| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkLatticeIter.h" |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkRect.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkTo.h" |
| |
| #include <cstdint> |
| |
| /** |
| * Divs must be in increasing order with no duplicates. |
| */ |
| static bool valid_divs(const int* divs, int count, int start, int end) { |
| int prev = start - 1; |
| for (int i = 0; i < count; i++) { |
| if (prev >= divs[i] || divs[i] > end) { |
| return false; |
| } |
| prev = divs[i]; |
| } |
| |
| return true; |
| } |
| |
| bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) { |
| SkIRect totalBounds = SkIRect::MakeWH(width, height); |
| SkASSERT(lattice.fBounds); |
| const SkIRect latticeBounds = *lattice.fBounds; |
| if (!totalBounds.contains(latticeBounds)) { |
| return false; |
| } |
| |
| bool zeroXDivs = lattice.fXCount <= 0 || (1 == lattice.fXCount && |
| latticeBounds.fLeft == lattice.fXDivs[0]); |
| bool zeroYDivs = lattice.fYCount <= 0 || (1 == lattice.fYCount && |
| latticeBounds.fTop == lattice.fYDivs[0]); |
| if (zeroXDivs && zeroYDivs) { |
| return false; |
| } |
| |
| return valid_divs(lattice.fXDivs, lattice.fXCount, latticeBounds.fLeft, latticeBounds.fRight) |
| && valid_divs(lattice.fYDivs, lattice.fYCount, latticeBounds.fTop, latticeBounds.fBottom); |
| } |
| |
| /** |
| * Count the number of pixels that are in "scalable" patches. |
| */ |
| static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable, |
| int start, int end) { |
| if (0 == numDivs) { |
| return firstIsScalable ? end - start : 0; |
| } |
| |
| int i; |
| int count; |
| if (firstIsScalable) { |
| count = divs[0] - start; |
| i = 1; |
| } else { |
| count = 0; |
| i = 0; |
| } |
| |
| for (; i < numDivs; i += 2) { |
| // Alternatively, we could use |top| and |bottom| as variable names, instead of |
| // |left| and |right|. |
| int left = divs[i]; |
| int right = (i + 1 < numDivs) ? divs[i + 1] : end; |
| count += right - left; |
| } |
| |
| return count; |
| } |
| |
| /** |
| * Set points for the src and dst rects on subsequent draw calls. |
| */ |
| static void set_points(float* dst, int* src, const int* divs, int divCount, int srcFixed, |
| int srcScalable, int srcStart, int srcEnd, float dstStart, float dstEnd, |
| bool isScalable) { |
| float dstLen = dstEnd - dstStart; |
| float scale; |
| if (srcFixed <= dstLen) { |
| // This is the "normal" case, where we scale the "scalable" patches and leave |
| // the other patches fixed. |
| scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable); |
| } else { |
| // In this case, we eliminate the "scalable" patches and scale the "fixed" patches. |
| scale = dstLen / ((float) srcFixed); |
| } |
| |
| src[0] = srcStart; |
| dst[0] = dstStart; |
| for (int i = 0; i < divCount; i++) { |
| src[i + 1] = divs[i]; |
| int srcDelta = src[i + 1] - src[i]; |
| float dstDelta; |
| if (srcFixed <= dstLen) { |
| dstDelta = isScalable ? scale * srcDelta : srcDelta; |
| } else { |
| dstDelta = isScalable ? 0.0f : scale * srcDelta; |
| } |
| dst[i + 1] = dst[i] + dstDelta; |
| |
| // Alternate between "scalable" and "fixed" patches. |
| isScalable = !isScalable; |
| } |
| |
| src[divCount + 1] = srcEnd; |
| dst[divCount + 1] = dstEnd; |
| } |
| |
| SkLatticeIter::SkLatticeIter(const SkCanvas::Lattice& lattice, const SkRect& dst) { |
| const int* xDivs = lattice.fXDivs; |
| const int origXCount = lattice.fXCount; |
| const int* yDivs = lattice.fYDivs; |
| const int origYCount = lattice.fYCount; |
| SkASSERT(lattice.fBounds); |
| const SkIRect src = *lattice.fBounds; |
| |
| // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable". |
| // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the |
| // first real rectangle "scalable" in the x-direction. |
| // |
| // The same interpretation applies to the y-dimension. |
| // |
| // As we move left to right across the image, alternating patches will be "fixed" or |
| // "scalable" in the x-direction. Similarly, as move top to bottom, alternating |
| // patches will be "fixed" or "scalable" in the y-direction. |
| int xCount = origXCount; |
| int yCount = origYCount; |
| bool xIsScalable = (xCount > 0 && src.fLeft == xDivs[0]); |
| if (xIsScalable) { |
| // Once we've decided that the first patch is "scalable", we don't need the |
| // xDiv. It is always implied that we start at the edge of the bounds. |
| xDivs++; |
| xCount--; |
| } |
| bool yIsScalable = (yCount > 0 && src.fTop == yDivs[0]); |
| if (yIsScalable) { |
| // Once we've decided that the first patch is "scalable", we don't need the |
| // yDiv. It is always implied that we start at the edge of the bounds. |
| yDivs++; |
| yCount--; |
| } |
| |
