrSurfaceOrigin origin,
SkBudgeted budgeted,
const SkSurfaceProps* surfaceProps) {
// It is probably not necessary to check if the context is abandoned here since uses of the
// GrRenderTargetContext which need the context will mostly likely fail later on without an
// issue. However having this hear adds some reassurance in case there is a path doesn't handle
// an abandoned context correctly. It also lets us early out of some extra work.
if (context->priv().abandoned()) {
return nullptr;
}
sk_sp<GrTextureProxy> proxy = context->priv().proxyProvider()->createProxy(
format, dimensions, GrRenderable::kYes, sampleCnt, mipMapped, fit, budgeted,
isProtected);
if (!proxy) {
return nullptr;
}
auto rtc = GrRenderTargetContext::Make(context, colorType, std::move(colorSpace),
std::move(proxy), origin, surfaceProps, true);
if (!rtc) {
return nullptr;
}
rtc->discard();
return rtc;
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::Make(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
int sampleCnt,
GrMipMapped mipMapped,
GrProtected isProtected,
GrSurfaceOrigin origin,
SkBudgeted budgeted,
const SkSurfaceProps* surfaceProps) {
auto format = context->priv().caps()->getDefaultBackendFormat(colorType, GrRenderable::kYes);
if (!format.isValid()) {
return nullptr;
}
return GrRenderTargetContext::Make(context, colorType, std::move(colorSpace), fit, dimensions,
format, sampleCnt, mipMapped, isProtected, origin, budgeted,
surfaceProps);
}
static inline GrColorType color_type_fallback(GrColorType ct) {
switch (ct) {
// kRGBA_8888 is our default fallback for many color types that may not have renderable
// backend formats.
case GrColorType::kAlpha_8:
case GrColorType::kBGR_565:
case GrColorType::kABGR_4444:
case GrColorType::kBGRA_8888:
case GrColorType::kRGBA_1010102:
case GrColorType::kBGRA_1010102:
case GrColorType::kRGBA_F16:
case GrColorType::kRGBA_F16_Clamped:
return GrColorType::kRGBA_8888;
case GrColorType::kAlpha_F16:
return GrColorType::kRGBA_F16;
case GrColorType::kGray_8:
return GrColorType::kRGB_888x;
default:
return GrColorType::kUnknown;
}
}
std::tuple<GrColorType, GrBackendFormat> GrRenderTargetContext::GetFallbackColorTypeAndFormat(
GrImageContext* context, GrColorType colorType, int sampleCnt) {
auto caps = context->priv().caps();
do {
auto format = caps->getDefaultBackendFormat(colorType, GrRenderable::kYes);
// We continue to the fallback color type if there no default renderable format or we
// requested msaa and the format doesn't support msaa.
if (format.isValid() && caps->isFormatRenderable(format, sampleCnt)) {
return {colorType, format};
}
colorType = color_type_fallback(colorType);
} while (colorType != GrColorType::kUnknown);
return {GrColorType::kUnknown, {}};
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::MakeWithFallback(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
int sampleCnt,
GrMipMapped mipMapped,
GrProtected isProtected,
GrSurfaceOrigin origin,
SkBudgeted budgeted,
const SkSurfaceProps* surfaceProps) {
auto [ct, format] = GetFallbackColorTypeAndFormat(context, colorType, sampleCnt);
if (ct == GrColorType::kUnknown) {
return nullptr;
}
return GrRenderTargetContext::Make(context, ct, colorSpace, fit, dimensions, sampleCnt,
mipMapped, isProtected, origin, budgeted, surfaceProps);
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::MakeFromBackendTexture(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const GrBackendTexture& tex,
int sampleCnt,
GrSurfaceOrigin origin,
const SkSurfaceProps* surfaceProps,
sk_sp<GrRefCntedCallback> releaseHelper) {
SkASSERT(sampleCnt > 0);
sk_sp<GrTextureProxy> proxy(context->priv().proxyProvider()->wrapRenderableBackendTexture(
tex, sampleCnt, kBorrow_GrWrapOwnership, GrWrapCacheable::kNo,
std::move(releaseHelper)));
if (!proxy) {
return nullptr;
}
return GrRenderTargetContext::Make(context, colorType, std::move(colorSpace), std::move(proxy),
origin, surfaceProps);
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::MakeFromBackendTextureAsRenderTarget(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const GrBackendTexture& tex,
int sampleCnt,
GrSurfaceOrigin origin,
const SkSurfaceProps* surfaceProps) {
SkASSERT(sampleCnt > 0);
sk_sp<GrSurfaceProxy> proxy(
context->priv().proxyProvider()->wrapBackendTextureAsRenderTarget(tex, sampleCnt));
if (!proxy) {
return nullptr;
}
return GrRenderTargetContext::Make(context, colorType, std::move(colorSpace), std::move(proxy),
origin, surfaceProps);
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::MakeFromBackendRenderTarget(
GrRecordingContext* context,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const GrBackendRenderTarget& rt,
GrSurfaceOrigin origin,
const SkSurfaceProps* surfaceProps,
ReleaseProc releaseProc,
ReleaseContext releaseCtx) {
sk_sp<GrRefCntedCallback> releaseHelper;
if (releaseProc) {
releaseHelper.reset(new GrRefCntedCallback(releaseProc, releaseCtx));
}
sk_sp<GrSurfaceProxy> proxy(
context->priv().proxyProvider()->wrapBackendRenderTarget(rt, std::move(releaseHelper)));
if (!proxy) {
return nullptr;
}
return GrRenderTargetContext::Make(context, colorType, std::move(colorSpace), std::move(proxy),
origin, surfaceProps);
}
std::unique_ptr<GrRenderTargetContext> GrRenderTargetContext::MakeFromVulkanSecondaryCB(
GrRecordingContext* context,
const SkImageInfo& imageInfo,
const GrVkDrawableInfo& vkInfo,
const SkSurfaceProps* props) {
sk_sp<GrSurfaceProxy> proxy(
context->priv().proxyProvider()->wrapVulkanSecondaryCBAsRenderTarget(imageInfo,
vkInfo));
if (!proxy) {
return nullptr;
}
return GrRenderTargetContext::Make(context, SkColorTypeToGrColorType(imageInfo.colorType()),
imageInfo.refColorSpace(), std::move(proxy),
kTopLeft_GrSurfaceOrigin, props);
}
// In MDB mode the reffing of the 'getLastOpsTask' call's result allows in-progress
// GrOpsTask to be picked up and added to by renderTargetContexts lower in the call
// stack. When this occurs with a closed GrOpsTask, a new one will be allocated
// when the renderTargetContext attempts to use it (via getOpsTask).
GrRenderTargetContext::GrRenderTargetContext(GrRecordingContext* context,
GrSurfaceProxyView readView,
GrSurfaceProxyView writeView,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* surfaceProps,
bool managedOpsTask)
: GrSurfaceContext(context, std::move(readView), colorType, kPremul_SkAlphaType,
std::move(colorSpace))
, fWriteView(std::move(writeView))
, fSurfaceProps(SkSurfacePropsCopyOrDefault(surfaceProps))
, fManagedOpsTask(managedOpsTask)
, fGlyphPainter(*this) {
fOpsTask = sk_ref_sp(context->priv().drawingManager()->getLastOpsTask(this->asSurfaceProxy()));
if (fOpsTask) {
fOpsTask->addClosedObserver(this);
}
SkASSERT(this->asSurfaceProxy() == fWriteView.proxy());
SkASSERT(this->origin() == fWriteView.origin());
fTextTarget.reset(new TextTarget(this));
SkDEBUGCODE(this->validate();)
}
#ifdef SK_DEBUG
void GrRenderTargetContext::onValidate() const {
if (fOpsTask && !fOpsTask->isClosed()) {
SkASSERT(this->drawingManager()->getLastRenderTask(fWriteView.proxy()) == fOpsTask.get());
}
}
#endif
GrRenderTargetContext::~GrRenderTargetContext() {
ASSERT_SINGLE_OWNER
if (fOpsTask) {
fOpsTask->removeClosedObserver(this);
}
}
inline GrAAType GrRenderTargetContext::chooseAAType(GrAA aa) {
if (GrAA::kNo == aa) {
// On some devices we cannot disable MSAA if it is enabled so we make the AA type reflect
// that.
if (this->numSamples() > 1 && !this->caps()->multisampleDisableSupport()) {
return GrAAType::kMSAA;
}
return GrAAType::kNone;
}
return (this->numSamples() > 1) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
GrMipMapped GrRenderTargetContext::mipMapped() const {
if (const GrTextureProxy* proxy = this->asTextureProxy()) {
return proxy->mipMapped();
}
return GrMipMapped::kNo;
}
GrOpsTask* GrRenderTargetContext::getOpsTask() {
ASSERT_SINGLE_OWNER
SkDEBUGCODE(this->validate();)
if (!fOpsTask) {
sk_sp<GrOpsTask> newOpsTask =
this->drawingManager()->newOpsTask(this->writeSurfaceView(), fManagedOpsTask);
if (fOpsTask && fNumStencilSamples > 0) {
// Store the stencil values in memory upon completion of fOpsTask.
fOpsTask->setMustPreserveStencil();
// Reload the stencil buffer content at the beginning of newOpsTask.
