| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkBBHFactory.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkBlendMode.h" |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorFilter.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkFont.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkImageFilter.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPicture.h" |
| #include "include/core/SkPictureRecorder.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkSamplingOptions.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkSerialProcs.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkSurface.h" |
| #include "include/core/SkSurfaceProps.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkGradientShader.h" |
| #include "include/effects/SkImageFilters.h" |
| #include "include/effects/SkPerlinNoiseShader.h" |
| #include "include/encode/SkPngEncoder.h" |
| #include "include/gpu/GpuTypes.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/private/base/SkTArray.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/core/SkBitmapDevice.h" |
| #include "src/core/SkDevice.h" |
| #include "src/core/SkImageFilterTypes.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkSpecialImage.h" |
| #include "src/effects/colorfilters/SkColorFilterBase.h" |
| #include "src/image/SkImage_Base.h" |
| #include "tests/CtsEnforcement.h" |
| #include "tests/Test.h" |
| #include "tools/EncodeUtils.h" |
| #include "tools/GpuToolUtils.h" |
| #include "tools/Resources.h" |
| #include "tools/ToolUtils.h" |
| #include "tools/fonts/FontToolUtils.h" |
| |
| #if defined(SK_GANESH) |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "include/gpu/ganesh/SkImageGanesh.h" |
| #include "include/gpu/ganesh/SkSurfaceGanesh.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/image/GrImageUtils.h" |
| #include "src/gpu/ganesh/image/SkImage_GaneshBase.h" |
| #include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h" |
| #endif |
| |
| #if defined(SK_GRAPHITE) |
| #include "include/gpu/graphite/Context.h" |
| #include "include/gpu/graphite/Image.h" |
| #include "include/gpu/graphite/Surface.h" |
| #endif |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <cstring> |
| #include <utility> |
| #include <limits> |
| |
| using namespace skia_private; |
| |
| class SkReadBuffer; |
| class SkWriteBuffer; |
| struct GrContextOptions; |
| |
| static const int kBitmapSize = 4; |
| |
| namespace { |
| |
| static constexpr GrSurfaceOrigin kTestSurfaceOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| class MatrixTestImageFilter : public SkImageFilter_Base { |
| public: |
| MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) |
| : SkImageFilter_Base(nullptr, 0) |
| , fReporter(reporter) |
| , fExpectedMatrix(expectedMatrix) {} |
| |
| private: |
| Factory getFactory() const override { |
| SK_ABORT("Does not participate in serialization"); |
| return nullptr; |
| } |
| const char* getTypeName() const override { return "MatrixTestImageFilter"; } |
| |
| skif::FilterResult onFilterImage(const skif::Context& ctx) const override { |
| REPORTER_ASSERT(fReporter, ctx.mapping().layerMatrix() == fExpectedMatrix); |
| return ctx.source(); |
| } |
| |
| skif::LayerSpace<SkIRect> onGetInputLayerBounds( |
| const skif::Mapping& mapping, |
| const skif::LayerSpace<SkIRect>& desiredOutput, |
| std::optional<skif::LayerSpace<SkIRect>> contentBounds) const override { |
| return desiredOutput; |
| } |
| |
| std::optional<skif::LayerSpace<SkIRect>> onGetOutputLayerBounds( |
| const skif::Mapping& mapping, |
| std::optional<skif::LayerSpace<SkIRect>> contentBounds) const override { |
| return contentBounds; |
| } |
| |
| skiatest::Reporter* fReporter; |
| SkMatrix fExpectedMatrix; |
| }; |
| |
| void draw_gradient_circle(SkCanvas* canvas, int width, int height) { |
| SkScalar x = SkIntToScalar(width / 2); |
| SkScalar y = SkIntToScalar(height / 2); |
| SkScalar radius = std::min(x, y) * 0.8f; |
| canvas->clear(0x00000000); |
| SkColor colors[2]; |
| colors[0] = SK_ColorWHITE; |
| colors[1] = SK_ColorBLACK; |
| sk_sp<SkShader> shader( |
| SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2, |
| SkTileMode::kClamp) |
| ); |
| SkPaint paint; |
| paint.setShader(shader); |
| canvas->drawCircle(x, y, radius, paint); |
| } |
| |
| SkBitmap make_gradient_circle(int width, int height) { |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(width, height); |
| SkCanvas canvas(bitmap); |
| draw_gradient_circle(&canvas, width, height); |
| return bitmap; |
| } |
| |
| class FilterList { |
| public: |
| FilterList(const sk_sp<SkImageFilter>& input, const SkIRect* cropRect = nullptr) { |
| static const SkScalar kBlurSigma = SkIntToScalar(5); |
| |
| SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); |
| { |
| sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcIn)); |
| |
| this->addFilter("color filter", |
| SkImageFilters::ColorFilter(std::move(cf), input, cropRect)); |
| } |
| { |
| sk_sp<SkImage> gradientImage(make_gradient_circle(64, 64).asImage()); |
| sk_sp<SkImageFilter> gradientSource(SkImageFilters::Image(std::move(gradientImage), |
| SkFilterMode::kNearest)); |
| |
| this->addFilter("displacement map", |
| SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f, |
| std::move(gradientSource), input, cropRect)); |
| } |
| this->addFilter("blur", SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, input, cropRect)); |
| this->addFilter("drop shadow", SkImageFilters::DropShadow( |
| SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input, cropRect)); |
| this->addFilter("diffuse lighting", |
| SkImageFilters::PointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect)); |
| this->addFilter("specular lighting", |
| SkImageFilters::PointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input, |
| cropRect)); |
| { |
| SkScalar kernel[9] = { |
| SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), |
| SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1), |
| SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), |
| }; |
| const SkISize kernelSize = SkISize::Make(3, 3); |
| const SkScalar gain = SK_Scalar1, bias = 0; |
| |
| // This filter needs a saveLayer bc it is in repeat mode |
| this->addFilter("matrix convolution", |
| SkImageFilters::MatrixConvolution( |
| kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), |
| SkTileMode::kRepeat, false, input, cropRect), |
| true); |
| } |
| this->addFilter("merge", SkImageFilters::Merge(input, input, cropRect)); |
| |
| { |
| sk_sp<SkShader> greenColorShader = SkShaders::Color(SK_ColorGREEN); |
| |
| SkIRect leftSideCropRect = SkIRect::MakeXYWH(0, 0, 32, 64); |
| sk_sp<SkImageFilter> shaderFilterLeft(SkImageFilters::Shader(greenColorShader, |
| &leftSideCropRect)); |
| SkIRect rightSideCropRect = SkIRect::MakeXYWH(32, 0, 32, 64); |
| sk_sp<SkImageFilter> shaderFilterRight(SkImageFilters::Shader(greenColorShader, |
| &rightSideCropRect)); |
| |
| |
| this->addFilter("merge with disjoint inputs", SkImageFilters::Merge( |
| std::move(shaderFilterLeft), std::move(shaderFilterRight), cropRect)); |
| } |
| |
| this->addFilter("offset", SkImageFilters::Offset(SK_Scalar1, SK_Scalar1, input, cropRect)); |
| this->addFilter("dilate", SkImageFilters::Dilate(3, 2, input, cropRect)); |
| this->addFilter("erode", SkImageFilters::Erode(2, 3, input, cropRect)); |
| this->addFilter("tile", SkImageFilters::Tile(SkRect::MakeXYWH(0, 0, 50, 50), |
| cropRect ? SkRect::Make(*cropRect) |
| : SkRect::MakeXYWH(0, 0, 100, 100), |
| input)); |
| |
| if (!cropRect) { |
| SkMatrix matrix; |
| |
| matrix.setTranslate(SK_Scalar1, SK_Scalar1); |
| matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1); |
| |
| this->addFilter("matrix", |
| SkImageFilters::MatrixTransform(matrix, |
| SkSamplingOptions(SkFilterMode::kLinear), |
| input)); |
| } |
| { |
| sk_sp<SkImageFilter> blur(SkImageFilters::Blur(kBlurSigma, kBlurSigma, input)); |
| |
| this->addFilter("blur and offset", SkImageFilters::Offset( |
| kBlurSigma, kBlurSigma, std::move(blur), cropRect)); |
| } |
| { |
| SkPictureRecorder recorder; |
| SkCanvas* recordingCanvas = recorder.beginRecording(64, 64); |
| |
| SkPaint greenPaint; |
| greenPaint.setColor(SK_ColorGREEN); |
| recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); |
| sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); |
| sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(std::move(picture))); |
| |
| this->addFilter("picture and blur", SkImageFilters::Blur( |
| kBlurSigma, kBlurSigma, std::move(pictureFilter), cropRect)); |
| } |
| { |
| sk_sp<SkImageFilter> paintFilter(SkImageFilters::Shader( |
| SkShaders::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0))); |
| |
| this->addFilter("paint and blur", SkImageFilters::Blur( |
| kBlurSigma, kBlurSigma, std::move(paintFilter), cropRect)); |
| } |
| this->addFilter("blend", SkImageFilters::Blend( |
| SkBlendMode::kSrc, input, input, cropRect)); |
| } |
| int count() const { return fFilters.size(); } |
| SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); } |
| const char* getName(int index) const { return fFilters[index].fName; } |
| bool needsSaveLayer(int index) const { return fFilters[index].fNeedsSaveLayer; } |
| private: |
| struct Filter { |
| Filter() : fName(nullptr), fNeedsSaveLayer(false) {} |
| Filter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer) |
| : fName(name) |
| , fFilter(std::move(filter)) |
| , fNeedsSaveLayer(needsSaveLayer) { |
| } |
| const char* fName; |
| sk_sp<SkImageFilter> fFilter; |
| bool fNeedsSaveLayer; |
| }; |
| void addFilter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer = false) { |
| fFilters.push_back(Filter(name, std::move(filter), needsSaveLayer)); |
| } |
| |
| TArray<Filter> fFilters; |
| }; |
| |
| } // namespace |
| |
| static skif::Context make_context(const SkIRect& out, const SkSpecialImage* src) { |
| sk_sp<skif::Backend> backend; |
| if (src->isGaneshBacked()) { |
| backend = skif::MakeGaneshBackend(sk_ref_sp(src->getContext()), kTestSurfaceOrigin, |
| src->props(), src->colorType()); |
| } else { |
| backend = skif::MakeRasterBackend(src->props(), src->colorType()); |
| } |
| |
| return skif::Context{std::move(backend), |
| skif::Mapping{SkMatrix::I()}, |
| skif::LayerSpace<SkIRect>{out}, |
| skif::FilterResult{sk_ref_sp(src)}, |
| src->getColorSpace(), |
| /*stats=*/nullptr}; |
| } |
| static skif::Context make_context(int outWidth, int outHeight, const SkSpecialImage* src) { |
| return make_context(SkIRect::MakeWH(outWidth, outHeight), src); |
| } |
| |
| static sk_sp<SkImage> make_small_image() { |
| auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize))); |
| SkCanvas* canvas = surface->getCanvas(); |
| canvas->clear(0x00000000); |
| SkPaint darkPaint; |
| darkPaint.setColor(0xFF804020); |
| SkPaint lightPaint; |
| lightPaint.setColor(0xFF244484); |
| const int kRectSize = kBitmapSize / 4; |
| static_assert(kBitmapSize % 4 == 0, "bitmap size not multiple of 4"); |
| |
