blob: 5f072e6a5ff262281cfaad5259d0d319b9a9b1ab [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkAlphaType.h"
#include "include/core/SkBBHFactory.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorType.h"
#include "include/core/SkData.h"
#include "include/core/SkFlattenable.h"
#include "include/core/SkFont.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkPoint.h"
#include "include/core/SkPoint3.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSerialProcs.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkSurface.h"
#include "include/core/SkSurfaceProps.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkPerlinNoiseShader.h"
#include "include/encode/SkPngEncoder.h"
#include "include/gpu/GpuTypes.h"
#include "include/gpu/GrTypes.h"
#include "include/private/base/SkTArray.h"
#include "include/private/base/SkTo.h"
#include "src/core/SkBitmapDevice.h"
#include "src/core/SkDevice.h"
#include "src/core/SkImageFilterTypes.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkSpecialImage.h"
#include "src/effects/colorfilters/SkColorFilterBase.h"
#include "src/image/SkImage_Base.h"
#include "tests/CtsEnforcement.h"
#include "tests/Test.h"
#include "tools/EncodeUtils.h"
#include "tools/GpuToolUtils.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "tools/fonts/FontToolUtils.h"
#if defined(SK_GANESH)
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/ganesh/SkImageGanesh.h"
#include "include/gpu/ganesh/SkSurfaceGanesh.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/image/GrImageUtils.h"
#include "src/gpu/ganesh/image/SkImage_GaneshBase.h"
#include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h"
#endif
#if defined(SK_GRAPHITE)
#include "include/gpu/graphite/Context.h"
#include "include/gpu/graphite/Image.h"
#include "include/gpu/graphite/Surface.h"
#endif
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <utility>
#include <limits>
using namespace skia_private;
class SkReadBuffer;
class SkWriteBuffer;
struct GrContextOptions;
static const int kBitmapSize = 4;
namespace {
static constexpr GrSurfaceOrigin kTestSurfaceOrigin = kTopLeft_GrSurfaceOrigin;
class MatrixTestImageFilter : public SkImageFilter_Base {
public:
MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix)
: SkImageFilter_Base(nullptr, 0)
, fReporter(reporter)
, fExpectedMatrix(expectedMatrix) {}
private:
Factory getFactory() const override {
SK_ABORT("Does not participate in serialization");
return nullptr;
}
const char* getTypeName() const override { return "MatrixTestImageFilter"; }
skif::FilterResult onFilterImage(const skif::Context& ctx) const override {
REPORTER_ASSERT(fReporter, ctx.mapping().layerMatrix() == fExpectedMatrix);
return ctx.source();
}
skif::LayerSpace<SkIRect> onGetInputLayerBounds(
const skif::Mapping& mapping,
const skif::LayerSpace<SkIRect>& desiredOutput,
std::optional<skif::LayerSpace<SkIRect>> contentBounds) const override {
return desiredOutput;
}
std::optional<skif::LayerSpace<SkIRect>> onGetOutputLayerBounds(
const skif::Mapping& mapping,
std::optional<skif::LayerSpace<SkIRect>> contentBounds) const override {
return contentBounds;
}
skiatest::Reporter* fReporter;
SkMatrix fExpectedMatrix;
};
void draw_gradient_circle(SkCanvas* canvas, int width, int height) {
SkScalar x = SkIntToScalar(width / 2);
SkScalar y = SkIntToScalar(height / 2);
SkScalar radius = std::min(x, y) * 0.8f;
canvas->clear(0x00000000);
SkColor colors[2];
colors[0] = SK_ColorWHITE;
colors[1] = SK_ColorBLACK;
sk_sp<SkShader> shader(
SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2,
SkTileMode::kClamp)
);
SkPaint paint;
paint.setShader(shader);
canvas->drawCircle(x, y, radius, paint);
}
SkBitmap make_gradient_circle(int width, int height) {
SkBitmap bitmap;
bitmap.allocN32Pixels(width, height);
SkCanvas canvas(bitmap);
draw_gradient_circle(&canvas, width, height);
return bitmap;
}
class FilterList {
public:
FilterList(const sk_sp<SkImageFilter>& input, const SkIRect* cropRect = nullptr) {
static const SkScalar kBlurSigma = SkIntToScalar(5);
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
{
sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcIn));
this->addFilter("color filter",
SkImageFilters::ColorFilter(std::move(cf), input, cropRect));
}
{
sk_sp<SkImage> gradientImage(make_gradient_circle(64, 64).asImage());
sk_sp<SkImageFilter> gradientSource(SkImageFilters::Image(std::move(gradientImage),
SkFilterMode::kNearest));
this->addFilter("displacement map",
SkImageFilters::DisplacementMap(SkColorChannel::kR, SkColorChannel::kB, 20.0f,
std::move(gradientSource), input, cropRect));
}
this->addFilter("blur", SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, input, cropRect));
this->addFilter("drop shadow", SkImageFilters::DropShadow(
SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, input, cropRect));
this->addFilter("diffuse lighting",
SkImageFilters::PointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect));
this->addFilter("specular lighting",
SkImageFilters::PointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input,
cropRect));
{
SkScalar kernel[9] = {
SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1),
SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1),
SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1),
};
const SkISize kernelSize = SkISize::Make(3, 3);
const SkScalar gain = SK_Scalar1, bias = 0;
// This filter needs a saveLayer bc it is in repeat mode
this->addFilter("matrix convolution",
SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1),
SkTileMode::kRepeat, false, input, cropRect),
true);
}
this->addFilter("merge", SkImageFilters::Merge(input, input, cropRect));
{
sk_sp<SkShader> greenColorShader = SkShaders::Color(SK_ColorGREEN);
SkIRect leftSideCropRect = SkIRect::MakeXYWH(0, 0, 32, 64);
sk_sp<SkImageFilter> shaderFilterLeft(SkImageFilters::Shader(greenColorShader,
&leftSideCropRect));
SkIRect rightSideCropRect = SkIRect::MakeXYWH(32, 0, 32, 64);
sk_sp<SkImageFilter> shaderFilterRight(SkImageFilters::Shader(greenColorShader,
&rightSideCropRect));
this->addFilter("merge with disjoint inputs", SkImageFilters::Merge(
std::move(shaderFilterLeft), std::move(shaderFilterRight), cropRect));
}
this->addFilter("offset", SkImageFilters::Offset(SK_Scalar1, SK_Scalar1, input, cropRect));
this->addFilter("dilate", SkImageFilters::Dilate(3, 2, input, cropRect));
this->addFilter("erode", SkImageFilters::Erode(2, 3, input, cropRect));
this->addFilter("tile", SkImageFilters::Tile(SkRect::MakeXYWH(0, 0, 50, 50),
cropRect ? SkRect::Make(*cropRect)
: SkRect::MakeXYWH(0, 0, 100, 100),
input));
if (!cropRect) {
SkMatrix matrix;
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1);
this->addFilter("matrix",
SkImageFilters::MatrixTransform(matrix,
SkSamplingOptions(SkFilterMode::kLinear),
input));
}
{
sk_sp<SkImageFilter> blur(SkImageFilters::Blur(kBlurSigma, kBlurSigma, input));
this->addFilter("blur and offset", SkImageFilters::Offset(
kBlurSigma, kBlurSigma, std::move(blur), cropRect));
}
{
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(64, 64);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(std::move(picture)));
this->addFilter("picture and blur", SkImageFilters::Blur(
kBlurSigma, kBlurSigma, std::move(pictureFilter), cropRect));
}
{