// FIXME: Could the topo sort insert a task between these two that modifies the stencil
// values?
newOpsTask->setInitialStencilContent(GrOpsTask::StencilContent::kPreserved);
}
newOpsTask->addClosedObserver(this);
fOpsTask = std::move(newOpsTask);
}
SkASSERT(!fOpsTask->isClosed());
return fOpsTask.get();
}
static SkColor compute_canonical_color(const SkPaint& paint, bool lcd) {
SkColor canonicalColor = SkPaintPriv::ComputeLuminanceColor(paint);
if (lcd) {
// This is the correct computation for canonicalColor, but there are tons of cases where LCD
// can be modified. For now we just regenerate if any run in a textblob has LCD.
// TODO figure out where all of these modifications are and see if we can incorporate that
// logic at a higher level *OR* use sRGB
//canonicalColor = SkMaskGamma::CanonicalColor(canonicalColor);
// TODO we want to figure out a way to be able to use the canonical color on LCD text,
// see the note above. We pick a dummy value for LCD text to ensure we always match the
// same key
return SK_ColorTRANSPARENT;
} else {
// A8, though can have mixed BMP text but it shouldn't matter because BMP text won't have
// gamma corrected masks anyways, nor color
U8CPU lum = SkComputeLuminance(SkColorGetR(canonicalColor),
SkColorGetG(canonicalColor),
SkColorGetB(canonicalColor));
// reduce to our finite number of bits
canonicalColor = SkMaskGamma::CanonicalColor(SkColorSetRGB(lum, lum, lum));
}
return canonicalColor;
}
void GrRenderTargetContext::drawGlyphRunList(const GrClip* clip,
const SkMatrixProvider& matrixProvider,
const SkGlyphRunList& glyphRunList) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawGlyphRunList", fContext);
// Drawing text can cause us to do inline uploads. This is not supported for wrapped vulkan
// secondary command buffers because it would require stopping and starting a render pass which
// we don't have access to.
if (this->wrapsVkSecondaryCB()) {
return;
}
GrSDFTOptions options = fContext->priv().SDFTOptions();
GrTextBlobCache* textBlobCache = fContext->priv().getTextBlobCache();
// Get the first paint to use as the key paint.
const SkPaint& blobPaint = glyphRunList.paint();
SkPoint drawOrigin = glyphRunList.origin();
SkMaskFilterBase::BlurRec blurRec;
// It might be worth caching these things, but its not clear at this time
// TODO for animated mask filters, this will fill up our cache. We need a safeguard here
const SkMaskFilter* mf = blobPaint.getMaskFilter();
bool canCache = glyphRunList.canCache() &&
!(blobPaint.getPathEffect() || (mf && !as_MFB(mf)->asABlur(&blurRec)));
// If we're doing linear blending, then we can disable the gamma hacks.
// Otherwise, leave them on. In either case, we still want the contrast boost:
// TODO: Can we be even smarter about mask gamma based on the dest transfer function?
SkScalerContextFlags scalerContextFlags = this->colorInfo().isLinearlyBlended()
? SkScalerContextFlags::kBoostContrast
: SkScalerContextFlags::kFakeGammaAndBoostContrast;
sk_sp<GrTextBlob> blob;
GrTextBlob::Key key;
if (canCache) {
bool hasLCD = glyphRunList.anyRunsLCD();
// We canonicalize all non-lcd draws to use kUnknown_SkPixelGeometry
SkPixelGeometry pixelGeometry =
hasLCD ? fSurfaceProps.pixelGeometry() : kUnknown_SkPixelGeometry;
GrColor canonicalColor = compute_canonical_color(blobPaint, hasLCD);
key.fPixelGeometry = pixelGeometry;
key.fUniqueID = glyphRunList.uniqueID();
key.fStyle = blobPaint.getStyle();
key.fHasBlur = SkToBool(mf);
key.fCanonicalColor = canonicalColor;
key.fScalerContextFlags = scalerContextFlags;
blob = textBlobCache->find(key);
}
const SkMatrix& drawMatrix(matrixProvider.localToDevice());
if (blob != nullptr && blob->canReuse(blobPaint, blurRec, drawMatrix, drawOrigin)) {
// Reusing the blob. Move it to the front of LRU cache.
textBlobCache->makeMRU(blob.get());
} else {
// Build or Rebuild the GrTextBlob
if (blob != nullptr) {
// We have to remake the blob because changes may invalidate our masks.
// TODO we could probably get away with reuse most of the time if the pointer is unique,
// but we'd have to clear the SubRun information
textBlobCache->remove(blob.get());
}
if (canCache) {
blob = textBlobCache->makeCachedBlob(glyphRunList, key, blurRec, drawMatrix);
} else {
blob = GrTextBlob::Make(glyphRunList, drawMatrix);
}
bool supportsSDFT = fContext->priv().caps()->shaderCaps()->supportsDistanceFieldText();
fGlyphPainter.processGlyphRunList(
glyphRunList, drawMatrix, fSurfaceProps, supportsSDFT, options, blob.get());
}
blob->insertOpsIntoTarget(
fTextTarget.get(), fSurfaceProps, blobPaint, clip, matrixProvider, drawOrigin);
}
void GrRenderTargetContext::discard() {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "discard", fContext);
AutoCheckFlush acf(this->drawingManager());
this->getOpsTask()->discard();
}
static void clear_to_grpaint(const SkPMColor4f& color, GrPaint* paint) {
paint->setColor4f(color);
if (color.isOpaque()) {
// Can just rely on the src-over blend mode to do the right thing
paint->setPorterDuffXPFactory(SkBlendMode::kSrcOver);
} else {
// A clear overwrites the prior color, so even if it's transparent, it behaves as if it
// were src blended
paint->setPorterDuffXPFactory(SkBlendMode::kSrc);
}
}
// NOTE: We currently pass the premul color unmodified to the gpu, since we assume the GrRTC has a
// premul alpha type. If we ever support different alpha type render targets, this function should
// transform the color as appropriate.
void GrRenderTargetContext::internalClear(const SkIRect* scissor,
const SkPMColor4f& color,
bool upgradePartialToFull) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "clear", fContext);
// There are three ways clears are handled: load ops, native clears, and draws. Load ops are
// only for fullscreen clears; native clears can be fullscreen or with scissors if the backend
// supports then. Drawing an axis-aligned rect is the fallback path.
GrScissorState scissorState(this->asSurfaceProxy()->backingStoreDimensions());
if (scissor && !scissorState.set(*scissor)) {
// The clear is offscreen, so skip it (normally this would be handled by addDrawOp,
// except clear ops are not draw ops).
return;
}
// If we have a scissor but it's okay to clear beyond it for performance reasons, then disable
// the test. We only do this when the clear would be handled by a load op or natively.
if (scissorState.enabled() && !this->caps()->performColorClearsAsDraws()) {
if (upgradePartialToFull && (this->caps()->preferFullscreenClears() ||
this->caps()->shouldInitializeTextures())) {
// TODO: wrt the shouldInitializeTextures path, it would be more performant to
// only clear the entire target if we knew it had not been cleared before. As
// is this could end up doing a lot of redundant clears.
scissorState.setDisabled();
} else {
// Unlike with stencil clears, we also allow clears up to the logical dimensions of the
// render target to overflow into any approx-fit padding of the backing store dimensions
scissorState.relaxTest(this->dimensions());
}
}
if (!scissorState.enabled()) {
// This is a fullscreen clear, so could be handled as a load op. Regardless, we can also
// discard all prior ops in the current task since the color buffer will be overwritten.
GrOpsTask* opsTask = this->getOpsTask();
if (opsTask->resetForFullscreenClear(this->canDiscardPreviousOpsOnFullClear()) &&
!this->caps()->performColorClearsAsDraws()) {
// The op list was emptied and native clears are allowed, so just use the load op
opsTask->setColorLoadOp(GrLoadOp::kClear, color);
return;
} else {
// Will use an op for the clear, reset the load op to discard since the op will
// blow away the color buffer contents
opsTask->setColorLoadOp(GrLoadOp::kDiscard);
}
}
// At this point we are either a partial clear or a fullscreen clear that couldn't be applied
// as a load op.
bool clearAsDraw = this->caps()->performColorClearsAsDraws() ||
(scissorState.enabled() && this->caps()->performPartialClearsAsDraws());
if (clearAsDraw) {
GrPaint paint;
clear_to_grpaint(color, &paint);
this->addDrawOp(nullptr,
GrFillRectOp::MakeNonAARect(fContext, std::move(paint), SkMatrix::I(),
SkRect::Make(scissorState.rect())));
} else {
this->addOp(GrClearOp::MakeColor(fContext, scissorState, color));
}
}
void GrRenderTargetContext::drawPaint(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix) {
// Start with the render target, since that is the maximum content we could possibly fill.
// drawFilledQuad() will automatically restrict it to clip bounds for us if possible.
SkRect r = this->asSurfaceProxy()->getBoundsRect();
if (!paint.numTotalFragmentProcessors()) {
// The paint is trivial so we won't need to use local coordinates, so skip calculating the
// inverse view matrix.
this->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), r, r);
} else {
// Use the inverse view matrix to arrive at appropriate local coordinates for the paint.