| for (int y = 0; y < kBitmapSize; y += kRectSize) { |
| for (int x = 0; x < kBitmapSize; x += kRectSize) { |
| canvas->save(); |
| canvas->translate(SkIntToScalar(x), SkIntToScalar(y)); |
| canvas->drawRect( |
| SkRect::MakeXYWH(0, 0, kRectSize, kRectSize), darkPaint); |
| canvas->drawRect( |
| SkRect::MakeXYWH(kRectSize, 0, kRectSize, kRectSize), lightPaint); |
| canvas->drawRect( |
| SkRect::MakeXYWH(0, kRectSize, kRectSize, kRectSize), lightPaint); |
| canvas->drawRect( |
| SkRect::MakeXYWH(kRectSize, kRectSize, kRectSize, kRectSize), darkPaint); |
| canvas->restore(); |
| } |
| } |
| |
| return surface->makeImageSnapshot(); |
| } |
| |
| static sk_sp<SkImageFilter> make_scale(float amount, sk_sp<SkImageFilter> input) { |
| float s = amount; |
| float matrix[20] = { s, 0, 0, 0, 0, |
| 0, s, 0, 0, 0, |
| 0, 0, s, 0, 0, |
| 0, 0, 0, s, 0 }; |
| sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix)); |
| return SkImageFilters::ColorFilter(std::move(filter), std::move(input)); |
| } |
| |
| static sk_sp<SkImageFilter> make_grayscale(sk_sp<SkImageFilter> input, |
| const SkIRect* cropRect) { |
| float matrix[20]; |
| memset(matrix, 0, 20 * sizeof(float)); |
| matrix[0] = matrix[5] = matrix[10] = 0.2126f; |
| matrix[1] = matrix[6] = matrix[11] = 0.7152f; |
| matrix[2] = matrix[7] = matrix[12] = 0.0722f; |
| matrix[18] = 1.0f; |
| sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix)); |
| return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); |
| } |
| |
| static sk_sp<SkImageFilter> make_blue(sk_sp<SkImageFilter> input, const SkIRect* cropRect) { |
| sk_sp<SkColorFilter> filter(SkColorFilters::Blend(SK_ColorBLUE, SkBlendMode::kSrcIn)); |
| return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect); |
| } |
| |
| |
| static sk_sp<SkDevice> create_empty_device(GrRecordingContext* rContext, int widthHeight) { |
| |
| const SkImageInfo ii = SkImageInfo::Make({ widthHeight, widthHeight }, |
| kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType); |
| |
| if (rContext) { |
| return rContext->priv().createDevice(skgpu::Budgeted::kNo, ii, SkBackingFit::kApprox, 1, |
| skgpu::Mipmapped::kNo, skgpu::Protected::kNo, |
| kTestSurfaceOrigin, {}, |
| skgpu::ganesh::Device::InitContents::kUninit); |
| } else { |
| SkBitmap bm; |
| SkAssertResult(bm.tryAllocPixels(ii)); |
| return sk_make_sp<SkBitmapDevice>(bm, SkSurfaceProps()); |
| } |
| } |
| |
| static sk_sp<SkSpecialImage> create_empty_special_image(GrRecordingContext* rContext, |
| int widthHeight, |
| SkColor4f color = SkColors::kTransparent) { |
| sk_sp<SkDevice> device = create_empty_device(rContext, widthHeight); |
| |
| SkASSERT(device); |
| |
| SkPaint p; |
| p.setColor4f(color, /*colorSpace=*/nullptr); |
| p.setBlendMode(SkBlendMode::kSrc); |
| device->drawPaint(p); |
| return device->snapSpecial(SkIRect::MakeWH(widthHeight, widthHeight)); |
| } |
| |
| |
| DEF_TEST(ImageFilter, reporter) { |
| { |
| // Check that a color matrix filter followed by a color matrix filter |
| // concatenates into a single filter. |
| sk_sp<SkImageFilter> doubleBrightness(make_scale(2.0f, nullptr)); |
| sk_sp<SkImageFilter> halfBrightness(make_scale(0.5f, std::move(doubleBrightness))); |
| REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0)); |
| SkColorFilter* cf; |
| REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf)); |
| cf->unref(); |
| } |
| |
| { |
| // Check that a color filter image filter without a crop rect can be |
| // expressed as a color filter. |
| sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr)); |
| REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); |
| } |
| |
| { |
| // Check that a colorfilterimage filter without a crop rect but with an input |
| // that is another colorfilterimage can be expressed as a colorfilter (composed). |
| sk_sp<SkImageFilter> mode(make_blue(nullptr, nullptr)); |
| sk_sp<SkImageFilter> gray(make_grayscale(std::move(mode), nullptr)); |
| REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); |
| } |
| |
| { |
| // Test that if we exceed the limit of what ComposeColorFilter can combine, we still |
| // can build the DAG and won't assert if we call asColorFilter. |
| sk_sp<SkImageFilter> filter(make_blue(nullptr, nullptr)); |
| const int kWayTooManyForComposeColorFilter = 100; |
| for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) { |
| filter = make_blue(filter, nullptr); |
| // the first few of these will succeed, but after we hit the internal limit, |
| // it will then return false. |
| (void)filter->asColorFilter(nullptr); |
| } |
| } |
| |
| { |
| // Check that a color filter image filter with a crop rect cannot |
| // be expressed as a color filter. |
| SkIRect cropRect = SkIRect::MakeWH(100, 100); |
| sk_sp<SkImageFilter> grayWithCrop(make_grayscale(nullptr, &cropRect)); |
| REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr)); |
| } |
| |
| { |
| // Check that two non-commutative matrices are concatenated in |
| // the correct order. |
| float blueToRedMatrix[20] = { 0 }; |
| blueToRedMatrix[2] = blueToRedMatrix[18] = 1; |
| float redToGreenMatrix[20] = { 0 }; |
| redToGreenMatrix[5] = redToGreenMatrix[18] = 1; |
| sk_sp<SkColorFilter> blueToRed(SkColorFilters::Matrix(blueToRedMatrix)); |
| sk_sp<SkImageFilter> filter1(SkImageFilters::ColorFilter(std::move(blueToRed), nullptr)); |
| sk_sp<SkColorFilter> redToGreen(SkColorFilters::Matrix(redToGreenMatrix)); |
| sk_sp<SkImageFilter> filter2(SkImageFilters::ColorFilter(std::move(redToGreen), |
| std::move(filter1))); |
| |
| SkBitmap result; |
| result.allocN32Pixels(kBitmapSize, kBitmapSize); |
| |
| SkPaint paint; |
| paint.setColor(SK_ColorBLUE); |
| paint.setImageFilter(std::move(filter2)); |
| SkCanvas canvas(result); |
| canvas.clear(0x0); |
| SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize)); |
| canvas.drawRect(rect, paint); |
| uint32_t pixel = *result.getAddr32(0, 0); |
| // The result here should be green, since we have effectively shifted blue to green. |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| } |
| |
| { |
| // Tests pass by not asserting |
| sk_sp<SkImage> image(make_small_image()); |
| SkBitmap result; |
| result.allocN32Pixels(kBitmapSize, kBitmapSize); |
| |
| { |
| // This tests for : |
| // 1 ) location at (0,0,1) |
| SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); |
| // 2 ) location and target at same value |
| SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ); |
| // 3 ) large negative specular exponent value |
| SkScalar specularExponent = -1000; |
| |
| sk_sp<SkImageFilter> bmSrc(SkImageFilters::Image(std::move(image), {})); |
| SkPaint paint; |
| paint.setImageFilter(SkImageFilters::SpotLitSpecular( |
| location, target, specularExponent, 180, |
| 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, |
| std::move(bmSrc))); |
| SkCanvas canvas(result); |
| SkRect r = SkRect::MakeIWH(kBitmapSize, kBitmapSize); |
| canvas.drawRect(r, paint); |
| } |
| } |
| } |
| |
| static void test_cropRects(skiatest::Reporter* reporter, GrRecordingContext* rContext) { |
| // Check that all filters offset to their absolute crop rect, |
| // unaffected by the input crop rect. |
| // Tests pass by not asserting. |
| sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100)); |
| SkASSERT(srcImg); |
| |
| SkIRect inputCropRect = SkIRect::MakeXYWH(8, 13, 80, 80); |
| SkIRect cropRect = SkIRect::MakeXYWH(20, 30, 60, 60); |
| sk_sp<SkImageFilter> input(make_grayscale(nullptr, &inputCropRect)); |
| |
| FilterList filters(input, &cropRect); |
| |
| for (int i = 0; i < filters.count(); ++i) { |
| SkImageFilter* filter = filters.getFilter(i); |
| SkIPoint offset; |
| skif::Context ctx = make_context(100, 100, srcImg.get()); |
| sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx) |
| .imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, resultImg, "%s", filters.getName(i)); |
| REPORTER_ASSERT(reporter, offset.fX == 20 && offset.fY == 30, "%s", filters.getName(i)); |
| } |
| } |
| |
| static bool special_image_to_bitmap(GrDirectContext* dContext, const SkSpecialImage* src, |
| SkBitmap* dst) { |
| sk_sp<SkImage> img = src->asImage(); |
| if (!img) { |
| return false; |
| } |
| |
| if (!dst->tryAllocN32Pixels(src->width(), src->height())) { |
| return false; |
| } |
| |
| return img->readPixels(dContext, dst->pixmap(), src->subset().fLeft, src->subset().fTop); |
| } |
| |
| static void test_negative_blur_sigma(skiatest::Reporter* reporter, |
| GrDirectContext* dContext) { |
| // Check that SkBlurImageFilter will reject a negative sigma on creation, but properly uses the |
| // absolute value of the mapped sigma after CTM application. |
| static const int kWidth = 32, kHeight = 32; |
| static const SkScalar kBlurSigma = SkIntToScalar(5); |
| |
| sk_sp<SkImageFilter> positiveFilter(SkImageFilters::Blur(kBlurSigma, kBlurSigma, nullptr)); |
| sk_sp<SkImageFilter> negativeFilter(SkImageFilters::Blur(-kBlurSigma, kBlurSigma, nullptr)); |
| REPORTER_ASSERT(reporter, !negativeFilter); |
| |
| sk_sp<SkImage> gradient = make_gradient_circle(kWidth, kHeight).asImage(); |
| sk_sp<SkSpecialImage> imgSrc; |
| if (dContext) { |
| imgSrc = SkSpecialImages::MakeFromTextureImage( |
| dContext, SkIRect::MakeWH(kWidth, kHeight), gradient, SkSurfaceProps()); |
| } else { |
| imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), gradient, {}); |
| } |
| |
| SkIPoint offset; |
| skif::Context ctx = make_context(32, 32, imgSrc.get()); |
| |
| sk_sp<SkSpecialImage> positiveResult( |
| as_IFB(positiveFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, positiveResult); |
| |
| SkMatrix negativeScale; |
| negativeScale.setScale(-SK_Scalar1, SK_Scalar1); |
| skif::Context negativeCTX = ctx.withNewMapping(skif::Mapping(negativeScale)); |
| |
| sk_sp<SkSpecialImage> negativeResult( |
| as_IFB(positiveFilter)->filterImage(negativeCTX).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, negativeResult); |
| |
| |
| SkBitmap positiveResultBM; |
| SkBitmap negativeResultBM; |
| |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, positiveResult.get(), |
| &positiveResultBM)); |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, negativeResult.get(), |
| &negativeResultBM)); |
| |
| for (int y = 0; y < kHeight; y++) { |
| int diffs = memcmp(positiveResultBM.getAddr32(0, y), |
| negativeResultBM.getAddr32(0, y), |
| positiveResultBM.rowBytes()); |
| REPORTER_ASSERT(reporter, !diffs); |
| if (diffs) { |
| break; |
| } |
| } |
| } |
| |
| DEF_TEST(ImageFilterNegativeBlurSigma, reporter) { |
| test_negative_blur_sigma(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_negative_blur_sigma(reporter, ctxInfo.directContext()); |
| } |
| |
| static void test_morphology_radius_with_mirror_ctm(skiatest::Reporter* reporter, |
| GrDirectContext* dContext) { |
| // Check that SkMorphologyImageFilter maps the radius correctly when the |
| // CTM contains a mirroring transform. |
| static const int kWidth = 32, kHeight = 32; |
| static const int kRadius = 8; |