sk_sp<SkImageFilter> paintFilter(SkImageFilters::Shader(
SkShaders::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0)));
this->addFilter("paint and blur", SkImageFilters::Blur(
kBlurSigma, kBlurSigma, std::move(paintFilter), cropRect));
}
this->addFilter("blend", SkImageFilters::Blend(
SkBlendMode::kSrc, input, input, cropRect));
}
int count() const { return fFilters.size(); }
SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); }
const char* getName(int index) const { return fFilters[index].fName; }
bool needsSaveLayer(int index) const { return fFilters[index].fNeedsSaveLayer; }
private:
struct Filter {
Filter() : fName(nullptr), fNeedsSaveLayer(false) {}
Filter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer)
: fName(name)
, fFilter(std::move(filter))
, fNeedsSaveLayer(needsSaveLayer) {
}
const char* fName;
sk_sp<SkImageFilter> fFilter;
bool fNeedsSaveLayer;
};
void addFilter(const char* name, sk_sp<SkImageFilter> filter, bool needsSaveLayer = false) {
fFilters.push_back(Filter(name, std::move(filter), needsSaveLayer));
}
TArray<Filter> fFilters;
};
} // namespace
static skif::Context make_context(const SkIRect& out, const SkSpecialImage* src) {
sk_sp<skif::Backend> backend;
if (src->isGaneshBacked()) {
backend = skif::MakeGaneshBackend(sk_ref_sp(src->getContext()), kTestSurfaceOrigin,
src->props(), src->colorType());
} else {
backend = skif::MakeRasterBackend(src->props(), src->colorType());
}
return skif::Context{std::move(backend),
skif::Mapping{SkMatrix::I()},
skif::LayerSpace<SkIRect>{out},
skif::FilterResult{sk_ref_sp(src)},
src->getColorSpace(),
/*stats=*/nullptr};
}
static skif::Context make_context(int outWidth, int outHeight, const SkSpecialImage* src) {
return make_context(SkIRect::MakeWH(outWidth, outHeight), src);
}
static sk_sp<SkImage> make_small_image() {
auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize)));
SkCanvas* canvas = surface->getCanvas();
canvas->clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int kRectSize = kBitmapSize / 4;
static_assert(kBitmapSize % 4 == 0, "bitmap size not multiple of 4");
for (int y = 0; y < kBitmapSize; y += kRectSize) {
for (int x = 0; x < kBitmapSize; x += kRectSize) {
canvas->save();
canvas->translate(SkIntToScalar(x), SkIntToScalar(y));
canvas->drawRect(
SkRect::MakeXYWH(0, 0, kRectSize, kRectSize), darkPaint);
canvas->drawRect(
SkRect::MakeXYWH(kRectSize, 0, kRectSize, kRectSize), lightPaint);
canvas->drawRect(
SkRect::MakeXYWH(0, kRectSize, kRectSize, kRectSize), lightPaint);
canvas->drawRect(
SkRect::MakeXYWH(kRectSize, kRectSize, kRectSize, kRectSize), darkPaint);
canvas->restore();
}
}
return surface->makeImageSnapshot();
}
static sk_sp<SkImageFilter> make_scale(float amount, sk_sp<SkImageFilter> input) {
float s = amount;
float matrix[20] = { s, 0, 0, 0, 0,
0, s, 0, 0, 0,
0, 0, s, 0, 0,
0, 0, 0, s, 0 };
sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input));
}
static sk_sp<SkImageFilter> make_grayscale(sk_sp<SkImageFilter> input,
const SkIRect* cropRect) {
float matrix[20];
memset(matrix, 0, 20 * sizeof(float));
matrix[0] = matrix[5] = matrix[10] = 0.2126f;
matrix[1] = matrix[6] = matrix[11] = 0.7152f;
matrix[2] = matrix[7] = matrix[12] = 0.0722f;
matrix[18] = 1.0f;
sk_sp<SkColorFilter> filter(SkColorFilters::Matrix(matrix));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect);
}
static sk_sp<SkImageFilter> make_blue(sk_sp<SkImageFilter> input, const SkIRect* cropRect) {
sk_sp<SkColorFilter> filter(SkColorFilters::Blend(SK_ColorBLUE, SkBlendMode::kSrcIn));
return SkImageFilters::ColorFilter(std::move(filter), std::move(input), cropRect);
}
static sk_sp<SkDevice> create_empty_device(GrRecordingContext* rContext, int widthHeight) {
const SkImageInfo ii = SkImageInfo::Make({ widthHeight, widthHeight },
kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
if (rContext) {
return rContext->priv().createDevice(skgpu::Budgeted::kNo, ii, SkBackingFit::kApprox, 1,
skgpu::Mipmapped::kNo, skgpu::Protected::kNo,
kTestSurfaceOrigin, {},
skgpu::ganesh::Device::InitContents::kUninit);
} else {
SkBitmap bm;
SkAssertResult(bm.tryAllocPixels(ii));
return sk_make_sp<SkBitmapDevice>(bm, SkSurfaceProps());
}
}
static sk_sp<SkSpecialImage> create_empty_special_image(GrRecordingContext* rContext,
int widthHeight,
SkColor4f color = SkColors::kTransparent) {
sk_sp<SkDevice> device = create_empty_device(rContext, widthHeight);
SkASSERT(device);
SkPaint p;
p.setColor4f(color, /*colorSpace=*/nullptr);
p.setBlendMode(SkBlendMode::kSrc);
device->drawPaint(p);
return device->snapSpecial(SkIRect::MakeWH(widthHeight, widthHeight));
}
DEF_TEST(ImageFilter, reporter) {
{
// Check that a color matrix filter followed by a color matrix filter
// concatenates into a single filter.
sk_sp<SkImageFilter> doubleBrightness(make_scale(2.0f, nullptr));
sk_sp<SkImageFilter> halfBrightness(make_scale(0.5f, std::move(doubleBrightness)));
REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0));
SkColorFilter* cf;
REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf));
cf->unref();
}
{
// Check that a color filter image filter without a crop rect can be
// expressed as a color filter.
sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Check that a colorfilterimage filter without a crop rect but with an input
// that is another colorfilterimage can be expressed as a colorfilter (composed).
sk_sp<SkImageFilter> mode(make_blue(nullptr, nullptr));
sk_sp<SkImageFilter> gray(make_grayscale(std::move(mode), nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Test that if we exceed the limit of what ComposeColorFilter can combine, we still
// can build the DAG and won't assert if we call asColorFilter.
sk_sp<SkImageFilter> filter(make_blue(nullptr, nullptr));
const int kWayTooManyForComposeColorFilter = 100;
for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) {
filter = make_blue(filter, nullptr);
// the first few of these will succeed, but after we hit the internal limit,
// it will then return false.
(void)filter->asColorFilter(nullptr);
}
}
{
// Check that a color filter image filter with a crop rect cannot
// be expressed as a color filter.
SkIRect cropRect = SkIRect::MakeWH(100, 100);
sk_sp<SkImageFilter> grayWithCrop(make_grayscale(nullptr, &cropRect));
REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr));
}
{
// Check that two non-commutative matrices are concatenated in
// the correct order.
float blueToRedMatrix[20] = { 0 };
blueToRedMatrix[2] = blueToRedMatrix[18] = 1;
float redToGreenMatrix[20] = { 0 };
redToGreenMatrix[5] = redToGreenMatrix[18] = 1;
sk_sp<SkColorFilter> blueToRed(SkColorFilters::Matrix(blueToRedMatrix));
sk_sp<SkImageFilter> filter1(SkImageFilters::ColorFilter(std::move(blueToRed), nullptr));
sk_sp<SkColorFilter> redToGreen(SkColorFilters::Matrix(redToGreenMatrix));
sk_sp<SkImageFilter> filter2(SkImageFilters::ColorFilter(std::move(redToGreen),
std::move(filter1)));
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setImageFilter(std::move(filter2));
SkCanvas canvas(result);
canvas.clear(0x0);
SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize));
canvas.drawRect(rect, paint);
uint32_t pixel = *result.getAddr32(0, 0);
// The result here should be green, since we have effectively shifted blue to green.