SkMatrix localMatrix;
if (!viewMatrix.invert(&localMatrix)) {
return;
}
this->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), r,
localMatrix);
}
}
enum class GrRenderTargetContext::QuadOptimization {
// The rect to draw doesn't intersect clip or render target, so no draw op should be added
kDiscarded,
// The rect to draw was converted to some other op and appended to the oplist, so no additional
// op is necessary. Currently this can convert it to a clear op or a rrect op. Only valid if
// a constColor is provided.
kSubmitted,
// The clip was folded into the device quad, with updated edge flags and local coords, and
// caller is responsible for adding an appropriate op.
kClipApplied,
// No change to clip, but quad updated to better fit clip/render target, and caller is
// responsible for adding an appropriate op.
kCropped
};
static bool make_vertex_finite(float* value) {
if (SkScalarIsNaN(*value)) {
return false;
}
if (!SkScalarIsFinite(*value)) {
// +/- infinity at this point. Don't use exactly SK_ScalarMax so that we have some precision
// left when calculating crops.
static constexpr float kNearInfinity = SK_ScalarMax / 4.f;
*value = *value < 0.f ? -kNearInfinity : kNearInfinity;
}
return true;
}
static SkIRect get_clip_bounds(const GrRenderTargetContext* rtc, const GrClip* clip) {
return clip ? clip->getConservativeBounds() : SkIRect::MakeWH(rtc->width(), rtc->height());
}
GrRenderTargetContext::QuadOptimization GrRenderTargetContext::attemptQuadOptimization(
const GrClip* clip, const SkPMColor4f* constColor,
const GrUserStencilSettings* stencilSettings, GrAA* aa, DrawQuad* quad) {
// Optimization requirements:
// 1. kDiscard applies when clip bounds and quad bounds do not intersect
// 2a. kSubmitted applies when constColor and final geom is pixel aligned rect;
// pixel aligned rect requires rect clip and (rect quad or quad covers clip) OR
// 2b. kSubmitted applies when constColor and rrect clip and quad covers clip
// 4. kClipApplied applies when rect clip and (rect quad or quad covers clip)
// 5. kCropped in all other scenarios (although a crop may be a no-op)
// Save the old AA flags since CropToRect will modify 'quad' and if kCropped is returned, it's
// better to just keep the old flags instead of introducing mixed edge flags.
GrQuadAAFlags oldFlags = quad->fEdgeFlags;
// Use the logical size of the render target, which allows for "fullscreen" clears even if
// the render target has an approximate backing fit
SkRect rtRect = this->asSurfaceProxy()->getBoundsRect();
SkRect drawBounds = quad->fDevice.bounds();
if (constColor) {
// If the device quad is not finite, coerce into a finite quad. This is acceptable since it
// will be cropped to the finite 'clip' or render target and there is no local space mapping
if (!quad->fDevice.isFinite()) {
for (int i = 0; i < 4; ++i) {
if (!make_vertex_finite(quad->fDevice.xs() + i) ||
!make_vertex_finite(quad->fDevice.ys() + i) ||
!make_vertex_finite(quad->fDevice.ws() + i)) {
// Discard if we see a nan
return QuadOptimization::kDiscarded;
}
}
SkASSERT(quad->fDevice.isFinite());
}
} else {
// CropToRect requires the quads to be finite. If they are not finite and we have local
// coordinates, the mapping from local space to device space is poorly defined so drop it
if (!quad->fDevice.isFinite()) {
return QuadOptimization::kDiscarded;
}
}
// If the quad is entirely off screen, it doesn't matter what the clip does
if (!rtRect.intersects(drawBounds)) {
return QuadOptimization::kDiscarded;
}
// Check if clip can be represented as a rounded rect (initialize as if clip fully contained
// the render target).
SkRRect clipRRect = SkRRect::MakeRect(rtRect);
// We initialize clipAA to *aa when there are stencil settings so that we don't artificially
// encounter mixed-aa edges (not allowed for stencil), but we want to start as non-AA for
// regular draws so that if we fully cover the render target, that can stop being anti-aliased.
GrAA clipAA = stencilSettings ? *aa : GrAA::kNo;
bool axisAlignedClip = true;
if (clip && !clip->quickContains(rtRect)) {
if (!clip->isRRect(&clipRRect, &clipAA)) {
axisAlignedClip = false;
}
}
// If the clip rrect is valid (i.e. axis-aligned), we can potentially combine it with the
// draw geometry so that no clip is needed when drawing.
if (axisAlignedClip && (!stencilSettings || clipAA == *aa)) {
// Tighten clip bounds (if clipRRect.isRect() is true, clipBounds now holds the intersection
// of the render target and the clip rect)
SkRect clipBounds = rtRect;
if (!clipBounds.intersect(clipRRect.rect()) || !clipBounds.intersects(drawBounds)) {
return QuadOptimization::kDiscarded;
}
if (clipRRect.isRect()) {
// No rounded corners, so the kClear and kExplicitClip optimizations are possible
if (GrQuadUtils::CropToRect(clipBounds, clipAA, quad, /*compute local*/ !constColor)) {
if (!stencilSettings && constColor &&
quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
// Clear optimization is possible
drawBounds = quad->fDevice.bounds();
if (drawBounds.contains(rtRect)) {
// Fullscreen clear
this->clear(*constColor);
return QuadOptimization::kSubmitted;
} else if (GrClip::IsPixelAligned(drawBounds) &&
drawBounds.width() > 256 && drawBounds.height() > 256) {
// Scissor + clear (round shouldn't do anything since we are pixel aligned)
SkIRect scissorRect;
drawBounds.round(&scissorRect);
this->clear(scissorRect, *constColor);
return QuadOptimization::kSubmitted;
}
}
// Update overall AA setting.
if (*aa == GrAA::kNo && clipAA == GrAA::kYes &&
quad->fEdgeFlags != GrQuadAAFlags::kNone) {
// The clip was anti-aliased and now the draw needs to be upgraded to AA to
// properly reflect the smooth edge of the clip.
*aa = GrAA::kYes;
}
// We intentionally do not downgrade AA here because we don't know if we need to
// preserve MSAA (see GrQuadAAFlags docs). But later in the pipeline, the ops can
// use GrResolveAATypeForQuad() to turn off coverage AA when all flags are off.
// deviceQuad is exactly the intersection of original quad and clip, so it can be
// drawn with no clip (submitted by caller)
return QuadOptimization::kClipApplied;
} else {
// The quads have been updated to better fit the clip bounds, but can't get rid of
// the clip entirely
quad->fEdgeFlags = oldFlags;
return QuadOptimization::kCropped;
}
} else if (!stencilSettings && constColor) {
// Rounded corners and constant filled color (limit ourselves to solid colors because
// there is no way to use custom local coordinates with drawRRect).
if (GrQuadUtils::CropToRect(clipBounds, clipAA, quad, /* compute local */ false) &&
quad->fDevice.quadType() == GrQuad::Type::kAxisAligned &&
quad->fDevice.bounds().contains(clipBounds)) {
// Since the cropped quad became a rectangle which covered the bounds of the rrect,
// we can draw the rrect directly and ignore the edge flags
GrPaint paint;
clear_to_grpaint(*constColor, &paint);
this->drawRRect(nullptr, std::move(paint), clipAA, SkMatrix::I(),
clipRRect, GrStyle::SimpleFill());
return QuadOptimization::kSubmitted;
} else {
// The quad has been updated to better fit clip bounds, but can't remove the clip
quad->fEdgeFlags = oldFlags;
return QuadOptimization::kCropped;
}
}
}
// Crop the quad to the conservative bounds of the clip.
SkRect clipBounds = SkRect::Make(get_clip_bounds(this, clip));
// One final check for discarding, since we may have gone here directly due to a complex clip
if (!clipBounds.intersects(drawBounds)) {
return QuadOptimization::kDiscarded;
}
// Even if this were to return true, the crop rect does not exactly match the clip, so can not
// report explicit-clip. Since these edges aren't visible, don't update the final edge flags.
GrQuadUtils::CropToRect(clipBounds, clipAA, quad, /* compute local */ !constColor);
quad->fEdgeFlags = oldFlags;
return QuadOptimization::kCropped;
}
void GrRenderTargetContext::drawFilledQuad(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
DrawQuad* quad,
const GrUserStencilSettings* ss) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawFilledQuad", fContext);
AutoCheckFlush acf(this->drawingManager());
SkPMColor4f* constColor = nullptr;
SkPMColor4f paintColor;
if (!ss && !paint.numCoverageFragmentProcessors() &&
paint.isConstantBlendedColor(&paintColor)) {
// Only consider clears/rrects when it's easy to guarantee 100% fill with single color
constColor = &paintColor;
}
QuadOptimization opt = this->attemptQuadOptimization(clip, constColor, ss, &aa, quad);
if (opt >= QuadOptimization::kClipApplied) {
// These optimizations require caller to add an op themselves
const GrClip* finalClip = opt == QuadOptimization::kClipApplied ? nullptr : clip;
GrAAType aaType = ss ? (aa == GrAA::kYes ? GrAAType::kMSAA : GrAAType::kNone)
: this->chooseAAType(aa);
this->addDrawOp(finalClip, GrFillRectOp::Make(fContext, std::move(paint), aaType,
quad, ss));
}
// All other optimization levels were completely handled inside attempt(), so no extra op needed
}
void GrRenderTargetContext::drawTexturedQuad(const GrClip* clip,
GrSurfaceProxyView proxyView,
SkAlphaType srcAlphaType,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
const SkPMColor4f& color,
SkBlendMode blendMode,
GrAA aa,
DrawQuad* quad,
const SkRect* subset) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
SkASSERT(proxyView.asTextureProxy());
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawTexturedQuad", fContext);
AutoCheckFlush acf(this->drawingManager());
// Functionally this is very similar to drawFilledQuad except that there's no constColor to
// enable the kSubmitted optimizations, no stencil settings support, and its a GrTextureOp.