| |
| sk_sp<SkImageFilter> filter(SkImageFilters::Dilate(kRadius, kRadius, nullptr)); |
| |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(kWidth, kHeight); |
| SkCanvas canvas(bitmap); |
| canvas.clear(SK_ColorTRANSPARENT); |
| SkPaint paint; |
| paint.setColor(SK_ColorWHITE); |
| canvas.drawRect(SkRect::MakeXYWH(kWidth / 4, kHeight / 4, kWidth / 2, kHeight / 2), |
| paint); |
| sk_sp<SkImage> image = bitmap.asImage(); |
| sk_sp<SkSpecialImage> imgSrc; |
| if (dContext) { |
| imgSrc = SkSpecialImages::MakeFromTextureImage( |
| dContext, SkIRect::MakeWH(kWidth, kHeight), image, SkSurfaceProps()); |
| } else { |
| imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), image, {}); |
| } |
| |
| SkIPoint offset; |
| skif::Context ctx = make_context(32, 32, imgSrc.get()); |
| |
| sk_sp<SkSpecialImage> normalResult( |
| as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, normalResult); |
| |
| SkMatrix mirrorX; |
| mirrorX.setTranslate(0, SkIntToScalar(32)); |
| mirrorX.preScale(SK_Scalar1, -SK_Scalar1); |
| skif::Context mirrorXCTX = ctx.withNewMapping(skif::Mapping(mirrorX)); |
| |
| sk_sp<SkSpecialImage> mirrorXResult( |
| as_IFB(filter)->filterImage(mirrorXCTX).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, mirrorXResult); |
| |
| SkMatrix mirrorY; |
| mirrorY.setTranslate(SkIntToScalar(32), 0); |
| mirrorY.preScale(-SK_Scalar1, SK_Scalar1); |
| skif::Context mirrorYCTX = ctx.withNewMapping(skif::Mapping(mirrorY)); |
| |
| sk_sp<SkSpecialImage> mirrorYResult( |
| as_IFB(filter)->filterImage(mirrorYCTX).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, mirrorYResult); |
| |
| SkBitmap normalResultBM, mirrorXResultBM, mirrorYResultBM; |
| |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, normalResult.get(), |
| &normalResultBM)); |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorXResult.get(), |
| &mirrorXResultBM)); |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorYResult.get(), |
| &mirrorYResultBM)); |
| |
| for (int y = 0; y < kHeight; y++) { |
| int diffs = memcmp(normalResultBM.getAddr32(0, y), |
| mirrorXResultBM.getAddr32(0, y), |
| normalResultBM.rowBytes()); |
| REPORTER_ASSERT(reporter, !diffs); |
| if (diffs) { |
| break; |
| } |
| diffs = memcmp(normalResultBM.getAddr32(0, y), |
| mirrorYResultBM.getAddr32(0, y), |
| normalResultBM.rowBytes()); |
| REPORTER_ASSERT(reporter, !diffs); |
| if (diffs) { |
| break; |
| } |
| } |
| } |
| |
| DEF_TEST(MorphologyFilterRadiusWithMirrorCTM, reporter) { |
| test_morphology_radius_with_mirror_ctm(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(MorphologyFilterRadiusWithMirrorCTM_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_morphology_radius_with_mirror_ctm(reporter, ctxInfo.directContext()); |
| } |
| |
| static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrDirectContext* dContext) { |
| // Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly. |
| SkIRect cropRect = SkIRect::MakeXYWH(5, 0, 5, 10); |
| sk_sp<SkImageFilter> input(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); |
| sk_sp<SkImageFilter> filter(SkImageFilters::Blur(0, 0, std::move(input), &cropRect)); |
| |
| sk_sp<SkSpecialImage> image = create_empty_special_image(dContext, 10, SkColors::kGreen); |
| |
| SkIPoint offset; |
| skif::Context ctx = make_context(32, 32, image.get()); |
| |
| |
| sk_sp<SkSpecialImage> result(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0); |
| REPORTER_ASSERT(reporter, result); |
| REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10); |
| |
| SkBitmap resultBM; |
| |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); |
| |
| for (int y = 0; y < resultBM.height(); y++) { |
| for (int x = 0; x < resultBM.width(); x++) { |
| bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN; |
| REPORTER_ASSERT(reporter, !diff); |
| if (diff) { |
| break; |
| } |
| } |
| } |
| } |
| |
| DEF_TEST(ImageFilterZeroBlurSigma, reporter) { |
| test_zero_blur_sigma(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_zero_blur_sigma(reporter, ctxInfo.directContext()); |
| } |
| |
| // Tests that, even when an upstream filter has returned null (due to failure or clipping), a |
| // downstream filter that affects transparent black still does so even with a nullptr input. |
| static void test_fail_affects_transparent_black(skiatest::Reporter* reporter, |
| GrDirectContext* dContext) { |
| sk_sp<SkImageFilter> failFilter = SkImageFilters::Empty(); |
| sk_sp<SkSpecialImage> source(create_empty_special_image(dContext, 5)); |
| skif::Context ctx = make_context(1, 1, source.get()); |
| |
| sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); |
| SkASSERT(as_CFB(green)->affectsTransparentBlack()); |
| sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(std::move(green), |
| std::move(failFilter))); |
| SkIPoint offset; |
| sk_sp<SkSpecialImage> result(as_IFB(greenFilter)->filterImage(ctx) |
| .imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, nullptr != result.get()); |
| if (result) { |
| SkBitmap resultBM; |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); |
| REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN); |
| } |
| } |
| |
| DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) { |
| test_fail_affects_transparent_black(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_fail_affects_transparent_black(reporter, ctxInfo.directContext()); |
| } |
| |
| DEF_TEST(ImageFilterDrawTiled, reporter) { |
| // Check that all filters when drawn tiled (with subsequent clip rects) exactly |
| // match the same filters drawn with a single full-canvas bitmap draw. |
| // Tests pass by not asserting. |
| |
| FilterList filters(nullptr); |
| |
| SkBitmap untiledResult, tiledResult; |
| const int width = 64, height = 64; |
| untiledResult.allocN32Pixels(width, height); |
| tiledResult.allocN32Pixels(width, height); |
| SkCanvas tiledCanvas(tiledResult); |
| SkCanvas untiledCanvas(untiledResult); |
| const int tileSize = 8; |
| |
| SkPaint textPaint; |
| textPaint.setColor(SK_ColorWHITE); |
| SkFont font(ToolUtils::DefaultPortableTypeface(), height); |
| |
| const char* text = "ABC"; |
| const SkScalar yPos = SkIntToScalar(height); |
| |
| for (int scale = 1; scale <= 2; ++scale) { |
| for (int i = 0; i < filters.count(); ++i) { |
| SkPaint combinedPaint; |
| combinedPaint.setColor(SK_ColorWHITE); |
| combinedPaint.setImageFilter(sk_ref_sp(filters.getFilter(i))); |
| |
| untiledCanvas.clear(SK_ColorTRANSPARENT); |
| untiledCanvas.save(); |
| untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); |
| untiledCanvas.drawString(text, 0, yPos, font, combinedPaint); |
| untiledCanvas.restore(); |
| |
| tiledCanvas.clear(SK_ColorTRANSPARENT); |
| for (int y = 0; y < height; y += tileSize) { |
| for (int x = 0; x < width; x += tileSize) { |
| tiledCanvas.save(); |
| const SkRect clipRect = SkRect::MakeXYWH(x, y, tileSize, tileSize); |
| tiledCanvas.clipRect(clipRect); |
| if (filters.needsSaveLayer(i)) { |
| tiledCanvas.saveLayer(nullptr, &combinedPaint); |
| tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); |
| tiledCanvas.drawString(text, 0, yPos, font, textPaint); |
| tiledCanvas.restore(); |
| } else { |
| tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); |
| tiledCanvas.drawString(text, 0, yPos, font, combinedPaint); |
| } |
| |
| tiledCanvas.restore(); |
| } |
| } |
| |
| if (!ToolUtils::equal_pixels(untiledResult, tiledResult)) { |
| SkString encoded; |
| SkString errString("Tiled image filter doesn't match untiled reference"); |
| errString.append("\nExpected: "); |
| if (ToolUtils::BitmapToBase64DataURI(untiledResult, &encoded)) { |
| errString.append(encoded); |
| } else { |
| errString.append("failed to encode"); |
| } |
| |
| errString.append("\nActual: "); |
| if (ToolUtils::BitmapToBase64DataURI(tiledResult, &encoded)) { |
| errString.append(encoded); |
| } else { |
| errString.append("failed to encode"); |
| } |
| |
| ERRORF(reporter, "%s\n%s", filters.getName(i), errString.c_str()); |
| } |
| } |
| } |
| } |
| |
| static void draw_saveLayer_picture(int width, int height, int tileSize, |
| SkBBHFactory* factory, SkBitmap* result) { |
| |
| SkMatrix matrix; |
| matrix.setTranslate(SkIntToScalar(50), 0); |
| |
| sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorWHITE, SkBlendMode::kSrc)); |
| sk_sp<SkImageFilter> cfif(SkImageFilters::ColorFilter(std::move(cf), nullptr)); |
| sk_sp<SkImageFilter> imageFilter(SkImageFilters::MatrixTransform(matrix, |
| SkSamplingOptions(), |
| std::move(cfif))); |
| |
| SkPaint paint; |
| paint.setImageFilter(std::move(imageFilter)); |
| SkPictureRecorder recorder; |
| SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50)); |
| SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width), |
| SkIntToScalar(height), |
| factory); |
| recordingCanvas->translate(-55, 0); |
| recordingCanvas->saveLayer(&bounds, &paint); |
| recordingCanvas->restore(); |
| sk_sp<SkPicture> picture1(recorder.finishRecordingAsPicture()); |
| |
| result->allocN32Pixels(width, height); |
| SkCanvas canvas(*result); |
| canvas.clear(0); |
| canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize))); |
| canvas.drawPicture(picture1.get()); |
| } |
| |
| DEF_TEST(ImageFilterDrawMatrixBBH, reporter) { |
| // Check that matrix filter when drawn tiled with BBH exactly |
| // matches the same thing drawn without BBH. |
| // Tests pass by not asserting. |
| |
| const int width = 200, height = 200; |
| const int tileSize = 100; |
| SkBitmap result1, result2; |
| SkRTreeFactory factory; |
| |
| draw_saveLayer_picture(width, height, tileSize, &factory, &result1); |
| draw_saveLayer_picture(width, height, tileSize, nullptr, &result2); |
| |
| for (int y = 0; y < height; y++) { |
| int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); |
| REPORTER_ASSERT(reporter, !diffs); |
| if (diffs) { |
| break; |
| } |
| } |
| } |
| |
| static sk_sp<SkImageFilter> make_blur(sk_sp<SkImageFilter> input) { |
| return SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(input)); |
| } |
| |
| static sk_sp<SkImageFilter> make_drop_shadow(sk_sp<SkImageFilter> input) { |
| return SkImageFilters::DropShadow(100, 100, 10, 10, SK_ColorBLUE, std::move(input)); |
| } |
| |
| DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) { |
| sk_sp<SkImageFilter> filter1(make_blur(nullptr)); |
| sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1))); |
| |
| static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); |
| |
| // For output, the [0,0,100,100] source is expanded to [-3,-3,103,103] by the initial blur. |
| // The drop shadow is translated by [100,100] and further outset by 30px -> [67,67,233,233], |
| // The blend unions the inner blur result with the drop shadow to get [-3,-3,233,233]. |
| static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233); |
| SkIRect outputBounds = filter2->filterBounds(kContentBounds, |
| SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection); |
| REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); |
| |
| // For input, it should be able to restrict itself to the source content. |
| SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, |
| SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, |
| &kContentBounds); |
| |
| REPORTER_ASSERT(reporter, inputBounds == kContentBounds); |
| } |
| |
| DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) { |
| sk_sp<SkImageFilter> filter1(make_drop_shadow(nullptr)); |
| sk_sp<SkImageFilter> filter2(make_blur(std::move(filter1))); |
| |
| static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); |
| // For output, the [0,0,100,100] source is translated by 100px and outset by 30px for the drop |
| // shadow = [70,70,230,230], then blended back with its original to get [0,0,230,230]. This is |
| // then outset by 3px for the outer blur to get [-3,-3,233,233]. |
| static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233); |
| SkIRect outputBounds = filter2->filterBounds(kContentBounds, |
| SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection); |
| REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); |
| |
| // For input, it should be able to restrict itself to the source content. |
| SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, |
| SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, |
| &kContentBounds); |
| REPORTER_ASSERT(reporter, inputBounds == kContentBounds); |
| } |
| |
| DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) { |
| sk_sp<SkImageFilter> filter1(SkImageFilters::Dilate(2, 2, nullptr)); |
| sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1))); |
| |
| static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100); |
| // For output, the [0,0,100,100] source is outset by dilate radius (2px) to [-2,-2,102,102]. |
| // This is then translated by 100px and outset by 30px for the drop shadow = [68,68,232,232]. |
| // Finally this is joined with the original dilate result to get [-2,-2,232,232]. |
| static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-2, -2, 232, 232); |
| SkIRect outputBounds = filter2->filterBounds(kContentBounds, |
| SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection); |
| REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds); |
| |
| // For input, it should be able to restrict itself to the source content. |
| SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds, |
| SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, |
| &kContentBounds); |
| REPORTER_ASSERT(reporter, inputBounds == kContentBounds); |
| } |
| |
| DEF_TEST(ImageFilterScaledBlurRadius, reporter) { |
| // Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow |
| // (before the CTM). Bounds should be computed correctly in the presence of |
| // a (possibly negative) scale. |
| sk_sp<SkImageFilter> blur(make_blur(nullptr)); |
| sk_sp<SkImageFilter> dropShadow(make_drop_shadow(nullptr)); |
| { |
| // Uniform scale by 2. |
| SkMatrix scaleMatrix; |
| scaleMatrix.setScale(2, 2); |
| static const SkIRect kBounds = SkIRect::MakeLTRB(0, 0, 200, 200); |
| |
| static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206); |
| SkIRect blurBounds = blur->filterBounds( |
| kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds); |
| SkIRect reverseBlurBounds = blur->filterBounds( |
| kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); |
| REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds); |
| |
| static const SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460); |
| SkIRect shadowBounds = dropShadow->filterBounds( |
| kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds); |
| |
| SkIRect reverseShadowBounds = dropShadow->filterBounds( |
| kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); |
| REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds); |
| } |
| { |
| // Vertical flip. |
| SkMatrix scaleMatrix; |
| scaleMatrix.setScale(1, -1); |
| static const SkIRect kBounds = SkIRect::MakeLTRB(0, -100, 100, 0); |
| |
| static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3); |
| SkIRect blurBounds = blur->filterBounds( |
| kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds); |
| SkIRect reverseBlurBounds = blur->filterBounds( |
| kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); |
| REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds); |
| |
| SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0); |
| SkIRect shadowBounds = dropShadow->filterBounds( |
| kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds); |
| SkIRect reverseShadowBounds = dropShadow->filterBounds( |
| kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds); |
| REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds); |
| } |
| } |
| |
| DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) { |
| sk_sp<SkImageFilter> filter1(make_blur(nullptr)); |
| sk_sp<SkImageFilter> filter2(make_blur(nullptr)); |
| sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(filter1), |
| std::move(filter2))); |
| |
| static const SkRect kBoundsSrc = SkRect::MakeIWH(100, 100); |
| static const SkRect kExpectedBounds = SkRect::MakeXYWH(-6, -6, 112, 112); |
| SkRect boundsDst = composedFilter->computeFastBounds(kBoundsSrc); |
| |
| REPORTER_ASSERT(reporter, boundsDst == kExpectedBounds); |
| } |
| |
| DEF_TEST(ImageFilterUnionBounds, reporter) { |
| sk_sp<SkImageFilter> offset(SkImageFilters::Offset(50, 0, nullptr)); |
| // Regardless of which order they appear in, the image filter bounds should |
| // be combined correctly. |
| { |
| sk_sp<SkImageFilter> composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, offset)); |
| SkRect bounds = SkRect::MakeIWH(100, 100); |
| // Intentionally aliasing here, as that's what the real callers do. |
| bounds = composite->computeFastBounds(bounds); |
| REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); |
| } |
| { |
| sk_sp<SkImageFilter> composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr, |
| offset, nullptr)); |
| SkRect bounds = SkRect::MakeIWH(100, 100); |
| // Intentionally aliasing here, as that's what the real callers do. |
| bounds = composite->computeFastBounds(bounds); |
| REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100)); |
| } |
| } |
| |
| static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter, |
| GrRecordingContext* rContext) { |
| SkBitmap greenBM; |
| greenBM.allocN32Pixels(20, 20); |
| greenBM.eraseColor(SK_ColorGREEN); |
| sk_sp<SkImage> greenImage(greenBM.asImage()); |
| sk_sp<SkImageFilter> source(SkImageFilters::Image(std::move(greenImage), {})); |
| sk_sp<SkImageFilter> merge(SkImageFilters::Merge(source, source)); |
| |
| sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 1)); |
| |
| skif::Context ctx = make_context(100, 100, srcImg.get()); |
| SkIPoint offset; |
| |
| sk_sp<SkSpecialImage> resultImg(as_IFB(merge)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, resultImg); |
| |
| REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20); |
| } |
| |
| DEF_TEST(ImageFilterMergeResultSize, reporter) { |
| test_imagefilter_merge_result_size(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_imagefilter_merge_result_size(reporter, ctxInfo.directContext()); |
| } |
| |
| static void draw_blurred_rect(SkCanvas* canvas) { |
| SkPaint filterPaint; |
| filterPaint.setColor(SK_ColorWHITE); |
| filterPaint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(8), 0, nullptr)); |
| canvas->saveLayer(nullptr, &filterPaint); |
| SkPaint whitePaint; |
| whitePaint.setColor(SK_ColorWHITE); |
| canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint); |
| canvas->restore(); |
| } |
| |
| static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) { |
| canvas->save(); |
| canvas->clipRect(clipRect); |
| canvas->drawPicture(picture); |
| canvas->restore(); |
| } |
| |
| DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) { |
| // Check that the blur filter when recorded with RTree acceleration, |
| // and drawn tiled (with subsequent clip rects) exactly |
| // matches the same filter drawn with without RTree acceleration. |
| // This tests that the "bleed" from the blur into the otherwise-blank |
| // tiles is correctly rendered. |
| // Tests pass by not asserting. |
| |
| int width = 16, height = 8; |
| SkBitmap result1, result2; |
| result1.allocN32Pixels(width, height); |
| result2.allocN32Pixels(width, height); |
| SkCanvas canvas1(result1); |
| SkCanvas canvas2(result2); |
| int tileSize = 8; |
| |
| canvas1.clear(0); |
| canvas2.clear(0); |
| |
| SkRTreeFactory factory; |
| |
| SkPictureRecorder recorder1, recorder2; |
| // The only difference between these two pictures is that one has RTree aceleration. |
| SkCanvas* recordingCanvas1 = recorder1.beginRecording(width, height); |
| SkCanvas* recordingCanvas2 = recorder2.beginRecording(width, height, &factory); |
| |
| draw_blurred_rect(recordingCanvas1); |
| draw_blurred_rect(recordingCanvas2); |
| sk_sp<SkPicture> picture1(recorder1.finishRecordingAsPicture()); |
| sk_sp<SkPicture> picture2(recorder2.finishRecordingAsPicture()); |
| for (int y = 0; y < height; y += tileSize) { |
| for (int x = 0; x < width; x += tileSize) { |
| SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)); |
| draw_picture_clipped(&canvas1, tileRect, picture1.get()); |
| draw_picture_clipped(&canvas2, tileRect, picture2.get()); |
| } |
| } |
| for (int y = 0; y < height; y++) { |
| int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); |
| REPORTER_ASSERT(reporter, !diffs); |
| if (diffs) { |
| break; |
| } |
| } |
| } |
| |
| DEF_TEST(ImageFilterMatrixConvolution, reporter) { |
| // Check that a 1x3 filter does not cause a spurious assert. |
| SkScalar kernel[3] = { |
| SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), |
| }; |
| SkISize kernelSize = SkISize::Make(1, 3); |
| SkScalar gain = SK_Scalar1, bias = 0; |
| SkIPoint kernelOffset = SkIPoint::Make(0, 0); |
| |
| sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution( |
| kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr)); |
| |
| SkBitmap result; |
| int width = 16, height = 16; |
| result.allocN32Pixels(width, height); |
| SkCanvas canvas(result); |
| canvas.clear(0); |
| |
| SkPaint paint; |
| paint.setImageFilter(std::move(filter)); |
| SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); |
| canvas.drawRect(rect, paint); |
| } |
| |
| DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) { |
| // Check that a filter with borders outside the target bounds |
| // does not crash. |
| SkScalar kernel[3] = { |
| 0, 0, 0, |
| }; |
| SkISize kernelSize = SkISize::Make(3, 1); |
| SkScalar gain = SK_Scalar1, bias = 0; |
| SkIPoint kernelOffset = SkIPoint::Make(2, 0); |
| |
| sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution( |
| kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr)); |
| |
| SkBitmap result; |
| |
| int width = 10, height = 10; |
| result.allocN32Pixels(width, height); |
| SkCanvas canvas(result); |
| canvas.clear(0); |
| |
| SkPaint filterPaint; |