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
{
// Tests pass by not asserting
sk_sp<SkImage> image(make_small_image());
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
{
// This tests for :
// 1 ) location at (0,0,1)
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
// 2 ) location and target at same value
SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ);
// 3 ) large negative specular exponent value
SkScalar specularExponent = -1000;
sk_sp<SkImageFilter> bmSrc(SkImageFilters::Image(std::move(image), {}));
SkPaint paint;
paint.setImageFilter(SkImageFilters::SpotLitSpecular(
location, target, specularExponent, 180,
0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1,
std::move(bmSrc)));
SkCanvas canvas(result);
SkRect r = SkRect::MakeIWH(kBitmapSize, kBitmapSize);
canvas.drawRect(r, paint);
}
}
}
static void test_cropRects(skiatest::Reporter* reporter, GrRecordingContext* rContext) {
// Check that all filters offset to their absolute crop rect,
// unaffected by the input crop rect.
// Tests pass by not asserting.
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100));
SkASSERT(srcImg);
SkIRect inputCropRect = SkIRect::MakeXYWH(8, 13, 80, 80);
SkIRect cropRect = SkIRect::MakeXYWH(20, 30, 60, 60);
sk_sp<SkImageFilter> input(make_grayscale(nullptr, &inputCropRect));
FilterList filters(input, &cropRect);
for (int i = 0; i < filters.count(); ++i) {
SkImageFilter* filter = filters.getFilter(i);
SkIPoint offset;
skif::Context ctx = make_context(100, 100, srcImg.get());
sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx)
.imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, resultImg, "%s", filters.getName(i));
REPORTER_ASSERT(reporter, offset.fX == 20 && offset.fY == 30, "%s", filters.getName(i));
}
}
static bool special_image_to_bitmap(GrDirectContext* dContext, const SkSpecialImage* src,
SkBitmap* dst) {
sk_sp<SkImage> img = src->asImage();
if (!img) {
return false;
}
if (!dst->tryAllocN32Pixels(src->width(), src->height())) {
return false;
}
return img->readPixels(dContext, dst->pixmap(), src->subset().fLeft, src->subset().fTop);
}
static void test_negative_blur_sigma(skiatest::Reporter* reporter,
GrDirectContext* dContext) {
// Check that SkBlurImageFilter will reject a negative sigma on creation, but properly uses the
// absolute value of the mapped sigma after CTM application.
static const int kWidth = 32, kHeight = 32;
static const SkScalar kBlurSigma = SkIntToScalar(5);
sk_sp<SkImageFilter> positiveFilter(SkImageFilters::Blur(kBlurSigma, kBlurSigma, nullptr));
sk_sp<SkImageFilter> negativeFilter(SkImageFilters::Blur(-kBlurSigma, kBlurSigma, nullptr));
REPORTER_ASSERT(reporter, !negativeFilter);
sk_sp<SkImage> gradient = make_gradient_circle(kWidth, kHeight).asImage();
sk_sp<SkSpecialImage> imgSrc;
if (dContext) {
imgSrc = SkSpecialImages::MakeFromTextureImage(
dContext, SkIRect::MakeWH(kWidth, kHeight), gradient, SkSurfaceProps());
} else {
imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), gradient, {});
}
SkIPoint offset;
skif::Context ctx = make_context(32, 32, imgSrc.get());
sk_sp<SkSpecialImage> positiveResult(
as_IFB(positiveFilter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, positiveResult);
SkMatrix negativeScale;
negativeScale.setScale(-SK_Scalar1, SK_Scalar1);
skif::Context negativeCTX = ctx.withNewMapping(skif::Mapping(negativeScale));
sk_sp<SkSpecialImage> negativeResult(
as_IFB(positiveFilter)->filterImage(negativeCTX).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, negativeResult);
SkBitmap positiveResultBM;
SkBitmap negativeResultBM;
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, positiveResult.get(),
&positiveResultBM));
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, negativeResult.get(),
&negativeResultBM));
for (int y = 0; y < kHeight; y++) {
int diffs = memcmp(positiveResultBM.getAddr32(0, y),
negativeResultBM.getAddr32(0, y),
positiveResultBM.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(ImageFilterNegativeBlurSigma, reporter) {
test_negative_blur_sigma(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_negative_blur_sigma(reporter, ctxInfo.directContext());
}
static void test_morphology_radius_with_mirror_ctm(skiatest::Reporter* reporter,
GrDirectContext* dContext) {
// Check that SkMorphologyImageFilter maps the radius correctly when the
// CTM contains a mirroring transform.
static const int kWidth = 32, kHeight = 32;
static const int kRadius = 8;
sk_sp<SkImageFilter> filter(SkImageFilters::Dilate(kRadius, kRadius, nullptr));
SkBitmap bitmap;
bitmap.allocN32Pixels(kWidth, kHeight);
SkCanvas canvas(bitmap);
canvas.clear(SK_ColorTRANSPARENT);
SkPaint paint;
paint.setColor(SK_ColorWHITE);
canvas.drawRect(SkRect::MakeXYWH(kWidth / 4, kHeight / 4, kWidth / 2, kHeight / 2),
paint);
sk_sp<SkImage> image = bitmap.asImage();
sk_sp<SkSpecialImage> imgSrc;
if (dContext) {
imgSrc = SkSpecialImages::MakeFromTextureImage(
dContext, SkIRect::MakeWH(kWidth, kHeight), image, SkSurfaceProps());
} else {
imgSrc = SkSpecialImages::MakeFromRaster(SkIRect::MakeWH(kWidth, kHeight), image, {});
}
SkIPoint offset;
skif::Context ctx = make_context(32, 32, imgSrc.get());
sk_sp<SkSpecialImage> normalResult(
as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, normalResult);
SkMatrix mirrorX;
mirrorX.setTranslate(0, SkIntToScalar(32));
mirrorX.preScale(SK_Scalar1, -SK_Scalar1);
skif::Context mirrorXCTX = ctx.withNewMapping(skif::Mapping(mirrorX));
sk_sp<SkSpecialImage> mirrorXResult(
as_IFB(filter)->filterImage(mirrorXCTX).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, mirrorXResult);
SkMatrix mirrorY;
mirrorY.setTranslate(SkIntToScalar(32), 0);
mirrorY.preScale(-SK_Scalar1, SK_Scalar1);
skif::Context mirrorYCTX = ctx.withNewMapping(skif::Mapping(mirrorY));
sk_sp<SkSpecialImage> mirrorYResult(
as_IFB(filter)->filterImage(mirrorYCTX).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, mirrorYResult);
SkBitmap normalResultBM, mirrorXResultBM, mirrorYResultBM;
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, normalResult.get(),
&normalResultBM));
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorXResult.get(),
&mirrorXResultBM));
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, mirrorYResult.get(),
&mirrorYResultBM));
for (int y = 0; y < kHeight; y++) {
int diffs = memcmp(normalResultBM.getAddr32(0, y),
mirrorXResultBM.getAddr32(0, y),
normalResultBM.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(normalResultBM.getAddr32(0, y),
mirrorYResultBM.getAddr32(0, y),
normalResultBM.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(MorphologyFilterRadiusWithMirrorCTM, reporter) {
test_morphology_radius_with_mirror_ctm(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(MorphologyFilterRadiusWithMirrorCTM_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_morphology_radius_with_mirror_ctm(reporter, ctxInfo.directContext());
}
static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrDirectContext* dContext) {
// Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly.