QuadOptimization opt = this->attemptQuadOptimization(clip, nullptr, nullptr, &aa, quad);
SkASSERT(opt != QuadOptimization::kSubmitted);
if (opt != QuadOptimization::kDiscarded) {
// And the texture op if not discarded
const GrClip* finalClip = opt == QuadOptimization::kClipApplied ? nullptr : clip;
GrAAType aaType = this->chooseAAType(aa);
auto clampType = GrColorTypeClampType(this->colorInfo().colorType());
auto saturate = clampType == GrClampType::kManual ? GrTextureOp::Saturate::kYes
: GrTextureOp::Saturate::kNo;
// Use the provided subset, although hypothetically we could detect that the cropped local
// quad is sufficiently inside the subset and the constraint could be dropped.
this->addDrawOp(finalClip,
GrTextureOp::Make(fContext, std::move(proxyView), srcAlphaType,
std::move(textureXform), filter, color, saturate,
blendMode, aaType, quad, subset));
}
}
void GrRenderTargetContext::drawRect(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& rect,
const GrStyle* style) {
if (!style) {
style = &GrStyle::SimpleFill();
}
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawRect", fContext);
// Path effects should've been devolved to a path in SkGpuDevice
SkASSERT(!style->pathEffect());
AutoCheckFlush acf(this->drawingManager());
const SkStrokeRec& stroke = style->strokeRec();
if (stroke.getStyle() == SkStrokeRec::kFill_Style) {
// Fills the rect, using rect as its own local coordinates
this->fillRectToRect(clip, std::move(paint), aa, viewMatrix, rect, rect);
return;
} else if ((stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kHairline_Style) &&
(rect.width() && rect.height())) {
// Only use the StrokeRectOp for non-empty rectangles. Empty rectangles will be processed by
// GrStyledShape to handle stroke caps and dashing properly.
std::unique_ptr<GrDrawOp> op;
GrAAType aaType = this->chooseAAType(aa);
op = GrStrokeRectOp::Make(fContext, std::move(paint), aaType, viewMatrix, rect, stroke);
// op may be null if the stroke is not supported or if using coverage aa and the view matrix
// does not preserve rectangles.
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape(rect, *style));
}
void GrRenderTargetContext::drawQuadSet(const GrClip* clip, GrPaint&& paint, GrAA aa,
const SkMatrix& viewMatrix, const QuadSetEntry quads[],
int cnt) {
GrAAType aaType = this->chooseAAType(aa);
GrFillRectOp::AddFillRectOps(this, clip, fContext, std::move(paint), aaType, viewMatrix,
quads, cnt);
}
int GrRenderTargetContextPriv::maxWindowRectangles() const {
return fRenderTargetContext->asRenderTargetProxy()->maxWindowRectangles(
*fRenderTargetContext->caps());
}
GrOpsTask::CanDiscardPreviousOps GrRenderTargetContext::canDiscardPreviousOpsOnFullClear() const {
#if GR_TEST_UTILS
if (fPreserveOpsOnFullClear_TestingOnly) {
return GrOpsTask::CanDiscardPreviousOps::kNo;
}
#endif
// Regardless of how the clear is implemented (native clear or a fullscreen quad), all prior ops
// would normally be overwritten. The one exception is if the render target context is marked as
// needing a stencil buffer then there may be a prior op that writes to the stencil buffer.
// Although the clear will ignore the stencil buffer, following draw ops may not so we can't get
// rid of all the preceding ops. Beware! If we ever add any ops that have a side effect beyond
// modifying the stencil buffer we will need a more elaborate tracking system (skbug.com/7002).
return GrOpsTask::CanDiscardPreviousOps(!fNumStencilSamples);
}
void GrRenderTargetContext::setNeedsStencil(bool useMixedSamplesIfNotMSAA) {
// Don't clear stencil until after we've changed fNumStencilSamples. This ensures we don't loop
// forever in the event that there are driver bugs and we need to clear as a draw.
bool hasInitializedStencil = fNumStencilSamples > 0;
int numRequiredSamples = this->numSamples();
if (useMixedSamplesIfNotMSAA && 1 == numRequiredSamples) {
SkASSERT(this->asRenderTargetProxy()->canUseMixedSamples(*this->caps()));
numRequiredSamples = this->caps()->internalMultisampleCount(
this->asSurfaceProxy()->backendFormat());
}
SkASSERT(numRequiredSamples > 0);
if (numRequiredSamples > fNumStencilSamples) {
fNumStencilSamples = numRequiredSamples;
this->asRenderTargetProxy()->setNeedsStencil(fNumStencilSamples);
}
if (!hasInitializedStencil) {
if (this->caps()->performStencilClearsAsDraws()) {
// There is a driver bug with clearing stencil. We must use an op to manually clear the
// stencil buffer before the op that required 'setNeedsStencil'.
this->internalStencilClear(nullptr, /* inside mask */ false);
} else {
this->getOpsTask()->setInitialStencilContent(
GrOpsTask::StencilContent::kUserBitsCleared);
}
}
}
void GrRenderTargetContext::internalStencilClear(const SkIRect* scissor, bool insideStencilMask) {
this->setNeedsStencil(/* useMixedSamplesIfNotMSAA = */ false);
GrScissorState scissorState(this->asSurfaceProxy()->backingStoreDimensions());
if (scissor && !scissorState.set(*scissor)) {
// The requested clear region is off screen, so nothing to do.
return;
}
bool clearWithDraw = this->caps()->performStencilClearsAsDraws() ||
(scissorState.enabled() && this->caps()->performPartialClearsAsDraws());
if (clearWithDraw) {
const GrUserStencilSettings* ss = GrStencilSettings::SetClipBitSettings(insideStencilMask);
// Configure the paint to have no impact on the color buffer
GrPaint paint;
paint.setXPFactory(GrDisableColorXPFactory::Get());
this->addDrawOp(nullptr,
GrFillRectOp::MakeNonAARect(fContext, std::move(paint), SkMatrix::I(),
SkRect::Make(scissorState.rect()), ss));
} else {
this->addOp(GrClearOp::MakeStencilClip(fContext, scissorState, insideStencilMask));
}
}
void GrRenderTargetContextPriv::stencilPath(const GrHardClip* clip,
GrAA doStencilMSAA,
const SkMatrix& viewMatrix,
sk_sp<const GrPath> path) {
ASSERT_SINGLE_OWNER_PRIV
RETURN_IF_ABANDONED_PRIV
SkDEBUGCODE(fRenderTargetContext->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContextPriv", "stencilPath",
fRenderTargetContext->fContext);
// TODO: extract portions of checkDraw that are relevant to path stenciling.
SkASSERT(path);
SkASSERT(fRenderTargetContext->caps()->shaderCaps()->pathRenderingSupport());
// FIXME: Use path bounds instead of this WAR once
// https://bugs.chromium.org/p/skia/issues/detail?id=5640 is resolved.
SkRect bounds = SkRect::MakeIWH(fRenderTargetContext->width(), fRenderTargetContext->height());
// Setup clip and reject offscreen paths; we do this explicitly instead of relying on addDrawOp
// because GrStencilPathOp is not a draw op as its state depends directly on the choices made
// during this clip application.
GrAppliedHardClip appliedClip(fRenderTargetContext->dimensions(),
fRenderTargetContext->asSurfaceProxy()->backingStoreDimensions());
if (clip && !clip->apply(&appliedClip, &bounds)) {
return;
}
// else see FIXME above; we'd normally want to check path bounds with render target bounds,
// but as it is, we're just using the full render target so intersecting the two bounds would
// do nothing.
std::unique_ptr<GrOp> op = GrStencilPathOp::Make(fRenderTargetContext->fContext,
viewMatrix,
GrAA::kYes == doStencilMSAA,
appliedClip.hasStencilClip(),
appliedClip.scissorState(),
std::move(path));
if (!op) {
return;
}
op->setClippedBounds(bounds);
fRenderTargetContext->setNeedsStencil(GrAA::kYes == doStencilMSAA);
fRenderTargetContext->addOp(std::move(op));
}
void GrRenderTargetContext::drawTextureSet(const GrClip* clip, TextureSetEntry set[],
int cnt, int proxyRunCnt,
GrSamplerState::Filter filter, SkBlendMode mode,
GrAA aa, SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> texXform) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawTextureSet", fContext);
// Create the minimum number of GrTextureOps needed to draw this set. Individual
// GrTextureOps can rebind the texture between draws thus avoiding GrPaint (re)creation.