| filterPaint.setImageFilter(std::move(filter)); |
| SkRect bounds = SkRect::MakeIWH(1, 10); |
| SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); |
| SkPaint rectPaint; |
| canvas.saveLayer(&bounds, &filterPaint); |
| canvas.drawRect(rect, rectPaint); |
| canvas.restore(); |
| } |
| |
| static void test_big_kernel(skiatest::Reporter* reporter, GrRecordingContext* rContext) { |
| // Check that a kernel that is too big for the GPU still works |
| SkScalar identityKernel[49] = { |
| 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 1, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0 |
| }; |
| SkISize kernelSize = SkISize::Make(7, 7); |
| SkScalar gain = SK_Scalar1, bias = 0; |
| SkIPoint kernelOffset = SkIPoint::Make(0, 0); |
| |
| sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution( |
| kernelSize, identityKernel, gain, bias, kernelOffset, |
| SkTileMode::kClamp, true, nullptr)); |
| |
| sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100)); |
| SkASSERT(srcImg); |
| |
| SkIPoint offset; |
| skif::Context ctx = make_context(100, 100, srcImg.get()); |
| sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, resultImg); |
| REPORTER_ASSERT(reporter, SkToBool(rContext) == resultImg->isGaneshBacked()); |
| REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100); |
| REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0); |
| } |
| |
| DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) { |
| test_big_kernel(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_big_kernel(reporter, ctxInfo.directContext()); |
| } |
| |
| DEF_TEST(ImageFilterCropRect, reporter) { |
| test_cropRects(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_cropRects(reporter, ctxInfo.directContext()); |
| } |
| |
| DEF_TEST(ImageFilterMatrix, reporter) { |
| SkBitmap temp; |
| temp.allocN32Pixels(100, 100); |
| SkCanvas canvas(temp); |
| canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); |
| |
| SkMatrix expectedMatrix = canvas.getTotalMatrix(); |
| |
| SkRTreeFactory factory; |
| SkPictureRecorder recorder; |
| SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory); |
| |
| SkPaint paint; |
| paint.setImageFilter(sk_sp<SkImageFilter>(new MatrixTestImageFilter(reporter, expectedMatrix))); |
| recordingCanvas->saveLayer(nullptr, &paint); |
| SkPaint solidPaint; |
| solidPaint.setColor(0xFFFFFFFF); |
| recordingCanvas->save(); |
| recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); |
| recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); |
| recordingCanvas->restore(); // scale |
| recordingCanvas->restore(); // saveLayer |
| |
| canvas.drawPicture(recorder.finishRecordingAsPicture()); |
| } |
| |
| static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter, |
| GrRecordingContext* rContext) { |
| sk_sp<SkPicture> picture; |
| |
| { |
| SkRTreeFactory factory; |
| SkPictureRecorder recorder; |
| SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory); |
| |
| // Create an SkPicture which simply draws a green 1x1 rectangle. |
| SkPaint greenPaint; |
| greenPaint.setColor(SK_ColorGREEN); |
| recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); |
| picture = recorder.finishRecordingAsPicture(); |
| } |
| |
| sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 2)); |
| |
| sk_sp<SkImageFilter> imageFilter(SkImageFilters::Picture(picture)); |
| |
| SkIPoint offset; |
| skif::Context ctx = make_context(SkIRect::MakeXYWH(1,1,1,1), srcImg.get()); |
| |
| sk_sp<SkSpecialImage> resultImage( |
| as_IFB(imageFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, !resultImage); |
| } |
| |
| DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) { |
| test_clipped_picture_imagefilter(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_clipped_picture_imagefilter(reporter, ctxInfo.directContext()); |
| } |
| |
| DEF_TEST(ImageFilterEmptySaveLayer, reporter) { |
| // Even when there's an empty saveLayer()/restore(), ensure that an image |
| // filter or color filter which affects transparent black still draws. |
| |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(10, 10); |
| SkCanvas canvas(bitmap); |
| |
| SkRTreeFactory factory; |
| SkPictureRecorder recorder; |
| |
| sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc)); |
| sk_sp<SkImageFilter> imageFilter(SkImageFilters::ColorFilter(green, nullptr)); |
| SkPaint imageFilterPaint; |
| imageFilterPaint.setImageFilter(std::move(imageFilter)); |
| SkPaint colorFilterPaint; |
| colorFilterPaint.setColorFilter(green); |
| |
| SkRect bounds = SkRect::MakeIWH(10, 10); |
| |
| SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory); |
| recordingCanvas->saveLayer(&bounds, &imageFilterPaint); |
| recordingCanvas->restore(); |
| sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); |
| |
| canvas.clear(0); |
| canvas.drawPicture(picture); |
| uint32_t pixel = *bitmap.getAddr32(0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| |
| recordingCanvas = recorder.beginRecording(10, 10, &factory); |
| recordingCanvas->saveLayer(nullptr, &imageFilterPaint); |
| recordingCanvas->restore(); |
| sk_sp<SkPicture> picture2(recorder.finishRecordingAsPicture()); |
| |
| canvas.clear(0); |
| canvas.drawPicture(picture2); |
| pixel = *bitmap.getAddr32(0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| |
| recordingCanvas = recorder.beginRecording(10, 10, &factory); |
| recordingCanvas->saveLayer(&bounds, &colorFilterPaint); |
| recordingCanvas->restore(); |
| sk_sp<SkPicture> picture3(recorder.finishRecordingAsPicture()); |
| |
| canvas.clear(0); |
| canvas.drawPicture(picture3); |
| pixel = *bitmap.getAddr32(0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| } |
| |
| static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) { |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(100, 100); |
| bitmap.eraseARGB(0, 0, 0, 0); |
| |
| // Check that a blur with a very large radius does not crash or assert. |
| SkPaint paint; |
| paint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr)); |
| canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); |
| } |
| |
| DEF_TEST(HugeBlurImageFilter, reporter) { |
| SkBitmap temp; |
| temp.allocN32Pixels(100, 100); |
| SkCanvas canvas(temp); |
| test_huge_blur(&canvas, reporter); |
| } |
| |
| DEF_TEST(ImageFilterMatrixConvolutionTest, reporter) { |
| SkScalar kernel[1] = { 0 }; |
| SkScalar gain = SK_Scalar1, bias = 0; |
| SkIPoint kernelOffset = SkIPoint::Make(1, 1); |
| |
| // Check that an enormous (non-allocatable) kernel gives a nullptr filter. |
| sk_sp<SkImageFilter> conv(SkImageFilters::MatrixConvolution( |
| SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset, |
| SkTileMode::kRepeat, false, nullptr)); |
| |
| REPORTER_ASSERT(reporter, nullptr == conv.get()); |
| |
| // Check that a nullptr kernel gives a nullptr filter. |
| conv = SkImageFilters::MatrixConvolution( |
| SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset, |
| SkTileMode::kRepeat, false, nullptr); |
| |
| REPORTER_ASSERT(reporter, nullptr == conv.get()); |
| |
| // Check that a kernel width < 1 gives a nullptr filter. |
| conv = SkImageFilters::MatrixConvolution( |
| SkISize::Make(0, 1), kernel, gain, bias, kernelOffset, |
| SkTileMode::kRepeat, false, nullptr); |
| |
| REPORTER_ASSERT(reporter, nullptr == conv.get()); |
| |
| // Check that kernel height < 1 gives a nullptr filter. |
| conv = SkImageFilters::MatrixConvolution( |
| SkISize::Make(1, -1), kernel, gain, bias, kernelOffset, |
| SkTileMode::kRepeat, false, nullptr); |
| |
| REPORTER_ASSERT(reporter, nullptr == conv.get()); |
| } |
| |
| static void test_xfermode_cropped_input(SkSurface* surf, skiatest::Reporter* reporter) { |
| auto canvas = surf->getCanvas(); |
| canvas->clear(SK_ColorRED); |
| |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(1, 1); |
| bitmap.eraseARGB(255, 255, 255, 255); |
| |
| sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrcIn)); |
| sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(green, nullptr)); |
| SkIRect cropRect = SkIRect::MakeEmpty(); |
| sk_sp<SkImageFilter> croppedOut(SkImageFilters::ColorFilter(green, nullptr, &cropRect)); |
| |
| // Check that an blend image filter whose input has been cropped out still draws the other |
| // input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning. |
| SkBlendMode mode = SkBlendMode::kSrcOver; |
| sk_sp<SkImageFilter> xfermodeNoFg(SkImageFilters::Blend( |
| mode, greenFilter, croppedOut, nullptr)); |
| sk_sp<SkImageFilter> xfermodeNoBg(SkImageFilters::Blend( |
| mode, croppedOut, greenFilter, nullptr)); |
| sk_sp<SkImageFilter> xfermodeNoFgNoBg(SkImageFilters::Blend( |
| mode, croppedOut, croppedOut, nullptr)); |
| |
| SkPaint paint; |
| paint.setImageFilter(std::move(xfermodeNoFg)); |
| canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite |
| |
| // xfermodeNoFg is a src-over blend between a green image and a transparent black image, |
| // so should just be green. |
| uint32_t pixel; |
| SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); |
| surf->readPixels(info, &pixel, 4, 0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| |
| // xfermodeNoBg is the reverse of the above, but because it's src-over the final blend |
| // between transparent black and green is still green. |
| canvas->clear(SK_ColorRED); // should be overwritten |
| paint.setImageFilter(std::move(xfermodeNoBg)); |
| canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite |
| surf->readPixels(info, &pixel, 4, 0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| |
| // xfermodeNoFgNoBg is a src-over blend of two empty images, so should produce no change |
| // to the image. |
| canvas->clear(SK_ColorRED); // should not be overwritten |
| paint.setImageFilter(std::move(xfermodeNoFgNoBg)); |
| canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite |
| surf->readPixels(info, &pixel, 4, 0, 0); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorRED); |
| } |
| |
| DEF_TEST(ImageFilterNestedSaveLayer, reporter) { |
| SkBitmap temp; |
| temp.allocN32Pixels(50, 50); |
| SkCanvas canvas(temp); |
| canvas.clear(0x0); |
| |
| SkBitmap bitmap; |
| bitmap.allocN32Pixels(10, 10); |
| bitmap.eraseColor(SK_ColorGREEN); |
| |
| SkMatrix matrix; |
| matrix.setScale(SkIntToScalar(2), SkIntToScalar(2)); |
| matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20)); |
| sk_sp<SkImageFilter> matrixFilter( |
| SkImageFilters::MatrixTransform(matrix, SkSamplingOptions(SkFilterMode::kLinear), nullptr)); |
| |
| // Test that saveLayer() with a filter nested inside another saveLayer() applies the |
| // correct offset to the filter matrix. |
| SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30); |
| canvas.saveLayer(&bounds1, nullptr); |
| SkPaint filterPaint; |
| filterPaint.setImageFilter(std::move(matrixFilter)); |
| SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10); |
| canvas.saveLayer(&bounds2, &filterPaint); |
| SkPaint greenPaint; |
| greenPaint.setColor(SK_ColorGREEN); |