SkIRect cropRect = SkIRect::MakeXYWH(5, 0, 5, 10);
sk_sp<SkImageFilter> input(SkImageFilters::Offset(0, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> filter(SkImageFilters::Blur(0, 0, std::move(input), &cropRect));
sk_sp<SkSpecialImage> image = create_empty_special_image(dContext, 10, SkColors::kGreen);
SkIPoint offset;
skif::Context ctx = make_context(32, 32, image.get());
sk_sp<SkSpecialImage> result(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0);
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10);
SkBitmap resultBM;
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM));
for (int y = 0; y < resultBM.height(); y++) {
for (int x = 0; x < resultBM.width(); x++) {
bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN;
REPORTER_ASSERT(reporter, !diff);
if (diff) {
break;
}
}
}
}
DEF_TEST(ImageFilterZeroBlurSigma, reporter) {
test_zero_blur_sigma(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_zero_blur_sigma(reporter, ctxInfo.directContext());
}
// Tests that, even when an upstream filter has returned null (due to failure or clipping), a
// downstream filter that affects transparent black still does so even with a nullptr input.
static void test_fail_affects_transparent_black(skiatest::Reporter* reporter,
GrDirectContext* dContext) {
sk_sp<SkImageFilter> failFilter = SkImageFilters::Empty();
sk_sp<SkSpecialImage> source(create_empty_special_image(dContext, 5));
skif::Context ctx = make_context(1, 1, source.get());
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc));
SkASSERT(as_CFB(green)->affectsTransparentBlack());
sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(std::move(green),
std::move(failFilter)));
SkIPoint offset;
sk_sp<SkSpecialImage> result(as_IFB(greenFilter)->filterImage(ctx)
.imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, nullptr != result.get());
if (result) {
SkBitmap resultBM;
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM));
REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN);
}
}
DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) {
test_fail_affects_transparent_black(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_fail_affects_transparent_black(reporter, ctxInfo.directContext());
}
DEF_TEST(ImageFilterDrawTiled, reporter) {
// Check that all filters when drawn tiled (with subsequent clip rects) exactly
// match the same filters drawn with a single full-canvas bitmap draw.
// Tests pass by not asserting.
FilterList filters(nullptr);
SkBitmap untiledResult, tiledResult;
const int width = 64, height = 64;
untiledResult.allocN32Pixels(width, height);
tiledResult.allocN32Pixels(width, height);
SkCanvas tiledCanvas(tiledResult);
SkCanvas untiledCanvas(untiledResult);
const int tileSize = 8;
SkPaint textPaint;
textPaint.setColor(SK_ColorWHITE);
SkFont font(ToolUtils::DefaultPortableTypeface(), height);
const char* text = "ABC";
const SkScalar yPos = SkIntToScalar(height);
for (int scale = 1; scale <= 2; ++scale) {
for (int i = 0; i < filters.count(); ++i) {
SkPaint combinedPaint;
combinedPaint.setColor(SK_ColorWHITE);
combinedPaint.setImageFilter(sk_ref_sp(filters.getFilter(i)));
untiledCanvas.clear(SK_ColorTRANSPARENT);
untiledCanvas.save();
untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
untiledCanvas.drawString(text, 0, yPos, font, combinedPaint);
untiledCanvas.restore();
tiledCanvas.clear(SK_ColorTRANSPARENT);
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
tiledCanvas.save();
const SkRect clipRect = SkRect::MakeXYWH(x, y, tileSize, tileSize);
tiledCanvas.clipRect(clipRect);
if (filters.needsSaveLayer(i)) {
tiledCanvas.saveLayer(nullptr, &combinedPaint);
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawString(text, 0, yPos, font, textPaint);
tiledCanvas.restore();
} else {
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawString(text, 0, yPos, font, combinedPaint);
}
tiledCanvas.restore();
}
}
if (!ToolUtils::equal_pixels(untiledResult, tiledResult)) {
SkString encoded;
SkString errString("Tiled image filter doesn't match untiled reference");
errString.append("\nExpected: ");
if (ToolUtils::BitmapToBase64DataURI(untiledResult, &encoded)) {
errString.append(encoded);
} else {
errString.append("failed to encode");
}
errString.append("\nActual: ");
if (ToolUtils::BitmapToBase64DataURI(tiledResult, &encoded)) {
errString.append(encoded);
} else {
errString.append("failed to encode");
}
ERRORF(reporter, "%s\n%s", filters.getName(i), errString.c_str());
}
}
}
}
static void draw_saveLayer_picture(int width, int height, int tileSize,
SkBBHFactory* factory, SkBitmap* result) {
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(50), 0);
sk_sp<SkColorFilter> cf(SkColorFilters::Blend(SK_ColorWHITE, SkBlendMode::kSrc));
sk_sp<SkImageFilter> cfif(SkImageFilters::ColorFilter(std::move(cf), nullptr));
sk_sp<SkImageFilter> imageFilter(SkImageFilters::MatrixTransform(matrix,
SkSamplingOptions(),
std::move(cfif)));
SkPaint paint;
paint.setImageFilter(std::move(imageFilter));
SkPictureRecorder recorder;
SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50));
SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width),
SkIntToScalar(height),
factory);
recordingCanvas->translate(-55, 0);
recordingCanvas->saveLayer(&bounds, &paint);
recordingCanvas->restore();
sk_sp<SkPicture> picture1(recorder.finishRecordingAsPicture());
result->allocN32Pixels(width, height);
SkCanvas canvas(*result);
canvas.clear(0);
canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize)));
canvas.drawPicture(picture1.get());
}
DEF_TEST(ImageFilterDrawMatrixBBH, reporter) {
// Check that matrix filter when drawn tiled with BBH exactly
// matches the same thing drawn without BBH.
// Tests pass by not asserting.
const int width = 200, height = 200;
const int tileSize = 100;
SkBitmap result1, result2;
SkRTreeFactory factory;
draw_saveLayer_picture(width, height, tileSize, &factory, &result1);
draw_saveLayer_picture(width, height, tileSize, nullptr, &result2);
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
static sk_sp<SkImageFilter> make_blur(sk_sp<SkImageFilter> input) {
return SkImageFilters::Blur(SK_Scalar1, SK_Scalar1, std::move(input));
}
static sk_sp<SkImageFilter> make_drop_shadow(sk_sp<SkImageFilter> input) {
return SkImageFilters::DropShadow(100, 100, 10, 10, SK_ColorBLUE, std::move(input));
}
DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_blur(nullptr));
sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1)));
static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100);
// For output, the [0,0,100,100] source is expanded to [-3,-3,103,103] by the initial blur.
// The drop shadow is translated by [100,100] and further outset by 30px -> [67,67,233,233],
// The blend unions the inner blur result with the drop shadow to get [-3,-3,233,233].
static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233);
SkIRect outputBounds = filter2->filterBounds(kContentBounds,
SkMatrix::I(),
SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds);
// For input, it should be able to restrict itself to the source content.
SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds,
SkMatrix::I(),
SkImageFilter::kReverse_MapDirection,
&kContentBounds);
REPORTER_ASSERT(reporter, inputBounds == kContentBounds);
}
DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_drop_shadow(nullptr));
sk_sp<SkImageFilter> filter2(make_blur(std::move(filter1)));
static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100);
// For output, the [0,0,100,100] source is translated by 100px and outset by 30px for the drop
// shadow = [70,70,230,230], then blended back with its original to get [0,0,230,230]. This is
// then outset by 3px for the outer blur to get [-3,-3,233,233].
static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-3, -3, 233, 233);
SkIRect outputBounds = filter2->filterBounds(kContentBounds,
SkMatrix::I(),
SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds);
// For input, it should be able to restrict itself to the source content.
SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds,
SkMatrix::I(),
SkImageFilter::kReverse_MapDirection,
&kContentBounds);
REPORTER_ASSERT(reporter, inputBounds == kContentBounds);
}
DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) {
sk_sp<SkImageFilter> filter1(SkImageFilters::Dilate(2, 2, nullptr));
sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1)));
static const SkIRect kContentBounds = SkIRect::MakeXYWH(0, 0, 100, 100);
// For output, the [0,0,100,100] source is outset by dilate radius (2px) to [-2,-2,102,102].