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
auto clampType = GrColorTypeClampType(this->colorInfo().colorType());
auto saturate = clampType == GrClampType::kManual ? GrTextureOp::Saturate::kYes
: GrTextureOp::Saturate::kNo;
GrTextureOp::AddTextureSetOps(this, clip, fContext, set, cnt, proxyRunCnt, filter, saturate,
mode, aaType, constraint, viewMatrix, std::move(texXform));
}
void GrRenderTargetContext::drawVertices(const GrClip* clip,
GrPaint&& paint,
const SkMatrixProvider& matrixProvider,
sk_sp<SkVertices> vertices,
GrPrimitiveType* overridePrimType,
const SkRuntimeEffect* effect) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawVertices", fContext);
AutoCheckFlush acf(this->drawingManager());
SkASSERT(vertices);
GrAAType aaType = this->chooseAAType(GrAA::kNo);
std::unique_ptr<GrDrawOp> op =
GrDrawVerticesOp::Make(fContext, std::move(paint), std::move(vertices), matrixProvider,
aaType, this->colorInfo().refColorSpaceXformFromSRGB(),
overridePrimType, effect);
this->addDrawOp(clip, std::move(op));
}
///////////////////////////////////////////////////////////////////////////////
void GrRenderTargetContext::drawAtlas(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix,
int spriteCount,
const SkRSXform xform[],
const SkRect texRect[],
const SkColor colors[]) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawAtlas", fContext);
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(GrAA::kNo);
std::unique_ptr<GrDrawOp> op = GrDrawAtlasOp::Make(fContext, std::move(paint), viewMatrix,
aaType, spriteCount, xform, texRect, colors);
this->addDrawOp(clip, std::move(op));
}
///////////////////////////////////////////////////////////////////////////////
void GrRenderTargetContext::drawRRect(const GrClip* origClip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawRRect", fContext);
const SkStrokeRec& stroke = style.strokeRec();
if (stroke.getStyle() == SkStrokeRec::kFill_Style && rrect.isEmpty()) {
return;
}
const GrClip* clip = origClip;
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// The Android framework frequently clips rrects to themselves where the clip is non-aa and the
// draw is aa. Since our lower level clip code works from op bounds, which are SkRects, it
// doesn't detect that the clip can be ignored (modulo antialiasing). The following test
// attempts to mitigate the stencil clip cost but will only help when the entire clip stack
// can be ignored. We'd prefer to fix this in the framework by removing the clips calls. This
// only works for filled rrects since the stroke width outsets beyond the rrect itself.
SkRRect devRRect;
if (clip && stroke.getStyle() == SkStrokeRec::kFill_Style &&
rrect.transform(viewMatrix, &devRRect) && clip->quickContains(devRRect)) {
clip = nullptr;
}
#endif
SkASSERT(!style.pathEffect()); // this should've been devolved to a path in SkGpuDevice
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
std::unique_ptr<GrDrawOp> op;
if (GrAAType::kCoverage == aaType && rrect.isSimple() &&
rrect.getSimpleRadii().fX == rrect.getSimpleRadii().fY &&
viewMatrix.rectStaysRect() && viewMatrix.isSimilarity()) {
// In coverage mode, we draw axis-aligned circular roundrects with the GrOvalOpFactory
// to avoid perf regressions on some platforms.
assert_alive(paint);
op = GrOvalOpFactory::MakeCircularRRectOp(
fContext, std::move(paint), viewMatrix, rrect, stroke, this->caps()->shaderCaps());
}
if (!op && style.isSimpleFill()) {
assert_alive(paint);
op = GrFillRRectOp::Make(fContext, std::move(paint), viewMatrix, rrect, aaType);
}
if (!op && GrAAType::kCoverage == aaType) {
assert_alive(paint);
op = GrOvalOpFactory::MakeRRectOp(
fContext, std::move(paint), viewMatrix, rrect, stroke, this->caps()->shaderCaps());
}
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape(rrect, style));
}
///////////////////////////////////////////////////////////////////////////////
static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
SkPoint3 result;
m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
result.fZ = pt.fZ;
return result;
}
bool GrRenderTargetContext::drawFastShadow(const GrClip* clip,
const SkMatrix& viewMatrix,
const SkPath& path,
const SkDrawShadowRec& rec) {
ASSERT_SINGLE_OWNER
if (fContext->priv().abandoned()) {
return true;
}
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawFastShadow", fContext);
// check z plane
bool tiltZPlane = SkToBool(!SkScalarNearlyZero(rec.fZPlaneParams.fX) ||
!SkScalarNearlyZero(rec.fZPlaneParams.fY));
bool skipAnalytic = SkToBool(rec.fFlags & SkShadowFlags::kGeometricOnly_ShadowFlag);
if (tiltZPlane || skipAnalytic || !viewMatrix.rectStaysRect() || !viewMatrix.isSimilarity()) {
return false;
}
SkRRect rrect;
SkRect rect;
// we can only handle rects, circles, and rrects with circular corners
bool isRRect = path.isRRect(&rrect) && SkRRectPriv::IsSimpleCircular(rrect) &&
rrect.radii(SkRRect::kUpperLeft_Corner).fX > SK_ScalarNearlyZero;
if (!isRRect &&
path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height()) &&
rect.width() > SK_ScalarNearlyZero) {
rrect.setOval(rect);
isRRect = true;
}
if (!isRRect && path.isRect(&rect)) {
rrect.setRect(rect);
isRRect = true;
}
if (!isRRect) {
return false;
}
if (rrect.isEmpty()) {
return true;
}
AutoCheckFlush acf(this->drawingManager());
// transform light
SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
// 1/scale
SkScalar devToSrcScale = viewMatrix.isScaleTranslate() ?
SkScalarInvert(SkScalarAbs(viewMatrix[SkMatrix::kMScaleX])) :
sk_float_rsqrt(viewMatrix[SkMatrix::kMScaleX] * viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewX] * viewMatrix[SkMatrix::kMSkewX]);
SkScalar occluderHeight = rec.fZPlaneParams.fZ;
bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
if (SkColorGetA(rec.fAmbientColor) > 0) {
SkScalar devSpaceInsetWidth = SkDrawShadowMetrics::AmbientBlurRadius(occluderHeight);
const SkScalar umbraRecipAlpha = SkDrawShadowMetrics::AmbientRecipAlpha(occluderHeight);
const SkScalar devSpaceAmbientBlur = devSpaceInsetWidth * umbraRecipAlpha;
// Outset the shadow rrect to the border of the penumbra
SkScalar ambientPathOutset = devSpaceInsetWidth * devToSrcScale;
SkRRect ambientRRect;
SkRect outsetRect = rrect.rect().makeOutset(ambientPathOutset, ambientPathOutset);
// If the rrect was an oval then its outset will also be one.
// We set it explicitly to avoid errors.
if (rrect.isOval()) {
ambientRRect = SkRRect::MakeOval(outsetRect);
} else {
SkScalar outsetRad = SkRRectPriv::GetSimpleRadii(rrect).fX + ambientPathOutset;
ambientRRect = SkRRect::MakeRectXY(outsetRect, outsetRad, outsetRad);
}
GrColor ambientColor = SkColorToPremulGrColor(rec.fAmbientColor);
if (transparent) {
// set a large inset to force a fill
devSpaceInsetWidth = ambientRRect.width();
}
std::unique_ptr<GrDrawOp> op = GrShadowRRectOp::Make(fContext,
ambientColor,
viewMatrix,
ambientRRect,
devSpaceAmbientBlur,
devSpaceInsetWidth);
if (op) {
this->addDrawOp(clip, std::move(op));
}
}
if (SkColorGetA(rec.fSpotColor) > 0) {
SkScalar devSpaceSpotBlur;
SkScalar spotScale;
SkVector spotOffset;
SkDrawShadowMetrics::GetSpotParams(occluderHeight, devLightPos.fX, devLightPos.fY,
devLightPos.fZ, rec.fLightRadius,
&devSpaceSpotBlur, &spotScale, &spotOffset);
// handle scale of radius due to CTM
const SkScalar srcSpaceSpotBlur = devSpaceSpotBlur * devToSrcScale;
// Adjust translate for the effect of the scale.
spotOffset.fX += spotScale*viewMatrix[SkMatrix::kMTransX];
spotOffset.fY += spotScale*viewMatrix[SkMatrix::kMTransY];
// This offset is in dev space, need to transform it into source space.
SkMatrix ctmInverse;
if (viewMatrix.invert(&ctmInverse)) {
ctmInverse.mapPoints(&spotOffset, 1);
} else {
// Since the matrix is a similarity, this should never happen, but just in case...
SkDebugf("Matrix is degenerate. Will not render spot shadow correctly!\n");
SkASSERT(false);
}
// Compute the transformed shadow rrect
SkRRect spotShadowRRect;
SkMatrix shadowTransform;
shadowTransform.setScaleTranslate(spotScale, spotScale, spotOffset.fX, spotOffset.fY);
rrect.transform(shadowTransform, &spotShadowRRect);
SkScalar spotRadius = SkRRectPriv::GetSimpleRadii(spotShadowRRect).fX;
// Compute the insetWidth
SkScalar blurOutset = srcSpaceSpotBlur;
SkScalar insetWidth = blurOutset;
if (transparent) {
// If transparent, just do a fill
insetWidth += spotShadowRRect.width();
} else {
// For shadows, instead of using a stroke we specify an inset from the penumbra
// border. We want to extend this inset area so that it meets up with the caster
// geometry. The inset geometry will by default already be inset by the blur width.