| canvas.drawRect(bounds2, greenPaint); |
| canvas.restore(); |
| canvas.restore(); |
| SkPaint strokePaint; |
| strokePaint.setStyle(SkPaint::kStroke_Style); |
| strokePaint.setColor(SK_ColorRED); |
| |
| SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); |
| uint32_t pixel; |
| temp.readPixels(info, &pixel, 4, 25, 25); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| |
| // Test that drawSprite() with a filter nested inside a saveLayer() applies the |
| // correct offset to the filter matrix. |
| canvas.clear(0x0); |
| temp.readPixels(info, &pixel, 4, 25, 25); |
| canvas.saveLayer(&bounds1, nullptr); |
| canvas.drawImage(bitmap.asImage(), 20, 20, SkSamplingOptions(), &filterPaint); // drawSprite |
| canvas.restore(); |
| |
| temp.readPixels(info, &pixel, 4, 25, 25); |
| REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); |
| } |
| |
| DEF_TEST(XfermodeImageFilterCroppedInput, reporter) { |
| test_xfermode_cropped_input(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100)).get(), |
| reporter); |
| } |
| |
| static void test_composed_imagefilter_offset(skiatest::Reporter* reporter, |
| GrRecordingContext* rContext) { |
| sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100)); |
| |
| SkIRect cropRect = SkIRect::MakeXYWH(1, 0, 20, 20); |
| sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(0, 0, nullptr, &cropRect)); |
| sk_sp<SkImageFilter> blurFilter(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, |
| nullptr, &cropRect)); |
| sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(blurFilter), |
| std::move(offsetFilter))); |
| SkIPoint offset; |
| skif::Context ctx = make_context(100, 100, srcImg.get()); |
| |
| sk_sp<SkSpecialImage> resultImg( |
| as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, resultImg); |
| REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0); |
| } |
| |
| DEF_TEST(ComposedImageFilterOffset, reporter) { |
| test_composed_imagefilter_offset(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_composed_imagefilter_offset(reporter, ctxInfo.directContext()); |
| } |
| |
| static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter, |
| GrDirectContext* dContext) { |
| // The bounds passed to the inner filter must be filtered by the outer |
| // filter, so that the inner filter produces the pixels that the outer |
| // filter requires as input. This matters if the outer filter moves pixels. |
| // Here, accounting for the outer offset is necessary so that the green |
| // pixels of the picture are not clipped. |
| |
| SkPictureRecorder recorder; |
| SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeIWH(200, 100)); |
| recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100)); |
| recordingCanvas->clear(SK_ColorGREEN); |
| sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); |
| sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(picture)); |
| SkIRect cropRect = SkIRect::MakeWH(100, 100); |
| sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(-100, 0, nullptr, &cropRect)); |
| sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(offsetFilter), |
| std::move(pictureFilter))); |
| |
| sk_sp<SkSpecialImage> sourceImage(create_empty_special_image(dContext, 100)); |
| skif::Context ctx = make_context(100, 100, sourceImage.get()); |
| |
| SkIPoint offset; |
| sk_sp<SkSpecialImage> result( |
| as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset)); |
| REPORTER_ASSERT(reporter, offset.isZero()); |
| REPORTER_ASSERT(reporter, result); |
| REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100)); |
| |
| SkBitmap resultBM; |
| REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM)); |
| REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN); |
| } |
| |
| DEF_TEST(ComposedImageFilterBounds, reporter) { |
| test_composed_imagefilter_bounds(reporter, nullptr); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| test_composed_imagefilter_bounds(reporter, ctxInfo.directContext()); |
| } |
| |
| DEF_TEST(ImageFilterCanComputeFastBounds, reporter) { |
| |
| { |
| SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); |
| sk_sp<SkImageFilter> lighting(SkImageFilters::PointLitDiffuse( |
| location, SK_ColorGREEN, 0, 0, nullptr)); |
| REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds()); |
| } |
| |
| { |
| sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr)); |
| REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); |
| { |
| SkColorFilter* grayCF; |
| REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF)); |
| REPORTER_ASSERT(reporter, !as_CFB(grayCF)->affectsTransparentBlack()); |
| grayCF->unref(); |
| } |
| REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); |
| |
| sk_sp<SkImageFilter> grayBlur(SkImageFilters::Blur( |
| SK_Scalar1, SK_Scalar1, std::move(gray))); |
| REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds()); |
| } |
| |
| { |
| float greenMatrix[20] = { 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 1.0f/255, |
| 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 1.0f/255 |
| }; |
| sk_sp<SkColorFilter> greenCF(SkColorFilters::Matrix(greenMatrix)); |
| sk_sp<SkImageFilter> green(SkImageFilters::ColorFilter(greenCF, nullptr)); |
| |
| REPORTER_ASSERT(reporter, as_CFB(greenCF)->affectsTransparentBlack()); |
| REPORTER_ASSERT(reporter, !green->canComputeFastBounds()); |
| |
| sk_sp<SkImageFilter> greenBlur(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, |
| std::move(green))); |
| REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds()); |
| } |
| |
| uint8_t allOne[256], identity[256]; |
| for (int i = 0; i < 256; ++i) { |
| identity[i] = i; |
| allOne[i] = 255; |
| } |
| |
| sk_sp<SkColorFilter> identityCF(SkColorFilters::TableARGB(identity, identity, |
| identity, allOne)); |
| sk_sp<SkImageFilter> identityFilter(SkImageFilters::ColorFilter(identityCF, nullptr)); |
| REPORTER_ASSERT(reporter, !as_CFB(identityCF)->affectsTransparentBlack()); |
| REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds()); |
| |
| sk_sp<SkColorFilter> forceOpaqueCF(SkColorFilters::TableARGB(allOne, identity, |
| identity, identity)); |
| sk_sp<SkImageFilter> forceOpaque(SkImageFilters::ColorFilter(forceOpaqueCF, nullptr)); |
| REPORTER_ASSERT(reporter, as_CFB(forceOpaqueCF)->affectsTransparentBlack()); |
| REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds()); |
| } |
| |
| // Verify that SkImageSource survives serialization |
| DEF_TEST(ImageFilterImageSourceSerialization, reporter) { |
| auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(10, 10))); |
| surface->getCanvas()->clear(SK_ColorGREEN); |
| sk_sp<SkImage> image(surface->makeImageSnapshot()); |
| sk_sp<SkImageFilter> filter(SkImageFilters::Image(std::move(image), SkFilterMode::kNearest)); |
| |
| SkSerialProcs sProcs; |
| sProcs.fImageProc = [](SkImage* img, void*) -> sk_sp<SkData> { |
| return SkPngEncoder::Encode(as_IB(img)->directContext(), img, SkPngEncoder::Options{}); |
| }; |
| sk_sp<SkData> data(filter->serialize(&sProcs)); |
| sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); |
| REPORTER_ASSERT(reporter, unflattenedFilter); |
| |
| SkBitmap bm; |
| bm.allocN32Pixels(10, 10); |
| bm.eraseColor(SK_ColorBLUE); |
| SkPaint paint; |
| paint.setColor(SK_ColorRED); |
| paint.setImageFilter(unflattenedFilter); |
| |
| SkCanvas canvas(bm); |
| canvas.drawRect(SkRect::MakeIWH(10, 10), paint); |
| REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN)); |
| } |
| |
| DEF_TEST(ImageFilterImageSourceUninitialized, r) { |
| sk_sp<SkData> data(GetResourceAsData("crbug769134.fil")); |
| if (!data) { |
| return; |
| } |
| sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size()); |
| // This will fail. More importantly, msan will verify that we did not |
| // compare against uninitialized memory. |
| REPORTER_ASSERT(r, !unflattenedFilter); |
| } |
| |
| static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) { |
| SkBitmap largeBmp; |
| int largeW = 5000; |
| int largeH = 5000; |
| // If we're GPU-backed make the bitmap too large to be converted into a texture. |
| if (auto ctx = canvas->recordingContext()) { |
| largeW = ctx->priv().caps()->maxTextureSize() + 1; |
| } |
| |
| largeBmp.allocN32Pixels(largeW, largeH); |
| largeBmp.eraseColor(0); |
| if (!largeBmp.getPixels()) { |
| ERRORF(reporter, "Failed to allocate large bmp."); |
| return; |
| } |
| |
| sk_sp<SkImage> largeImage(largeBmp.asImage()); |
| if (!largeImage) { |
| ERRORF(reporter, "Failed to create large image."); |
| return; |
| } |
| |
| sk_sp<SkImageFilter> largeSource(SkImageFilters::Image(std::move(largeImage), {})); |
| if (!largeSource) { |
| ERRORF(reporter, "Failed to create large SkImageSource."); |
| return; |
| } |
| |
| sk_sp<SkImageFilter> blur(SkImageFilters::Blur(10.f, 10.f, std::move(largeSource))); |
| if (!blur) { |
| ERRORF(reporter, "Failed to create SkBlurImageFilter."); |
| return; |
| } |
| |
| SkPaint paint; |
| paint.setImageFilter(std::move(blur)); |
| |
| // This should not crash (http://crbug.com/570479). |
| canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint); |
| } |
| |
| DEF_TEST(ImageFilterBlurLargeImage, reporter) { |
| auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100))); |
| test_large_blur_input(reporter, surface->getCanvas()); |
| } |
| |
| static void test_make_with_filter( |
| skiatest::Reporter* reporter, |
| const std::function<sk_sp<SkSurface>(int width, int height)>& createSurface, |
| const std::function<sk_sp<SkImage>(sk_sp<SkImage> src, |
| const SkImageFilter* filter, |
| const SkIRect& subset, |
| const SkIRect& clipBounds, |
| SkIRect* outSubset, |
| SkIPoint* offset)>& makeWithFilter) { |
| sk_sp<SkSurface> surface(createSurface(192, 128)); |
| surface->getCanvas()->clear(SK_ColorRED); |
| SkPaint bluePaint; |
| bluePaint.setColor(SK_ColorBLUE); |
| SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50); |
| surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint); |
| sk_sp<SkImage> sourceImage = surface->makeImageSnapshot(); |
| |
| sk_sp<SkImageFilter> filter = make_grayscale(nullptr, nullptr); |
| SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100); |
| SkIRect outSubset; |
| SkIPoint offset; |
| sk_sp<SkImage> result; |
| |
| result = makeWithFilter(sourceImage, nullptr, subset, clipBounds, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, !result); // filter is required |
| |
| result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, nullptr, &offset); |
| REPORTER_ASSERT(reporter, !result); // outSubset is required |
| |
| result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, nullptr); |
| REPORTER_ASSERT(reporter, !result); // offset is required |
| |
| SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000); |
| result = makeWithFilter(sourceImage, filter.get(), bigSubset, clipBounds, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, !result); // subset needs to be w/in source's bounds |
| |
| const SkIRect kEmpty = SkIRect::MakeEmpty(); |