| // Count "scalable" and "fixed" pixels in each dimension. |
| int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, src.fLeft, src.fRight); |
| int xCountFixed = src.width() - xCountScalable; |
| int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, src.fTop, src.fBottom); |
| int yCountFixed = src.height() - yCountScalable; |
| |
| fSrcX.reset(xCount + 2); |
| fDstX.reset(xCount + 2); |
| set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable, |
| src.fLeft, src.fRight, dst.fLeft, dst.fRight, xIsScalable); |
| |
| fSrcY.reset(yCount + 2); |
| fDstY.reset(yCount + 2); |
| set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable, |
| src.fTop, src.fBottom, dst.fTop, dst.fBottom, yIsScalable); |
| |
| fCurrX = fCurrY = 0; |
| fNumRectsInLattice = (xCount + 1) * (yCount + 1); |
| fNumRectsToDraw = fNumRectsInLattice; |
| |
| if (lattice.fRectTypes) { |
| fRectTypes.push_back_n(fNumRectsInLattice); |
| fColors.push_back_n(fNumRectsInLattice); |
| |
| const SkCanvas::Lattice::RectType* flags = lattice.fRectTypes; |
| const SkColor* colors = lattice.fColors; |
| |
| bool hasPadRow = (yCount != origYCount); |
| bool hasPadCol = (xCount != origXCount); |
| if (hasPadRow) { |
| // The first row of rects are all empty, skip the first row of flags. |
| flags += origXCount + 1; |
| colors += origXCount + 1; |
| } |
| |
| int i = 0; |
| for (int y = 0; y < yCount + 1; y++) { |
| for (int x = 0; x < origXCount + 1; x++) { |
| if (0 == x && hasPadCol) { |
| // The first column of rects are all empty. Skip a rect. |
| flags++; |
| colors++; |
| continue; |
| } |
| |
| fRectTypes[i] = *flags; |
| fColors[i] = SkCanvas::Lattice::kFixedColor == *flags ? *colors : 0; |
| flags++; |
| colors++; |
| i++; |
| } |
| } |
| |
| for (int j = 0; j < fRectTypes.size(); j++) { |
| if (SkCanvas::Lattice::kTransparent == fRectTypes[j]) { |
| fNumRectsToDraw--; |
| } |
| } |
| } |
| } |
| |
| bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) { |
| return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center); |
| } |
| |
| SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) { |
| SkASSERT(SkIRect::MakeWH(w, h).contains(c)); |
| |
| fSrcX.reset(4); |
| fSrcY.reset(4); |
| fDstX.reset(4); |
| fDstY.reset(4); |
| |
| fSrcX[0] = 0; |
| fSrcX[1] = SkIntToScalar(c.fLeft); |
| fSrcX[2] = SkIntToScalar(c.fRight); |
| fSrcX[3] = SkIntToScalar(w); |
| |
| fSrcY[0] = 0; |
| fSrcY[1] = SkIntToScalar(c.fTop); |
| fSrcY[2] = SkIntToScalar(c.fBottom); |
| fSrcY[3] = SkIntToScalar(h); |
| |
| fDstX[0] = dst.fLeft; |
| fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft); |
| fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight); |
| fDstX[3] = dst.fRight; |
| |
| fDstY[0] = dst.fTop; |
| fDstY[1] = dst.fTop + SkIntToScalar(c.fTop); |
| fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom); |
| fDstY[3] = dst.fBottom; |
| |
| if (fDstX[1] > fDstX[2]) { |
| fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width()); |
| fDstX[2] = fDstX[1]; |
| } |
| |
| if (fDstY[1] > fDstY[2]) { |
| fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height()); |
| fDstY[2] = fDstY[1]; |
| } |
| |
| fCurrX = fCurrY = 0; |
| fNumRectsInLattice = 9; |
| fNumRectsToDraw = 9; |
| } |
| |
| bool SkLatticeIter::next(SkIRect* src, SkRect* dst, bool* isFixedColor, SkColor* fixedColor) { |
| int currRect = fCurrX + fCurrY * (fSrcX.size() - 1); |
| if (currRect == fNumRectsInLattice) { |
| return false; |
| } |
| |
| const int x = fCurrX; |
| const int y = fCurrY; |
| SkASSERT(x >= 0 && x < fSrcX.size() - 1); |
| SkASSERT(y >= 0 && y < fSrcY.size() - 1); |
| |
| if (fSrcX.size() - 1 == ++fCurrX) { |
| fCurrX = 0; |
| fCurrY += 1; |
| } |
| |
| if (!fRectTypes.empty() && SkToBool(SkCanvas::Lattice::kTransparent == fRectTypes[currRect])) { |
| return this->next(src, dst, isFixedColor, fixedColor); |
| } |
| |
| src->setLTRB(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]); |
| dst->setLTRB(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]); |
| if (isFixedColor && fixedColor) { |
| *isFixedColor = !fRectTypes.empty() && |
| SkToBool(SkCanvas::Lattice::kFixedColor == fRectTypes[currRect]); |
| if (*isFixedColor) { |
| *fixedColor = fColors[currRect]; |
| } |
| } |
| return true; |
| } |
| |
| void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) { |
| SkASSERT(matrix.isScaleTranslate()); |
| SkScalar tx = matrix.getTranslateX(); |
| SkScalar sx = matrix.getScaleX(); |
| for (int i = 0; i < fDstX.size(); i++) { |
| fDstX[i] = fDstX[i] * sx + tx; |
| } |
| |
| SkScalar ty = matrix.getTranslateY(); |
| SkScalar sy = matrix.getScaleY(); |
| for (int i = 0; i < fDstY.size(); i++) { |
| fDstY[i] = fDstY[i] * sy + ty; |
| } |
| } |