//
// We compare the min and max corners inset by the radius between the original
// rrect and the shadow rrect. The distance between the two plus the difference
// between the scaled radius and the original radius gives the distance from the
// transformed shadow shape to the original shape in that corner. The max
// of these gives the maximum distance we need to cover.
//
// Since we are outsetting by 1/2 the blur distance, we just add the maxOffset to
// that to get the full insetWidth.
SkScalar maxOffset;
if (rrect.isRect()) {
// Manhattan distance works better for rects
maxOffset = std::max(std::max(SkTAbs(spotShadowRRect.rect().fLeft -
rrect.rect().fLeft),
SkTAbs(spotShadowRRect.rect().fTop -
rrect.rect().fTop)),
std::max(SkTAbs(spotShadowRRect.rect().fRight -
rrect.rect().fRight),
SkTAbs(spotShadowRRect.rect().fBottom -
rrect.rect().fBottom)));
} else {
SkScalar dr = spotRadius - SkRRectPriv::GetSimpleRadii(rrect).fX;
SkPoint upperLeftOffset = SkPoint::Make(spotShadowRRect.rect().fLeft -
rrect.rect().fLeft + dr,
spotShadowRRect.rect().fTop -
rrect.rect().fTop + dr);
SkPoint lowerRightOffset = SkPoint::Make(spotShadowRRect.rect().fRight -
rrect.rect().fRight - dr,
spotShadowRRect.rect().fBottom -
rrect.rect().fBottom - dr);
maxOffset = SkScalarSqrt(std::max(SkPointPriv::LengthSqd(upperLeftOffset),
SkPointPriv::LengthSqd(lowerRightOffset))) + dr;
}
insetWidth += std::max(blurOutset, maxOffset);
}
// Outset the shadow rrect to the border of the penumbra
SkRect outsetRect = spotShadowRRect.rect().makeOutset(blurOutset, blurOutset);
if (spotShadowRRect.isOval()) {
spotShadowRRect = SkRRect::MakeOval(outsetRect);
} else {
SkScalar outsetRad = spotRadius + blurOutset;
spotShadowRRect = SkRRect::MakeRectXY(outsetRect, outsetRad, outsetRad);
}
GrColor spotColor = SkColorToPremulGrColor(rec.fSpotColor);
std::unique_ptr<GrDrawOp> op = GrShadowRRectOp::Make(fContext,
spotColor,
viewMatrix,
spotShadowRRect,
2.0f * devSpaceSpotBlur,
insetWidth);
if (op) {
this->addDrawOp(clip, std::move(op));
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
bool GrRenderTargetContext::drawFilledDRRect(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRRect& origOuter,
const SkRRect& origInner) {
SkASSERT(!origInner.isEmpty());
SkASSERT(!origOuter.isEmpty());
SkTCopyOnFirstWrite<SkRRect> inner(origInner), outer(origOuter);
GrAAType aaType = this->chooseAAType(aa);
if (GrAAType::kMSAA == aaType) {
return false;
}
if (GrAAType::kCoverage == aaType && SkRRectPriv::IsCircle(*inner)
&& SkRRectPriv::IsCircle(*outer)) {
auto outerR = outer->width() / 2.f;
auto innerR = inner->width() / 2.f;
auto cx = outer->getBounds().fLeft + outerR;
auto cy = outer->getBounds().fTop + outerR;
if (SkScalarNearlyEqual(cx, inner->getBounds().fLeft + innerR) &&
SkScalarNearlyEqual(cy, inner->getBounds().fTop + innerR)) {
auto avgR = (innerR + outerR) / 2.f;
auto circleBounds = SkRect::MakeLTRB(cx - avgR, cy - avgR, cx + avgR, cy + avgR);
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
stroke.setStrokeStyle(outerR - innerR);
auto op = GrOvalOpFactory::MakeOvalOp(fContext, std::move(paint), viewMatrix,
circleBounds, GrStyle(stroke, nullptr),
this->caps()->shaderCaps());
if (op) {
this->addDrawOp(clip, std::move(op));
return true;
}
assert_alive(paint);
}
}
GrClipEdgeType innerEdgeType, outerEdgeType;
if (GrAAType::kCoverage == aaType) {
innerEdgeType = GrClipEdgeType::kInverseFillAA;
outerEdgeType = GrClipEdgeType::kFillAA;
} else {
innerEdgeType = GrClipEdgeType::kInverseFillBW;
outerEdgeType = GrClipEdgeType::kFillBW;
}
SkMatrix inverseVM;
if (!viewMatrix.isIdentity()) {
if (!origInner.transform(viewMatrix, inner.writable())) {
return false;
}
if (!origOuter.transform(viewMatrix, outer.writable())) {
return false;
}
if (!viewMatrix.invert(&inverseVM)) {
return false;
}
} else {
inverseVM.reset();
}
const auto& caps = *this->caps()->shaderCaps();
// TODO these need to be a geometry processors
auto [success, fp] = GrRRectEffect::Make(/*inputFP=*/nullptr, innerEdgeType, *inner, caps);
if (!success) {
return false;
}
std::tie(success, fp) = GrRRectEffect::Make(std::move(fp), outerEdgeType, *outer, caps);
if (!success) {
return false;
}
paint.addCoverageFragmentProcessor(std::move(fp));
SkRect bounds = outer->getBounds();
if (GrAAType::kCoverage == aaType) {
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
}
this->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), bounds,
inverseVM);
return true;
}
void GrRenderTargetContext::drawDRRect(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRRect& outer,
const SkRRect& inner) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawDRRect", fContext);
SkASSERT(!outer.isEmpty());
SkASSERT(!inner.isEmpty());
AutoCheckFlush acf(this->drawingManager());
if (this->drawFilledDRRect(clip, std::move(paint), aa, viewMatrix, outer, inner)) {
return;
}
assert_alive(paint);
SkPath path;
path.setIsVolatile(true);
path.addRRect(inner);
path.addRRect(outer);
path.setFillType(SkPathFillType::kEvenOdd);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix, GrStyledShape(path));
}
///////////////////////////////////////////////////////////////////////////////
void GrRenderTargetContext::drawRegion(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRegion& region,
const GrStyle& style,
const GrUserStencilSettings* ss) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawRegion", fContext);
if (GrAA::kYes == aa) {
// GrRegionOp performs no antialiasing but is much faster, so here we check the matrix
// to see whether aa is really required.
if (!SkToBool(viewMatrix.getType() & ~(SkMatrix::kTranslate_Mask)) &&
SkScalarIsInt(viewMatrix.getTranslateX()) &&
SkScalarIsInt(viewMatrix.getTranslateY())) {
aa = GrAA::kNo;
}
}
bool complexStyle = !style.isSimpleFill();
if (complexStyle || GrAA::kYes == aa) {
SkPath path;
region.getBoundaryPath(&path);
path.setIsVolatile(true);
return this->drawPath(clip, std::move(paint), aa, viewMatrix, path, style);
}
GrAAType aaType = this->chooseAAType(GrAA::kNo);
std::unique_ptr<GrDrawOp> op = GrRegionOp::Make(fContext, std::move(paint), viewMatrix, region,
aaType, ss);
this->addDrawOp(clip, std::move(op));
}
void GrRenderTargetContext::drawOval(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& oval,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawOval", fContext);
const SkStrokeRec& stroke = style.strokeRec();
if (oval.isEmpty() && !style.pathEffect()) {
if (stroke.getStyle() == SkStrokeRec::kFill_Style) {
return;
}
this->drawRect(clip, std::move(paint), aa, viewMatrix, oval, &style);
return;
}
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
std::unique_ptr<GrDrawOp> op;
if (GrAAType::kCoverage == aaType && oval.width() > SK_ScalarNearlyZero &&
oval.width() == oval.height() && viewMatrix.isSimilarity()) {
// We don't draw true circles as round rects in coverage mode, because it can
// cause perf regressions on some platforms as compared to the dedicated circle Op.
assert_alive(paint);
op = GrOvalOpFactory::MakeCircleOp(fContext, std::move(paint), viewMatrix, oval, style,
this->caps()->shaderCaps());
}
if (!op && style.isSimpleFill()) {
// GrFillRRectOp has special geometry and a fragment-shader branch to conditionally evaluate
// the arc equation. This same special geometry and fragment branch also turn out to be a
// substantial optimization for drawing ovals (namely, by not evaluating the arc equation
// inside the oval's inner diamond). Given these optimizations, it's a clear win to draw
// ovals the exact same way we do round rects.