| result = makeWithFilter(sourceImage, filter.get(), kEmpty, clipBounds, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, !result); // subset can't be empty |
| |
| result = makeWithFilter(sourceImage, filter.get(), subset, kEmpty, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, !result); // clipBounds can't be empty |
| |
| const SkIRect kLeftField = SkIRect::MakeXYWH(-1000, 0, 100, 100); |
| result = makeWithFilter(sourceImage, filter.get(), subset, kLeftField, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, !result); |
| |
| result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset); |
| |
| REPORTER_ASSERT(reporter, result); |
| REPORTER_ASSERT(reporter, result->bounds().contains(outSubset)); |
| SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(), |
| outSubset.width(), outSubset.height()); |
| REPORTER_ASSERT(reporter, clipBounds.contains(destRect)); |
| |
| // In GPU-mode, this case creates a special image with a backing size that differs from |
| // the content size |
| { |
| clipBounds.setXYWH(0, 0, 170, 100); |
| subset.setXYWH(0, 0, 160, 90); |
| |
| filter = SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr); |
| result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset); |
| REPORTER_ASSERT(reporter, result); |
| |
| // In Ganesh, we want the result image (and all intermediate steps) to have used the same |
| // origin as the original surface. |
| if (result && as_IB(result)->isGaneshBacked()) { |
| SkImage_GaneshBase* base = static_cast<SkImage_GaneshBase*>(result.get()); |
| REPORTER_ASSERT(reporter, base->origin() == kTestSurfaceOrigin); |
| } |
| } |
| } |
| |
| DEF_TEST(ImageFilterMakeWithFilter, reporter) { |
| auto createRasterSurface = [](int width, int height) -> sk_sp<SkSurface> { |
| const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); |
| return SkSurfaces::Raster(info); |
| }; |
| |
| auto raster = [](sk_sp<SkImage> src, |
| const SkImageFilter* filter, |
| const SkIRect& subset, |
| const SkIRect& clipBounds, |
| SkIRect* outSubset, |
| SkIPoint* offset) -> sk_sp<SkImage> { |
| return SkImages::MakeWithFilter(std::move(src), |
| filter, |
| subset, |
| clipBounds, |
| outSubset, |
| offset); |
| }; |
| |
| test_make_with_filter(reporter, createRasterSurface, raster); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Ganesh, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| GrRecordingContext* rContext = ctxInfo.directContext(); |
| |
| auto createGaneshSurface = [rContext](int width, int height) -> sk_sp<SkSurface> { |
| const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); |
| return SkSurfaces::RenderTarget( |
| rContext, skgpu::Budgeted::kNo, info, 0, kTestSurfaceOrigin, nullptr); |
| }; |
| |
| auto ganesh = [rContext](sk_sp<SkImage> src, |
| const SkImageFilter* filter, |
| const SkIRect& subset, |
| const SkIRect& clipBounds, |
| SkIRect* outSubset, |
| SkIPoint* offset) -> sk_sp<SkImage> { |
| return SkImages::MakeWithFilter(rContext, |
| std::move(src), |
| filter, |
| subset, |
| clipBounds, |
| outSubset, |
| offset); |
| }; |
| |
| test_make_with_filter(reporter, createGaneshSurface, ganesh); |
| } |
| |
| #if defined(SK_GRAPHITE) |
| |
| DEF_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Graphite, |
| reporter, |
| context, |
| CtsEnforcement::kNextRelease) { |
| std::unique_ptr<skgpu::graphite::Recorder> recorder = |
| context->makeRecorder(ToolUtils::CreateTestingRecorderOptions()); |
| |
| auto createGraphiteSurface = [r = recorder.get()](int width, int height) -> sk_sp<SkSurface> { |
| const SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType); |
| return SkSurfaces::RenderTarget(r, info); |
| }; |
| |
| auto graphite = [r = recorder.get()](sk_sp<SkImage> src, |
| const SkImageFilter* filter, |
| const SkIRect& subset, |
| const SkIRect& clipBounds, |
| SkIRect* outSubset, |
| SkIPoint* offset) -> sk_sp<SkImage> { |
| return SkImages::MakeWithFilter(r, |
| std::move(src), |
| filter, |
| subset, |
| clipBounds, |
| outSubset, |
| offset); |
| }; |
| |
| test_make_with_filter(reporter, createGraphiteSurface, graphite); |
| } |
| |
| #endif |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| sk_sp<SkSurface> surf(SkSurfaces::RenderTarget( |
| ctxInfo.directContext(), skgpu::Budgeted::kNo, SkImageInfo::MakeN32Premul(100, 100))); |
| |
| SkCanvas* canvas = surf->getCanvas(); |
| |
| test_huge_blur(canvas, reporter); |
| } |
| |
| DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| sk_sp<SkSurface> surf(SkSurfaces::RenderTarget( |
| ctxInfo.directContext(), |
| skgpu::Budgeted::kNo, |
| SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); |
| |
| test_xfermode_cropped_input(surf.get(), reporter); |
| } |
| |
| DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu, |
| reporter, |
| ctxInfo, |
| CtsEnforcement::kNever) { |
| auto surface(SkSurfaces::RenderTarget( |
| ctxInfo.directContext(), |
| skgpu::Budgeted::kYes, |
| SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType))); |
| test_large_blur_input(reporter, surface->getCanvas()); |
| } |
| |
| /* |
| * Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more |
| * than just scale/translate, but that other filters do. |
| */ |
| DEF_TEST(ImageFilterComplexCTM, reporter) { |
| // just need a colorfilter to exercise the corresponding imagefilter |
| sk_sp<SkColorFilter> cf = SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcATop); |
| sk_sp<SkImageFilter> cfif = SkImageFilters::ColorFilter(cf, nullptr); // can handle |
| sk_sp<SkImageFilter> blif = SkImageFilters::Blur(3, 3, nullptr); // cannot handle |
| using MatrixCapability = SkImageFilter_Base::MatrixCapability; |
| |
| struct { |
| sk_sp<SkImageFilter> fFilter; |
| MatrixCapability fExpectCapability; |
| } recs[] = { |
| { cfif, MatrixCapability::kComplex }, |
| { SkImageFilters::ColorFilter(cf, cfif), MatrixCapability::kComplex }, |
| { SkImageFilters::Merge(cfif, cfif), MatrixCapability::kComplex }, |
| { SkImageFilters::Compose(cfif, cfif), MatrixCapability::kComplex }, |
| |
| { blif, MatrixCapability::kScaleTranslate }, |
| { SkImageFilters::Blur(3, 3, cfif), MatrixCapability::kScaleTranslate }, |
| { SkImageFilters::ColorFilter(cf, blif), MatrixCapability::kScaleTranslate }, |
| { SkImageFilters::Merge(cfif, blif), MatrixCapability::kScaleTranslate }, |
| { SkImageFilters::Compose(blif, cfif), MatrixCapability::kScaleTranslate }, |
| }; |
| |
| for (const auto& rec : recs) { |
| const MatrixCapability capability = as_IFB(rec.fFilter)->getCTMCapability(); |
| REPORTER_ASSERT(reporter, capability == rec.fExpectCapability); |
| } |
| } |
| |
| // Test SkXfermodeImageFilter::filterBounds with different blending modes. |
| DEF_TEST(XfermodeImageFilterBounds, reporter) { |
| SkIRect background_rect = SkIRect::MakeXYWH(0, 0, 100, 100); |
| SkIRect foreground_rect = SkIRect::MakeXYWH(50, 50, 100, 100); |
| sk_sp<SkImageFilter> background = SkImageFilters::Crop(SkRect::Make(background_rect), nullptr); |
| sk_sp<SkImageFilter> foreground = SkImageFilters::Crop(SkRect::Make(foreground_rect), nullptr); |
| |
| SkIRect expectedBounds[kSkBlendModeCount]; |
| // Expect union of input rects by default. |
| for (int i = 0; i < kSkBlendModeCount; ++i) { |
| expectedBounds[i] = background_rect; |
| expectedBounds[i].join(foreground_rect); |
| } |
| |
| SkIRect intersection = background_rect; |
| intersection.intersect(foreground_rect); |
| expectedBounds[static_cast<int>(SkBlendMode::kClear)] = SkIRect::MakeEmpty(); |
| expectedBounds[static_cast<int>(SkBlendMode::kSrc)] = foreground_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kDst)] = background_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kSrcIn)] = intersection; |
| expectedBounds[static_cast<int>(SkBlendMode::kDstIn)] = intersection; |
| expectedBounds[static_cast<int>(SkBlendMode::kSrcOut)] = foreground_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kDstOut)] = background_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kSrcATop)] = background_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kDstATop)] = foreground_rect; |
| expectedBounds[static_cast<int>(SkBlendMode::kModulate)] = intersection; |
| |
| // Use a very large input bounds so that the crop rects stored in 'background' and 'foreground' |
| // aren't restricted. |
| SkIRect src = SkRectPriv::MakeILarge(); |
| for (int i = 0; i < kSkBlendModeCount; ++i) { |
| sk_sp<SkImageFilter> xfermode(SkImageFilters::Blend(static_cast<SkBlendMode>(i), |
| background, foreground, nullptr)); |
| auto bounds = xfermode->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, bounds == expectedBounds[i]); |
| } |
| |
| // Test empty intersection. |
| sk_sp<SkImageFilter> background2 = |
| SkImageFilters::Crop(SkRect::MakeXYWH(0, 0, 20, 20), nullptr); |
| sk_sp<SkImageFilter> foreground2 = |
| SkImageFilters::Crop(SkRect::MakeXYWH(40, 40, 50, 50), nullptr); |
| sk_sp<SkImageFilter> xfermode(SkImageFilters::Blend( |
| SkBlendMode::kSrcIn, std::move(background2), std::move(foreground2), nullptr)); |
| auto bounds = xfermode->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, bounds.isEmpty()); |
| } |
| |
| DEF_TEST(OffsetImageFilterBounds, reporter) { |
| const SkIRect src = SkIRect::MakeXYWH(0, 0, 100, 100); |
| const SkVector srcOffset = {-50.5f, -50.5f}; |
| sk_sp<SkImageFilter> offset(SkImageFilters::Offset(srcOffset.fX, srcOffset.fY, nullptr)); |
| |
| // Because the offset has a fractional component, the final output and required input bounds |
| // will be rounded out to include an extra pixel. |
| SkIRect expectedForward = SkRect::Make(src).makeOffset(srcOffset.fX, srcOffset.fY).roundOut(); |
| SkIRect boundsForward = offset->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, boundsForward == expectedForward); |
| |
| SkIRect expectedReverse = SkRect::Make(src).makeOffset(-srcOffset.fX, -srcOffset.fY).roundOut(); |
| |
| // Intersect 'expectedReverse' with the source because we are passing &src in as the known |
| // input bounds, which is the bounds of non-transparent pixels that can be moved by the offset. |
| // While the ::Offset filter could show all pixels inside 'expectedReverse' given that 'src' |
| // is also the target device output of the filter, the required input can be made tighter. |
| SkAssertResult(expectedReverse.intersect(src)); |
| |
| SkIRect boundsReverse = offset->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &src); |
| REPORTER_ASSERT(reporter, boundsReverse == expectedReverse); |
| } |
| |
| DEF_TEST(OffsetImageFilterBoundsNoOverflow, reporter) { |
| const SkIRect src = SkIRect::MakeXYWH(-10.f, -10.f, 20.f, 20.f); |
| const SkScalar bigOffset = SkIntToScalar(std::numeric_limits<int>::max()) * 2.f / 3.f; |
| |
| sk_sp<SkImageFilter> filter = |
| SkImageFilters::Blend(SkBlendMode::kSrcOver, |
| SkImageFilters::Offset(-bigOffset, -bigOffset, nullptr), |
| SkImageFilters::Offset(bigOffset, bigOffset, nullptr)); |
| SkIRect boundsForward = filter->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr); |