// This is then translated by 100px and outset by 30px for the drop shadow = [68,68,232,232].
// Finally this is joined with the original dilate result to get [-2,-2,232,232].
static const SkIRect kExpectedOutputBounds = SkIRect::MakeLTRB(-2, -2, 232, 232);
SkIRect outputBounds = filter2->filterBounds(kContentBounds,
SkMatrix::I(),
SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, outputBounds == kExpectedOutputBounds);
// For input, it should be able to restrict itself to the source content.
SkIRect inputBounds = filter2->filterBounds(kExpectedOutputBounds,
SkMatrix::I(),
SkImageFilter::kReverse_MapDirection,
&kContentBounds);
REPORTER_ASSERT(reporter, inputBounds == kContentBounds);
}
DEF_TEST(ImageFilterScaledBlurRadius, reporter) {
// Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow
// (before the CTM). Bounds should be computed correctly in the presence of
// a (possibly negative) scale.
sk_sp<SkImageFilter> blur(make_blur(nullptr));
sk_sp<SkImageFilter> dropShadow(make_drop_shadow(nullptr));
{
// Uniform scale by 2.
SkMatrix scaleMatrix;
scaleMatrix.setScale(2, 2);
static const SkIRect kBounds = SkIRect::MakeLTRB(0, 0, 200, 200);
static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206);
SkIRect blurBounds = blur->filterBounds(
kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds);
SkIRect reverseBlurBounds = blur->filterBounds(
kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds);
REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds);
static const SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460);
SkIRect shadowBounds = dropShadow->filterBounds(
kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds);
SkIRect reverseShadowBounds = dropShadow->filterBounds(
kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds);
REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds);
}
{
// Vertical flip.
SkMatrix scaleMatrix;
scaleMatrix.setScale(1, -1);
static const SkIRect kBounds = SkIRect::MakeLTRB(0, -100, 100, 0);
static const SkIRect kExpectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3);
SkIRect blurBounds = blur->filterBounds(
kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, blurBounds == kExpectedBlurBounds);
SkIRect reverseBlurBounds = blur->filterBounds(
kExpectedBlurBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds);
REPORTER_ASSERT(reporter, reverseBlurBounds == kBounds);
SkIRect kExpectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0);
SkIRect shadowBounds = dropShadow->filterBounds(
kBounds, scaleMatrix, SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, shadowBounds == kExpectedShadowBounds);
SkIRect reverseShadowBounds = dropShadow->filterBounds(
kExpectedShadowBounds, scaleMatrix, SkImageFilter::kReverse_MapDirection, &kBounds);
REPORTER_ASSERT(reporter, reverseShadowBounds == kBounds);
}
}
DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) {
sk_sp<SkImageFilter> filter1(make_blur(nullptr));
sk_sp<SkImageFilter> filter2(make_blur(nullptr));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(filter1),
std::move(filter2)));
static const SkRect kBoundsSrc = SkRect::MakeIWH(100, 100);
static const SkRect kExpectedBounds = SkRect::MakeXYWH(-6, -6, 112, 112);
SkRect boundsDst = composedFilter->computeFastBounds(kBoundsSrc);
REPORTER_ASSERT(reporter, boundsDst == kExpectedBounds);
}
DEF_TEST(ImageFilterUnionBounds, reporter) {
sk_sp<SkImageFilter> offset(SkImageFilters::Offset(50, 0, nullptr));
// Regardless of which order they appear in, the image filter bounds should
// be combined correctly.
{
sk_sp<SkImageFilter> composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, offset));
SkRect bounds = SkRect::MakeIWH(100, 100);
// Intentionally aliasing here, as that's what the real callers do.
bounds = composite->computeFastBounds(bounds);
REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100));
}
{
sk_sp<SkImageFilter> composite(SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr,
offset, nullptr));
SkRect bounds = SkRect::MakeIWH(100, 100);
// Intentionally aliasing here, as that's what the real callers do.
bounds = composite->computeFastBounds(bounds);
REPORTER_ASSERT(reporter, bounds == SkRect::MakeIWH(150, 100));
}
}
static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter,
GrRecordingContext* rContext) {
SkBitmap greenBM;
greenBM.allocN32Pixels(20, 20);
greenBM.eraseColor(SK_ColorGREEN);
sk_sp<SkImage> greenImage(greenBM.asImage());
sk_sp<SkImageFilter> source(SkImageFilters::Image(std::move(greenImage), {}));
sk_sp<SkImageFilter> merge(SkImageFilters::Merge(source, source));
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 1));
skif::Context ctx = make_context(100, 100, srcImg.get());
SkIPoint offset;
sk_sp<SkSpecialImage> resultImg(as_IFB(merge)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20);
}
DEF_TEST(ImageFilterMergeResultSize, reporter) {
test_imagefilter_merge_result_size(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_imagefilter_merge_result_size(reporter, ctxInfo.directContext());
}
static void draw_blurred_rect(SkCanvas* canvas) {
SkPaint filterPaint;
filterPaint.setColor(SK_ColorWHITE);
filterPaint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(8), 0, nullptr));
canvas->saveLayer(nullptr, &filterPaint);
SkPaint whitePaint;
whitePaint.setColor(SK_ColorWHITE);
canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint);
canvas->restore();
}
static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) {
canvas->save();
canvas->clipRect(clipRect);
canvas->drawPicture(picture);
canvas->restore();
}
DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) {
// Check that the blur filter when recorded with RTree acceleration,
// and drawn tiled (with subsequent clip rects) exactly
// matches the same filter drawn with without RTree acceleration.
// This tests that the "bleed" from the blur into the otherwise-blank
// tiles is correctly rendered.
// Tests pass by not asserting.
int width = 16, height = 8;
SkBitmap result1, result2;
result1.allocN32Pixels(width, height);
result2.allocN32Pixels(width, height);
SkCanvas canvas1(result1);
SkCanvas canvas2(result2);
int tileSize = 8;
canvas1.clear(0);
canvas2.clear(0);
SkRTreeFactory factory;
SkPictureRecorder recorder1, recorder2;
// The only difference between these two pictures is that one has RTree aceleration.
SkCanvas* recordingCanvas1 = recorder1.beginRecording(width, height);
SkCanvas* recordingCanvas2 = recorder2.beginRecording(width, height, &factory);
draw_blurred_rect(recordingCanvas1);
draw_blurred_rect(recordingCanvas2);
sk_sp<SkPicture> picture1(recorder1.finishRecordingAsPicture());
sk_sp<SkPicture> picture2(recorder2.finishRecordingAsPicture());
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize));
draw_picture_clipped(&canvas1, tileRect, picture1.get());
draw_picture_clipped(&canvas2, tileRect, picture2.get());
}
}
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(ImageFilterMatrixConvolution, reporter) {
// Check that a 1x3 filter does not cause a spurious assert.
SkScalar kernel[3] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(1, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kRepeat, false, nullptr));
SkBitmap result;
int width = 16, height = 16;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint paint;
paint.setImageFilter(std::move(filter));
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
canvas.drawRect(rect, paint);
}
DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) {
// Check that a filter with borders outside the target bounds
// does not crash.