assert_alive(paint);
op = GrFillRRectOp::Make(fContext, std::move(paint), viewMatrix, SkRRect::MakeOval(oval),
aaType);
}
if (!op && GrAAType::kCoverage == aaType) {
assert_alive(paint);
op = GrOvalOpFactory::MakeOvalOp(fContext, std::move(paint), viewMatrix, oval, style,
this->caps()->shaderCaps());
}
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(
clip, std::move(paint), aa, viewMatrix,
GrStyledShape(SkRRect::MakeOval(oval), SkPathDirection::kCW, 2, false, style));
}
void GrRenderTargetContext::drawArc(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& oval,
SkScalar startAngle,
SkScalar sweepAngle,
bool useCenter,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawArc", fContext);
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
if (GrAAType::kCoverage == aaType) {
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
std::unique_ptr<GrDrawOp> op = GrOvalOpFactory::MakeArcOp(fContext,
std::move(paint),
viewMatrix,
oval,
startAngle,
sweepAngle,
useCenter,
style,
shaderCaps);
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
}
this->drawShapeUsingPathRenderer(
clip, std::move(paint), aa, viewMatrix,
GrStyledShape::MakeArc(oval, startAngle, sweepAngle, useCenter, style));
}
void GrRenderTargetContext::drawImageLattice(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix,
GrSurfaceProxyView view,
SkAlphaType alphaType,
sk_sp<GrColorSpaceXform> csxf,
GrSamplerState::Filter filter,
std::unique_ptr<SkLatticeIter> iter,
const SkRect& dst) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawImageLattice", fContext);
AutoCheckFlush acf(this->drawingManager());
std::unique_ptr<GrDrawOp> op =
GrLatticeOp::MakeNonAA(fContext, std::move(paint), viewMatrix, std::move(view),
alphaType, std::move(csxf), filter, std::move(iter), dst);
this->addDrawOp(clip, std::move(op));
}
void GrRenderTargetContext::drawDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable,
const SkRect& bounds) {
std::unique_ptr<GrOp> op(GrDrawableOp::Make(fContext, std::move(drawable), bounds));
SkASSERT(op);
this->addOp(std::move(op));
}
bool GrRenderTargetContext::waitOnSemaphores(int numSemaphores,
const GrBackendSemaphore waitSemaphores[]) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "waitOnSemaphores", fContext);
AutoCheckFlush acf(this->drawingManager());
if (numSemaphores && !this->caps()->semaphoreSupport()) {
return false;
}
auto direct = fContext->priv().asDirectContext();
if (!direct) {
return false;
}
auto resourceProvider = direct->priv().resourceProvider();
std::unique_ptr<std::unique_ptr<GrSemaphore>[]> grSemaphores(
new std::unique_ptr<GrSemaphore>[numSemaphores]);
for (int i = 0; i < numSemaphores; ++i) {
grSemaphores[i] = resourceProvider->wrapBackendSemaphore(
waitSemaphores[i], GrResourceProvider::SemaphoreWrapType::kWillWait,
kAdopt_GrWrapOwnership);
}
this->drawingManager()->newWaitRenderTask(this->asSurfaceProxyRef(), std::move(grSemaphores),
numSemaphores);
return true;
}
void GrRenderTargetContext::drawPath(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawPath", fContext);
GrStyledShape shape(path, style);
this->drawShape(clip, std::move(paint), aa, viewMatrix, shape);
}
void GrRenderTargetContext::drawShape(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const GrStyledShape& shape) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "drawShape", fContext);
if (shape.isEmpty()) {
if (shape.inverseFilled()) {
this->drawPaint(clip, std::move(paint), viewMatrix);
}
return;
}
AutoCheckFlush acf(this->drawingManager());
if (!shape.style().hasPathEffect()) {
GrAAType aaType = this->chooseAAType(aa);
SkRRect rrect;
// We can ignore the starting point and direction since there is no path effect.
bool inverted;
if (shape.asRRect(&rrect, nullptr, nullptr, &inverted) && !inverted) {
if (rrect.isRect()) {
this->drawRect(clip, std::move(paint), aa, viewMatrix, rrect.rect(),
&shape.style());
return;
} else if (rrect.isOval()) {
this->drawOval(clip, std::move(paint), aa, viewMatrix, rrect.rect(), shape.style());
return;
}
this->drawRRect(clip, std::move(paint), aa, viewMatrix, rrect, shape.style());
return;
} else if (GrAAType::kCoverage == aaType && shape.style().isSimpleFill() &&
viewMatrix.rectStaysRect()) {
// TODO: the rectStaysRect restriction could be lifted if we were willing to apply
// the matrix to all the points individually rather than just to the rect
SkRect rects[2];
if (shape.asNestedRects(rects)) {
// Concave AA paths are expensive - try to avoid them for special cases
std::unique_ptr<GrDrawOp> op = GrStrokeRectOp::MakeNested(
fContext, std::move(paint), viewMatrix, rects);
if (op) {
this->addDrawOp(clip, std::move(op));
}
// Returning here indicates that there is nothing to draw in this case.
return;
}
}
}
// If we get here in drawShape(), we definitely need to use path rendering
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix, shape,
/* attempt fallback */ false);
}
bool GrRenderTargetContextPriv::drawAndStencilPath(const GrHardClip* clip,
const GrUserStencilSettings* ss,
SkRegion::Op op,
bool invert,
GrAA aa,
const SkMatrix& viewMatrix,
const SkPath& path) {
ASSERT_SINGLE_OWNER_PRIV
RETURN_FALSE_IF_ABANDONED_PRIV
SkDEBUGCODE(fRenderTargetContext->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContextPriv", "drawAndStencilPath",
fRenderTargetContext->fContext);
if (path.isEmpty() && path.isInverseFillType()) {
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, invert);
this->stencilRect(clip, ss, std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeIWH(fRenderTargetContext->width(),
fRenderTargetContext->height()));
return true;
}
AutoCheckFlush acf(fRenderTargetContext->drawingManager());
// An Assumption here is that path renderer would use some form of tweaking
// the src color (either the input alpha or in the frag shader) to implement
// aa. If we have some future driver-mojo path AA that can do the right
// thing WRT to the blend then we'll need some query on the PR.
GrAAType aaType = fRenderTargetContext->chooseAAType(aa);
bool hasUserStencilSettings = !ss->isUnused();
SkIRect clipConservativeBounds = get_clip_bounds(fRenderTargetContext, clip);
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, invert);
GrStyledShape shape(path, GrStyle::SimpleFill());
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = fRenderTargetContext->caps();
canDrawArgs.fProxy = fRenderTargetContext->asRenderTargetProxy();
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &shape;
canDrawArgs.fPaint = &paint;
canDrawArgs.fClipConservativeBounds = &clipConservativeBounds;
canDrawArgs.fAAType = aaType;
SkASSERT(!fRenderTargetContext->wrapsVkSecondaryCB());
canDrawArgs.fTargetIsWrappedVkSecondaryCB = false;
canDrawArgs.fHasUserStencilSettings = hasUserStencilSettings;
// Don't allow the SW renderer
GrPathRenderer* pr = fRenderTargetContext->drawingManager()->getPathRenderer(
canDrawArgs, false, GrPathRendererChain::DrawType::kStencilAndColor);
if (!pr) {
return false;
}
GrPathRenderer::DrawPathArgs args{fRenderTargetContext->drawingManager()->getContext(),
std::move(paint),
ss,
fRenderTargetContext,
clip,
&clipConservativeBounds,
&viewMatrix,
&shape,
aaType,
fRenderTargetContext->colorInfo().isLinearlyBlended()};
pr->drawPath(args);
return true;
}
SkBudgeted GrRenderTargetContextPriv::isBudgeted() const {
ASSERT_SINGLE_OWNER_PRIV
if (fRenderTargetContext->fContext->priv().abandoned()) {
return SkBudgeted::kNo;
}
SkDEBUGCODE(fRenderTargetContext->validate();)
return fRenderTargetContext->asSurfaceProxy()->isBudgeted();
}
void GrRenderTargetContext::drawShapeUsingPathRenderer(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const GrStyledShape& originalShape,
bool attemptShapeFallback) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "internalDrawPath", fContext);
if (!viewMatrix.isFinite() || !originalShape.bounds().isFinite()) {
return;
}
if (attemptShapeFallback && originalShape.simplified()) {
// Usually we enter drawShapeUsingPathRenderer() because the shape+style was too
// complex for dedicated draw ops. However, if GrStyledShape was able to reduce something
// we ought to try again instead of going right to path rendering.
this->drawShape(clip, std::move(paint), aa, viewMatrix, originalShape);
return;
}
SkIRect clipConservativeBounds = get_clip_bounds(this, clip);
GrStyledShape tempShape;
GrAAType aaType = this->chooseAAType(aa);
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = this->caps();
canDrawArgs.fProxy = this->asRenderTargetProxy();
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &originalShape;
canDrawArgs.fPaint = &paint;
canDrawArgs.fClipConservativeBounds = &clipConservativeBounds;
canDrawArgs.fTargetIsWrappedVkSecondaryCB = this->wrapsVkSecondaryCB();
canDrawArgs.fHasUserStencilSettings = false;
GrPathRenderer* pr;
static constexpr GrPathRendererChain::DrawType kType = GrPathRendererChain::DrawType::kColor;
if (originalShape.isEmpty() && !originalShape.inverseFilled()) {
return;
}
canDrawArgs.fAAType = aaType;
// Try a 1st time without applying any of the style to the geometry (and barring sw)
pr = this->drawingManager()->getPathRenderer(canDrawArgs, false, kType);
SkScalar styleScale = GrStyle::MatrixToScaleFactor(viewMatrix);
if (!pr && originalShape.style().pathEffect()) {
// It didn't work above, so try again with the path effect applied.