| // NOTE: isEmpty() will return true even if the l/r or t/b didn't overflow but the dimensions |
| // would overflow an int32. However, when isEmpty64() is false, it means the actual edge coords |
| // are valid, which is good enough for our purposes (and gfx::Rect has its own strategies for |
| // ensuring such a rectangle doesn't get accidentally treated as empty during chromium's |
| // conversions). |
| REPORTER_ASSERT(reporter, !boundsForward.isEmpty64()); |
| |
| // When querying with unbounded input content, it should not overflow and should not be empty. |
| SkIRect boundsReverse = filter->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, !boundsReverse.isEmpty64()); |
| |
| // However in this case, when 'src' is also passed as the content bounds, the ::Offset() filters |
| // detect that they would be transparent black. This propagates up to the src-over blend and |
| // the entire graph is identified as empty. |
| boundsReverse = filter->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &src); |
| REPORTER_ASSERT(reporter, boundsReverse.isEmpty64()); |
| } |
| |
| static void test_arithmetic_bounds(skiatest::Reporter* reporter, float k1, float k2, float k3, |
| float k4, sk_sp<SkImageFilter> background, |
| sk_sp<SkImageFilter> foreground, |
| const SkIRect* crop, const SkIRect& expected) { |
| sk_sp<SkImageFilter> arithmetic(SkImageFilters::Arithmetic( |
| k1, k2, k3, k4, false, std::move(background), std::move(foreground), crop)); |
| // Use a very large input bounds so that the crop rects stored in 'background' and 'foreground' |
| // aren't restricted. |
| SkIRect src = SkRectPriv::MakeILarge(); |
| SkIRect bounds = arithmetic->filterBounds(src, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr); |
| REPORTER_ASSERT(reporter, expected == bounds); |
| } |
| |
| static void test_arithmetic_combinations(skiatest::Reporter* reporter, float v) { |
| SkIRect bgRect = SkIRect::MakeXYWH(0, 0, 100, 100); |
| SkIRect fgRect = SkIRect::MakeXYWH(50, 50, 100, 100); |
| sk_sp<SkImageFilter> background = SkImageFilters::Crop(SkRect::Make(bgRect), nullptr); |
| sk_sp<SkImageFilter> foreground = SkImageFilters::Crop(SkRect::Make(fgRect), nullptr); |
| |
| SkIRect unionRect = bgRect; |
| unionRect.join(fgRect); |
| SkIRect intersection = bgRect; |
| intersection.intersect(fgRect); |
| |
| // Test with crop. When k4 is non-zero, the result is expected to be cropRect |
| // regardless of inputs because the filter affects the whole crop area. When there is no crop |
| // rect, it should report an effectively infinite output. |
| static const SkIRect kInf = SkRectPriv::MakeILarge(); |
| test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, nullptr, |
| SkIRect::MakeEmpty()); |
| test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, nullptr, bgRect); |
| test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, nullptr, fgRect); |
| test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, nullptr, unionRect); |
| test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, nullptr, intersection); |
| test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, nullptr, bgRect); |
| test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, nullptr, fgRect); |
| test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, nullptr, kInf); |
| test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, nullptr, unionRect); |
| test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, nullptr, kInf); |
| |
| SkIRect cropRect = SkIRect::MakeXYWH(-111, -222, 333, 444); |
| test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, &cropRect, |
| SkIRect::MakeEmpty()); |
| test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, &cropRect, bgRect); |
| test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, &cropRect, fgRect); |
| test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, &cropRect, unionRect); |
| test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, &cropRect, intersection); |
| test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, &cropRect, bgRect); |
| test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, &cropRect, fgRect); |
| test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, &cropRect, cropRect); |
| test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, &cropRect, unionRect); |
| test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, &cropRect, cropRect); |
| } |
| |
| // Test SkArithmeticImageFilter::filterBounds with different blending modes. |
| DEF_TEST(ArithmeticImageFilterBounds, reporter) { |
| test_arithmetic_combinations(reporter, 1); |
| test_arithmetic_combinations(reporter, 0.5); |
| } |
| |
| // Test SkDisplacementMapEffect::filterBounds. |
| DEF_TEST(DisplacementMapBounds, reporter) { |
| SkIRect floodBounds(SkIRect::MakeXYWH(20, 30, 10, 10)); |
| sk_sp<SkImageFilter> flood(SkImageFilters::Shader(SkShaders::Color(SK_ColorGREEN), |
| &floodBounds)); |
| SkIRect tilingBounds(SkIRect::MakeXYWH(0, 0, 200, 100)); |
| sk_sp<SkImageFilter> tiling(SkImageFilters::Tile(SkRect::Make(floodBounds), |
| SkRect::Make(tilingBounds), |
| flood)); |
| sk_sp<SkImageFilter> displace(SkImageFilters::DisplacementMap(SkColorChannel::kR, |
| SkColorChannel::kB, |
| 20.0f, nullptr, tiling)); |
| |
| // The filter graph rooted at 'displace' uses the dynamic source image for the displacement |
| // component of ::DisplacementMap, modifying the color component produced by the ::Tile. The |
| // output of the tiling filter will be 'tilingBounds', regardless of its input, so 'floodBounds' |
| // has no effect on the output. Since 'tiling' doesn't reference any dynamic source image, it |
| // also will not affect the required input bounds. The displacement map is sampled 1-to-1 |
| // with the output pixels, and covers the output unless the color's output makes that impossible |
| // and the output is a subset of the desired output. Thus, the displacement can impact the |
| // reported output bounds. |
| SkIRect input(SkIRect::MakeXYWH(20, 30, 40, 50)); |
| |
| // 'input' is the desired output, which directly constrains the displacement component in this |
| // specific filter graph. |
| SkIRect actualInput = displace->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection); |
| REPORTER_ASSERT(reporter, input == actualInput); |
| |
| // 'input' is the content bounds, which don't affect output bounds because it's only referenced |
| // by the displacement component and not the color component. |
| SkIRect actualOutput = displace->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection); |
| REPORTER_ASSERT(reporter, tilingBounds.makeOutset(10, 10) == actualOutput); |
| } |
| |
| // Test SkImageSource::filterBounds. |
| DEF_TEST(ImageSourceBounds, reporter) { |
| sk_sp<SkImage> image(make_gradient_circle(64, 64).asImage()); |
| // Default src and dst rects. |
| sk_sp<SkImageFilter> source1(SkImageFilters::Image(image, SkFilterMode::kNearest)); |
| SkIRect imageBounds = SkIRect::MakeWH(64, 64); |
| SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40)); |
| REPORTER_ASSERT(reporter, |
| imageBounds == source1->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source1->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| SkMatrix scale(SkMatrix::Scale(2, 2)); |
| SkIRect scaledBounds = SkIRect::MakeWH(128, 128); |
| REPORTER_ASSERT(reporter, |
| scaledBounds == source1->filterBounds(input, scale, |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source1->filterBounds(input, scale, |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| |
| // Specified src and dst rects (which are outside available pixels). |
| SkRect src(SkRect::MakeXYWH(0.5, 0.5, 100.5, 100.5)); |
| SkRect dst(SkRect::MakeXYWH(-10.5, -10.5, 120.5, 120.5)); |
| sk_sp<SkImageFilter> source2(SkImageFilters::Image(image, src, dst, |
| SkSamplingOptions(SkFilterMode::kLinear, |
| SkMipmapMode::kLinear))); |
| |
| SkRect clippedSrc = src; |
| SkAssertResult(clippedSrc.intersect(SkRect::Make(image->dimensions()))); |
| SkRect clippedDst = SkMatrix::RectToRect(src, dst).mapRect(clippedSrc); |
| |
| REPORTER_ASSERT(reporter, |
| clippedDst.roundOut() == |
| source2->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, nullptr)); |
| REPORTER_ASSERT(reporter, |
| source2->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| scale.mapRect(&clippedDst); |
| scale.mapRect(&clippedSrc); |
| REPORTER_ASSERT(reporter, |
| clippedDst.roundOut() == |
| source2->filterBounds(input, scale, |
| SkImageFilter::kForward_MapDirection, nullptr)); |
| REPORTER_ASSERT(reporter, |
| source2->filterBounds(input, scale, |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| } |
| |
| // Test SkPictureImageFilter::filterBounds. |
| DEF_TEST(PictureImageSourceBounds, reporter) { |
| SkPictureRecorder recorder; |
| SkCanvas* recordingCanvas = recorder.beginRecording(64, 64); |
| |
| SkPaint greenPaint; |
| greenPaint.setColor(SK_ColorGREEN); |
| recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); |
| sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); |
| |
| // Default target rect. |
| sk_sp<SkImageFilter> source1(SkImageFilters::Picture(picture)); |
| SkIRect pictureBounds = SkIRect::MakeWH(64, 64); |
| SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40)); |
| REPORTER_ASSERT(reporter, |
| pictureBounds == source1->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source1->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| SkMatrix scale(SkMatrix::Scale(2, 2)); |
| SkIRect scaledPictureBounds = SkIRect::MakeWH(128, 128); |
| REPORTER_ASSERT(reporter, |
| scaledPictureBounds == source1->filterBounds(input, scale, |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source1->filterBounds(input, scale, |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| |
| // Specified target rect. |
| SkRect targetRect(SkRect::MakeXYWH(9.5, 9.5, 31, 21)); |
| sk_sp<SkImageFilter> source2(SkImageFilters::Picture(picture, targetRect)); |
| REPORTER_ASSERT(reporter, |
| targetRect.roundOut() == source2->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source2->filterBounds(input, SkMatrix::I(), |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| scale.mapRect(&targetRect); |
| REPORTER_ASSERT(reporter, |
| targetRect.roundOut() == source2->filterBounds(input, scale, |
| SkImageFilter::kForward_MapDirection, |
| nullptr)); |
| REPORTER_ASSERT(reporter, |
| source2->filterBounds(input, scale, |
| SkImageFilter::kReverse_MapDirection, &input).isEmpty()); |
| } |
| |
| DEF_TEST(DropShadowImageFilter_Huge, reporter) { |
| // Successful if it doesn't crash or trigger ASAN. (crbug.com/1264705) |
| auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(300, 150)); |
| |
| SkPaint paint; |
| paint.setImageFilter(SkImageFilters::DropShadowOnly( |
| 0.0f, 0.437009f, 14129.6f, 14129.6f, SK_ColorGRAY, nullptr)); |
| |
| surf->getCanvas()->saveLayer(nullptr, &paint); |
| surf->getCanvas()->restore(); |
| } |