tempShape = originalShape.applyStyle(GrStyle::Apply::kPathEffectOnly, styleScale);
if (tempShape.isEmpty()) {
return;
}
canDrawArgs.fShape = &tempShape;
pr = this->drawingManager()->getPathRenderer(canDrawArgs, false, kType);
}
if (!pr) {
if (canDrawArgs.fShape->style().applies()) {
tempShape = canDrawArgs.fShape->applyStyle(GrStyle::Apply::kPathEffectAndStrokeRec,
styleScale);
if (tempShape.isEmpty()) {
return;
}
canDrawArgs.fShape = &tempShape;
// This time, allow SW renderer
pr = this->drawingManager()->getPathRenderer(canDrawArgs, true, kType);
} else {
pr = this->drawingManager()->getSoftwarePathRenderer();
#if GR_PATH_RENDERER_SPEW
SkDebugf("falling back to: %s\n", pr->name());
#endif
}
}
if (!pr) {
#ifdef SK_DEBUG
SkDebugf("Unable to find path renderer compatible with path.\n");
#endif
return;
}
GrPathRenderer::DrawPathArgs args{this->drawingManager()->getContext(),
std::move(paint),
&GrUserStencilSettings::kUnused,
this,
clip,
&clipConservativeBounds,
&viewMatrix,
canDrawArgs.fShape,
aaType,
this->colorInfo().isLinearlyBlended()};
pr->drawPath(args);
}
static void op_bounds(SkRect* bounds, const GrOp* op) {
*bounds = op->bounds();
if (op->hasZeroArea()) {
if (op->hasAABloat()) {
bounds->outset(0.5f, 0.5f);
} else {
// We don't know which way the particular GPU will snap lines or points at integer
// coords. So we ensure that the bounds is large enough for either snap.
SkRect before = *bounds;
bounds->roundOut(bounds);
if (bounds->fLeft == before.fLeft) {
bounds->fLeft -= 1;
}
if (bounds->fTop == before.fTop) {
bounds->fTop -= 1;
}
if (bounds->fRight == before.fRight) {
bounds->fRight += 1;
}
if (bounds->fBottom == before.fBottom) {
bounds->fBottom += 1;
}
}
}
}
void GrRenderTargetContext::addOp(std::unique_ptr<GrOp> op) {
GrDrawingManager* drawingMgr = this->drawingManager();
this->getOpsTask()->addOp(drawingMgr,
std::move(op), GrTextureResolveManager(drawingMgr), *this->caps());
}
void GrRenderTargetContext::addDrawOp(const GrClip* clip, std::unique_ptr<GrDrawOp> op,
const std::function<WillAddOpFn>& willAddFn) {
ASSERT_SINGLE_OWNER
if (fContext->priv().abandoned()) {
fContext->priv().opMemoryPool()->release(std::move(op));
return;
}
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(op->fAddDrawOpCalled = true;)
GR_CREATE_TRACE_MARKER_CONTEXT("GrRenderTargetContext", "addDrawOp", fContext);
// Setup clip
SkRect bounds;
op_bounds(&bounds, op.get());
GrAppliedClip appliedClip(this->dimensions(), this->asSurfaceProxy()->backingStoreDimensions());
GrDrawOp::FixedFunctionFlags fixedFunctionFlags = op->fixedFunctionFlags();
bool usesHWAA = fixedFunctionFlags & GrDrawOp::FixedFunctionFlags::kUsesHWAA;
bool usesUserStencilBits = fixedFunctionFlags & GrDrawOp::FixedFunctionFlags::kUsesStencil;
if (usesUserStencilBits) { // Stencil clipping will call setNeedsStencil on its own, if needed.
this->setNeedsStencil(usesHWAA);
}
bool skipDraw = false;
if (clip) {
// Have a complex clip, so defer to its early clip culling
if (!clip->apply(fContext, this, usesHWAA, usesUserStencilBits, &appliedClip, &bounds)) {
skipDraw = true;
}
} else {
// No clipping, so just clip the bounds against the logical render target dimensions
if (!bounds.intersect(this->asSurfaceProxy()->getBoundsRect())) {
skipDraw = true;
}
}
if (skipDraw) {
fContext->priv().opMemoryPool()->release(std::move(op));
return;
}
bool willUseStencil = usesUserStencilBits || appliedClip.hasStencilClip();
SkASSERT(!willUseStencil || fNumStencilSamples > 0);
// If stencil is enabled and the framebuffer is mixed sampled, then the graphics pipeline will
// have mixed sampled coverage, regardless of whether HWAA is enabled. (e.g., a non-aa draw
// that uses a stencil test when the stencil buffer is multisampled.)
bool hasMixedSampledCoverage = (
willUseStencil && fNumStencilSamples > this->numSamples());
SkASSERT(!hasMixedSampledCoverage ||
this->asRenderTargetProxy()->canUseMixedSamples(*this->caps()));
GrClampType clampType = GrColorTypeClampType(this->colorInfo().colorType());
GrProcessorSet::Analysis analysis = op->finalize(
*this->caps(), &appliedClip, hasMixedSampledCoverage, clampType);
// Must be called before setDstProxyView so that it sees the final bounds of the op.
op->setClippedBounds(bounds);
GrXferProcessor::DstProxyView dstProxyView;
if (analysis.requiresDstTexture()) {
if (!this->setupDstProxyView(*op, &dstProxyView)) {
fContext->priv().opMemoryPool()->release(std::move(op));
return;
}
}
auto opsTask = this->getOpsTask();
if (willAddFn) {
willAddFn(op.get(), opsTask->uniqueID());
}
opsTask->addDrawOp(this->drawingManager(), std::move(op), analysis, std::move(appliedClip),
dstProxyView,GrTextureResolveManager(this->drawingManager()), *this->caps());
}
bool GrRenderTargetContext::setupDstProxyView(const GrOp& op,
GrXferProcessor::DstProxyView* dstProxyView) {
// If we are wrapping a vulkan secondary command buffer, we can't make a dst copy because we
// don't actually have a VkImage to make a copy of. Additionally we don't have the power to
// start and stop the render pass in order to make the copy.
if (this->asRenderTargetProxy()->wrapsVkSecondaryCB()) {
return false;
}
if (this->caps()->textureBarrierSupport() &&
!this->asSurfaceProxy()->requiresManualMSAAResolve()) {
if (this->asTextureProxy()) {
// The render target is a texture, so we can read from it directly in the shader. The XP
// will be responsible to detect this situation and request a texture barrier.
dstProxyView->setProxyView(this->readSurfaceView());
dstProxyView->setOffset(0, 0);
return true;
}
}
GrColorType colorType = this->colorInfo().colorType();
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrCaps::DstCopyRestrictions restrictions = this->caps()->getDstCopyRestrictions(
this->asRenderTargetProxy(), colorType);
SkIRect copyRect = SkIRect::MakeSize(this->asSurfaceProxy()->backingStoreDimensions());
if (!restrictions.fMustCopyWholeSrc) {
// If we don't need the whole source, restrict to the op's bounds. We add an extra pixel
// of padding to account for AA bloat and the unpredictable rounding of coords near pixel
// centers during rasterization.
SkIRect conservativeDrawBounds = op.bounds().roundOut();
conservativeDrawBounds.outset(1, 1);
SkAssertResult(copyRect.intersect(conservativeDrawBounds));
}
SkIPoint dstOffset;
SkBackingFit fit;
if (restrictions.fRectsMustMatch == GrSurfaceProxy::RectsMustMatch::kYes) {
dstOffset = {0, 0};
fit = SkBackingFit::kExact;
} else {
dstOffset = {copyRect.fLeft, copyRect.fTop};
fit = SkBackingFit::kApprox;
}
auto copy =
GrSurfaceProxy::Copy(fContext, this->asSurfaceProxy(), this->origin(), GrMipMapped::kNo,
copyRect, fit, SkBudgeted::kYes, restrictions.fRectsMustMatch);
SkASSERT(copy);
dstProxyView->setProxyView({std::move(copy), this->origin(), this->readSwizzle()});
dstProxyView->setOffset(dstOffset);
return true;
}
bool GrRenderTargetContext::blitTexture(GrSurfaceProxyView view, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(view.asTextureProxy());
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
if (!GrClipSrcRectAndDstPoint(this->asSurfaceProxy()->dimensions(), view.proxy()->dimensions(),
srcRect, dstPoint, &clippedSrcRect, &clippedDstPoint)) {
return false;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
auto fp = GrTextureEffect::Make(std::move(view), kUnknown_SkAlphaType);
if (!fp) {
return false;
}
paint.addColorFragmentProcessor(std::move(fp));
this->fillRectToRect(
nullptr, std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeXYWH(clippedDstPoint.fX, clippedDstPoint.fY, clippedSrcRect.width(),
clippedSrcRect.height()),
SkRect::Make(clippedSrcRect));
return true;
}
void GrRenderTargetContext::wasClosed(const GrOpsTask& task) {
SkASSERT(&task == fOpsTask.get());
fOpsTask.reset();
}