SkScalar kernel[3] = {
0, 0, 0,
};
SkISize kernelSize = SkISize::Make(3, 1);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(2, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, kernel, gain, bias, kernelOffset, SkTileMode::kClamp, true, nullptr));
SkBitmap result;
int width = 10, height = 10;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint filterPaint;
filterPaint.setImageFilter(std::move(filter));
SkRect bounds = SkRect::MakeIWH(1, 10);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
SkPaint rectPaint;
canvas.saveLayer(&bounds, &filterPaint);
canvas.drawRect(rect, rectPaint);
canvas.restore();
}
static void test_big_kernel(skiatest::Reporter* reporter, GrRecordingContext* rContext) {
// Check that a kernel that is too big for the GPU still works
SkScalar identityKernel[49] = {
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0
};
SkISize kernelSize = SkISize::Make(7, 7);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
sk_sp<SkImageFilter> filter(SkImageFilters::MatrixConvolution(
kernelSize, identityKernel, gain, bias, kernelOffset,
SkTileMode::kClamp, true, nullptr));
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100));
SkASSERT(srcImg);
SkIPoint offset;
skif::Context ctx = make_context(100, 100, srcImg.get());
sk_sp<SkSpecialImage> resultImg(as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, SkToBool(rContext) == resultImg->isGaneshBacked());
REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100);
REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0);
}
DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) {
test_big_kernel(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_big_kernel(reporter, ctxInfo.directContext());
}
DEF_TEST(ImageFilterCropRect, reporter) {
test_cropRects(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_cropRects(reporter, ctxInfo.directContext());
}
DEF_TEST(ImageFilterMatrix, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
canvas.scale(SkIntToScalar(2), SkIntToScalar(2));
SkMatrix expectedMatrix = canvas.getTotalMatrix();
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory);
SkPaint paint;
paint.setImageFilter(sk_sp<SkImageFilter>(new MatrixTestImageFilter(reporter, expectedMatrix)));
recordingCanvas->saveLayer(nullptr, &paint);
SkPaint solidPaint;
solidPaint.setColor(0xFFFFFFFF);
recordingCanvas->save();
recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10));
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint);
recordingCanvas->restore(); // scale
recordingCanvas->restore(); // saveLayer
canvas.drawPicture(recorder.finishRecordingAsPicture());
}
static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter,
GrRecordingContext* rContext) {
sk_sp<SkPicture> picture;
{
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory);
// Create an SkPicture which simply draws a green 1x1 rectangle.
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint);
picture = recorder.finishRecordingAsPicture();
}
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 2));
sk_sp<SkImageFilter> imageFilter(SkImageFilters::Picture(picture));
SkIPoint offset;
skif::Context ctx = make_context(SkIRect::MakeXYWH(1,1,1,1), srcImg.get());
sk_sp<SkSpecialImage> resultImage(
as_IFB(imageFilter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, !resultImage);
}
DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) {
test_clipped_picture_imagefilter(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_clipped_picture_imagefilter(reporter, ctxInfo.directContext());
}
DEF_TEST(ImageFilterEmptySaveLayer, reporter) {
// Even when there's an empty saveLayer()/restore(), ensure that an image
// filter or color filter which affects transparent black still draws.
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
SkCanvas canvas(bitmap);
SkRTreeFactory factory;
SkPictureRecorder recorder;
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrc));
sk_sp<SkImageFilter> imageFilter(SkImageFilters::ColorFilter(green, nullptr));
SkPaint imageFilterPaint;
imageFilterPaint.setImageFilter(std::move(imageFilter));
SkPaint colorFilterPaint;
colorFilterPaint.setColorFilter(green);
SkRect bounds = SkRect::MakeIWH(10, 10);
SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory);
recordingCanvas->saveLayer(&bounds, &imageFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory);
recordingCanvas->saveLayer(nullptr, &imageFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture2(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture2);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory);
recordingCanvas->saveLayer(&bounds, &colorFilterPaint);
recordingCanvas->restore();
sk_sp<SkPicture> picture3(recorder.finishRecordingAsPicture());
canvas.clear(0);
canvas.drawPicture(picture3);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) {
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
// Check that a blur with a very large radius does not crash or assert.
SkPaint paint;
paint.setImageFilter(SkImageFilters::Blur(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr));
canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint);
}
DEF_TEST(HugeBlurImageFilter, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
test_huge_blur(&canvas, reporter);
}
DEF_TEST(ImageFilterMatrixConvolutionTest, reporter) {
SkScalar kernel[1] = { 0 };
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(1, 1);
// Check that an enormous (non-allocatable) kernel gives a nullptr filter.
sk_sp<SkImageFilter> conv(SkImageFilters::MatrixConvolution(
SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr));
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a nullptr kernel gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a kernel width < 1 gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(0, 1), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that kernel height < 1 gives a nullptr filter.
conv = SkImageFilters::MatrixConvolution(
SkISize::Make(1, -1), kernel, gain, bias, kernelOffset,
SkTileMode::kRepeat, false, nullptr);
REPORTER_ASSERT(reporter, nullptr == conv.get());
}
static void test_xfermode_cropped_input(SkSurface* surf, skiatest::Reporter* reporter) {
auto canvas = surf->getCanvas();
canvas->clear(SK_ColorRED);
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
bitmap.eraseARGB(255, 255, 255, 255);
sk_sp<SkColorFilter> green(SkColorFilters::Blend(SK_ColorGREEN, SkBlendMode::kSrcIn));
sk_sp<SkImageFilter> greenFilter(SkImageFilters::ColorFilter(green, nullptr));
SkIRect cropRect = SkIRect::MakeEmpty();
sk_sp<SkImageFilter> croppedOut(SkImageFilters::ColorFilter(green, nullptr, &cropRect));
// Check that an blend image filter whose input has been cropped out still draws the other
// input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning.
SkBlendMode mode = SkBlendMode::kSrcOver;
sk_sp<SkImageFilter> xfermodeNoFg(SkImageFilters::Blend(
mode, greenFilter, croppedOut, nullptr));
sk_sp<SkImageFilter> xfermodeNoBg(SkImageFilters::Blend(
mode, croppedOut, greenFilter, nullptr));
sk_sp<SkImageFilter> xfermodeNoFgNoBg(SkImageFilters::Blend(
mode, croppedOut, croppedOut, nullptr));
SkPaint paint;
paint.setImageFilter(std::move(xfermodeNoFg));
canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite
// xfermodeNoFg is a src-over blend between a green image and a transparent black image,
// so should just be green.
uint32_t pixel;
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// xfermodeNoBg is the reverse of the above, but because it's src-over the final blend
// between transparent black and green is still green.
canvas->clear(SK_ColorRED); // should be overwritten
paint.setImageFilter(std::move(xfermodeNoBg));
canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// xfermodeNoFgNoBg is a src-over blend of two empty images, so should produce no change
// to the image.
canvas->clear(SK_ColorRED); // should not be overwritten
paint.setImageFilter(std::move(xfermodeNoFgNoBg));
canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &paint); // drawSprite
surf->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorRED);
}
DEF_TEST(ImageFilterNestedSaveLayer, reporter) {
SkBitmap temp;
temp.allocN32Pixels(50, 50);
SkCanvas canvas(temp);
canvas.clear(0x0);
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
bitmap.eraseColor(SK_ColorGREEN);
SkMatrix matrix;
matrix.setScale(SkIntToScalar(2), SkIntToScalar(2));
matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20));
sk_sp<SkImageFilter> matrixFilter(
SkImageFilters::MatrixTransform(matrix, SkSamplingOptions(SkFilterMode::kLinear), nullptr));
// Test that saveLayer() with a filter nested inside another saveLayer() applies the
// correct offset to the filter matrix.
SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30);
canvas.saveLayer(&bounds1, nullptr);
SkPaint filterPaint;
filterPaint.setImageFilter(std::move(matrixFilter));
SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10);
canvas.saveLayer(&bounds2, &filterPaint);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
canvas.drawRect(bounds2, greenPaint);
canvas.restore();
canvas.restore();
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setColor(SK_ColorRED);
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
uint32_t pixel;
temp.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Test that drawSprite() with a filter nested inside a saveLayer() applies the
// correct offset to the filter matrix.
canvas.clear(0x0);
temp.readPixels(info, &pixel, 4, 25, 25);
canvas.saveLayer(&bounds1, nullptr);
canvas.drawImage(bitmap.asImage(), 20, 20, SkSamplingOptions(), &filterPaint); // drawSprite
canvas.restore();
temp.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(XfermodeImageFilterCroppedInput, reporter) {
test_xfermode_cropped_input(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100)).get(),
reporter);
}
static void test_composed_imagefilter_offset(skiatest::Reporter* reporter,
GrRecordingContext* rContext) {
sk_sp<SkSpecialImage> srcImg(create_empty_special_image(rContext, 100));
SkIRect cropRect = SkIRect::MakeXYWH(1, 0, 20, 20);
sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(0, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> blurFilter(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1,
nullptr, &cropRect));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(blurFilter),
std::move(offsetFilter)));
SkIPoint offset;
skif::Context ctx = make_context(100, 100, srcImg.get());
sk_sp<SkSpecialImage> resultImg(
as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, resultImg);
REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0);
}
DEF_TEST(ComposedImageFilterOffset, reporter) {
test_composed_imagefilter_offset(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_composed_imagefilter_offset(reporter, ctxInfo.directContext());
}
static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter,
GrDirectContext* dContext) {
// The bounds passed to the inner filter must be filtered by the outer
// filter, so that the inner filter produces the pixels that the outer
// filter requires as input. This matters if the outer filter moves pixels.
// Here, accounting for the outer offset is necessary so that the green
// pixels of the picture are not clipped.
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeIWH(200, 100));
recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100));
recordingCanvas->clear(SK_ColorGREEN);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
sk_sp<SkImageFilter> pictureFilter(SkImageFilters::Picture(picture));
SkIRect cropRect = SkIRect::MakeWH(100, 100);
sk_sp<SkImageFilter> offsetFilter(SkImageFilters::Offset(-100, 0, nullptr, &cropRect));
sk_sp<SkImageFilter> composedFilter(SkImageFilters::Compose(std::move(offsetFilter),
std::move(pictureFilter)));
sk_sp<SkSpecialImage> sourceImage(create_empty_special_image(dContext, 100));
skif::Context ctx = make_context(100, 100, sourceImage.get());
SkIPoint offset;
sk_sp<SkSpecialImage> result(
as_IFB(composedFilter)->filterImage(ctx).imageAndOffset(ctx, &offset));
REPORTER_ASSERT(reporter, offset.isZero());
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100));
SkBitmap resultBM;
REPORTER_ASSERT(reporter, special_image_to_bitmap(dContext, result.get(), &resultBM));
REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN);
}
DEF_TEST(ComposedImageFilterBounds, reporter) {
test_composed_imagefilter_bounds(reporter, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
test_composed_imagefilter_bounds(reporter, ctxInfo.directContext());
}
DEF_TEST(ImageFilterCanComputeFastBounds, reporter) {
{
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
sk_sp<SkImageFilter> lighting(SkImageFilters::PointLitDiffuse(
location, SK_ColorGREEN, 0, 0, nullptr));
REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds());
}
{
sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
{
SkColorFilter* grayCF;
REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF));
REPORTER_ASSERT(reporter, !as_CFB(grayCF)->affectsTransparentBlack());
grayCF->unref();
}
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
sk_sp<SkImageFilter> grayBlur(SkImageFilters::Blur(
SK_Scalar1, SK_Scalar1, std::move(gray)));
REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds());
}
{
float greenMatrix[20] = { 0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0f/255,
0, 0, 0, 0, 0,
0, 0, 0, 0, 1.0f/255
};
sk_sp<SkColorFilter> greenCF(SkColorFilters::Matrix(greenMatrix));
sk_sp<SkImageFilter> green(SkImageFilters::ColorFilter(greenCF, nullptr));
REPORTER_ASSERT(reporter, as_CFB(greenCF)->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !green->canComputeFastBounds());
sk_sp<SkImageFilter> greenBlur(SkImageFilters::Blur(SK_Scalar1, SK_Scalar1,
std::move(green)));
REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds());
}
uint8_t allOne[256], identity[256];
for (int i = 0; i < 256; ++i) {
identity[i] = i;
allOne[i] = 255;
}
sk_sp<SkColorFilter> identityCF(SkColorFilters::TableARGB(identity, identity,
identity, allOne));
sk_sp<SkImageFilter> identityFilter(SkImageFilters::ColorFilter(identityCF, nullptr));
REPORTER_ASSERT(reporter, !as_CFB(identityCF)->affectsTransparentBlack());
REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds());
sk_sp<SkColorFilter> forceOpaqueCF(SkColorFilters::TableARGB(allOne, identity,
identity, identity));
sk_sp<SkImageFilter> forceOpaque(SkImageFilters::ColorFilter(forceOpaqueCF, nullptr));
REPORTER_ASSERT(reporter, as_CFB(forceOpaqueCF)->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds());
}
// Verify that SkImageSource survives serialization
DEF_TEST(ImageFilterImageSourceSerialization, reporter) {
auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(10, 10)));
surface->getCanvas()->clear(SK_ColorGREEN);
sk_sp<SkImage> image(surface->makeImageSnapshot());
sk_sp<SkImageFilter> filter(SkImageFilters::Image(std::move(image), SkFilterMode::kNearest));
SkSerialProcs sProcs;
sProcs.fImageProc = [](SkImage* img, void*) -> sk_sp<SkData> {
return SkPngEncoder::Encode(as_IB(img)->directContext(), img, SkPngEncoder::Options{});
};
sk_sp<SkData> data(filter->serialize(&sProcs));
sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size());
REPORTER_ASSERT(reporter, unflattenedFilter);
SkBitmap bm;
bm.allocN32Pixels(10, 10);
bm.eraseColor(SK_ColorBLUE);
SkPaint paint;
paint.setColor(SK_ColorRED);
paint.setImageFilter(unflattenedFilter);
SkCanvas canvas(bm);
canvas.drawRect(SkRect::MakeIWH(10, 10), paint);
REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN));
}
DEF_TEST(ImageFilterImageSourceUninitialized, r) {
sk_sp<SkData> data(GetResourceAsData("crbug769134.fil"));
if (!data) {
return;
}
sk_sp<SkImageFilter> unflattenedFilter = SkImageFilter::Deserialize(data->data(), data->size());
// This will fail. More importantly, msan will verify that we did not
// compare against uninitialized memory.
REPORTER_ASSERT(r, !unflattenedFilter);
}
static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) {
SkBitmap largeBmp;
int largeW = 5000;
int largeH = 5000;
// If we're GPU-backed make the bitmap too large to be converted into a texture.
if (auto ctx = canvas->recordingContext()) {
largeW = ctx->priv().caps()->maxTextureSize() + 1;
}
largeBmp.allocN32Pixels(largeW, largeH);
largeBmp.eraseColor(0);
if (!largeBmp.getPixels()) {
ERRORF(reporter, "Failed to allocate large bmp.");
return;
}
sk_sp<SkImage> largeImage(largeBmp.asImage());
if (!largeImage) {
ERRORF(reporter, "Failed to create large image.");
return;
}
sk_sp<SkImageFilter> largeSource(SkImageFilters::Image(std::move(largeImage), {}));
if (!largeSource) {
ERRORF(reporter, "Failed to create large SkImageSource.");
return;
}
sk_sp<SkImageFilter> blur(SkImageFilters::Blur(10.f, 10.f, std::move(largeSource)));
if (!blur) {
ERRORF(reporter, "Failed to create SkBlurImageFilter.");
return;
}
SkPaint paint;
paint.setImageFilter(std::move(blur));
// This should not crash (http://crbug.com/570479).
canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint);
}
DEF_TEST(ImageFilterBlurLargeImage, reporter) {
auto surface(SkSurfaces::Raster(SkImageInfo::MakeN32Premul(100, 100)));
test_large_blur_input(reporter, surface->getCanvas());
}
static void test_make_with_filter(
skiatest::Reporter* reporter,
const std::function<sk_sp<SkSurface>(int width, int height)>& createSurface,
const std::function<sk_sp<SkImage>(sk_sp<SkImage> src,
const SkImageFilter* filter,
const SkIRect& subset,
const SkIRect& clipBounds,
SkIRect* outSubset,
SkIPoint* offset)>& makeWithFilter) {
sk_sp<SkSurface> surface(createSurface(192, 128));
surface->getCanvas()->clear(SK_ColorRED);
SkPaint bluePaint;
bluePaint.setColor(SK_ColorBLUE);
SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50);
surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint);
sk_sp<SkImage> sourceImage = surface->makeImageSnapshot();
sk_sp<SkImageFilter> filter = make_grayscale(nullptr, nullptr);
SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100);
SkIRect outSubset;
SkIPoint offset;
sk_sp<SkImage> result;
result = makeWithFilter(sourceImage, nullptr, subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result); // filter is required
result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, nullptr, &offset);
REPORTER_ASSERT(reporter, !result); // outSubset is required
result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, nullptr);
REPORTER_ASSERT(reporter, !result); // offset is required
SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000);
result = makeWithFilter(sourceImage, filter.get(), bigSubset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result); // subset needs to be w/in source's bounds
const SkIRect kEmpty = SkIRect::MakeEmpty();
result = makeWithFilter(sourceImage, filter.get(), kEmpty, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result); // subset can't be empty
result = makeWithFilter(sourceImage, filter.get(), subset, kEmpty, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result); // clipBounds can't be empty
const SkIRect kLeftField = SkIRect::MakeXYWH(-1000, 0, 100, 100);
result = makeWithFilter(sourceImage, filter.get(), subset, kLeftField, &outSubset, &offset);
REPORTER_ASSERT(reporter, !result);
result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, result);
REPORTER_ASSERT(reporter, result->bounds().contains(outSubset));
SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(),
outSubset.width(), outSubset.height());
REPORTER_ASSERT(reporter, clipBounds.contains(destRect));
// In GPU-mode, this case creates a special image with a backing size that differs from
// the content size
{
clipBounds.setXYWH(0, 0, 170, 100);
subset.setXYWH(0, 0, 160, 90);
filter = SkImageFilters::Blend(SkBlendMode::kSrcOver, nullptr);
result = makeWithFilter(sourceImage, filter.get(), subset, clipBounds, &outSubset, &offset);
REPORTER_ASSERT(reporter, result);
// In Ganesh, we want the result image (and all intermediate steps) to have used the same
// origin as the original surface.
if (result && as_IB(result)->isGaneshBacked()) {
SkImage_GaneshBase* base = static_cast<SkImage_GaneshBase*>(result.get());
REPORTER_ASSERT(reporter, base->origin() == kTestSurfaceOrigin);
}
}
}
DEF_TEST(ImageFilterMakeWithFilter, reporter) {
auto createRasterSurface = [](int width, int height) -> sk_sp<SkSurface> {
const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType);
return SkSurfaces::Raster(info);
};
auto raster = [](sk_sp<SkImage> src,
const SkImageFilter* filter,
const SkIRect& subset,
const SkIRect& clipBounds,
SkIRect* outSubset,
SkIPoint* offset) -> sk_sp<SkImage> {
return SkImages::MakeWithFilter(std::move(src),
filter,
subset,
clipBounds,
outSubset,
offset);
};
test_make_with_filter(reporter, createRasterSurface, raster);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Ganesh,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
GrRecordingContext* rContext = ctxInfo.directContext();
auto createGaneshSurface = [rContext](int width, int height) -> sk_sp<SkSurface> {
const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType);
return SkSurfaces::RenderTarget(
rContext, skgpu::Budgeted::kNo, info, 0, kTestSurfaceOrigin, nullptr);
};
auto ganesh = [rContext](sk_sp<SkImage> src,
const SkImageFilter* filter,
const SkIRect& subset,
const SkIRect& clipBounds,
SkIRect* outSubset,
SkIPoint* offset) -> sk_sp<SkImage> {
return SkImages::MakeWithFilter(rContext,
std::move(src),
filter,
subset,
clipBounds,
outSubset,
offset);
};
test_make_with_filter(reporter, createGaneshSurface, ganesh);
}
#if defined(SK_GRAPHITE)
DEF_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Graphite,
reporter,
context,
CtsEnforcement::kNextRelease) {
std::unique_ptr<skgpu::graphite::Recorder> recorder =
context->makeRecorder(ToolUtils::CreateTestingRecorderOptions());
auto createGraphiteSurface = [r = recorder.get()](int width, int height) -> sk_sp<SkSurface> {
const SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType);
return SkSurfaces::RenderTarget(r, info);
};
auto graphite = [r = recorder.get()](sk_sp<SkImage> src,
const SkImageFilter* filter,
const SkIRect& subset,
const SkIRect& clipBounds,
SkIRect* outSubset,
SkIPoint* offset) -> sk_sp<SkImage> {
return SkImages::MakeWithFilter(r,
std::move(src),
filter,
subset,
clipBounds,
outSubset,
offset);
};
test_make_with_filter(reporter, createGraphiteSurface, graphite);
}
#endif
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
sk_sp<SkSurface> surf(SkSurfaces::RenderTarget(
ctxInfo.directContext(), skgpu::Budgeted::kNo, SkImageInfo::MakeN32Premul(100, 100)));
SkCanvas* canvas = surf->getCanvas();
test_huge_blur(canvas, reporter);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
sk_sp<SkSurface> surf(SkSurfaces::RenderTarget(
ctxInfo.directContext(),
skgpu::Budgeted::kNo,
SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType)));
test_xfermode_cropped_input(surf.get(), reporter);
}
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
auto surface(SkSurfaces::RenderTarget(
ctxInfo.directContext(),
skgpu::Budgeted::kYes,
SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType)));
test_large_blur_input(reporter, surface->getCanvas());
}
/*
* Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more
* than just scale/translate, but that other filters do.
*/
DEF_TEST(ImageFilterComplexCTM, reporter) {
// just need a colorfilter to exercise the corresponding imagefilter
sk_sp<SkColorFilter> cf = SkColorFilters::Blend(SK_ColorRED, SkBlendMode::kSrcATop);
sk_sp<SkImageFilter> cfif = SkImageFilters::ColorFilter(cf, nullptr); // can handle
sk_sp<SkImageFilter> blif = SkImageFilters::Blur(3, 3, nullptr); // cannot handle
using MatrixCapability = SkImageFilter_Base::MatrixCapability;
struct {
sk_sp<SkImageFilter> fFilter;
MatrixCapability fExpectCapability;
} recs[] = {
{ cfif, MatrixCapability::kComplex },
{ SkImageFilters::ColorFilter(cf, cfif), MatrixCapability::kComplex },
{ SkImageFilters::Merge(cfif, cfif), MatrixCapability::kComplex },
{ SkImageFilters::Compose(cfif, cfif), MatrixCapability::kComplex },
{ blif, MatrixCapability::kScaleTranslate },
{ SkImageFilters::Blur(3, 3, cfif), MatrixCapability::kScaleTranslate },
{ SkImageFilters::ColorFilter(cf, blif), MatrixCapability::kScaleTranslate },
{ SkImageFilters::Merge(cfif, blif), MatrixCapability::kScaleTranslate },
{ SkImageFilters::Compose(blif, cfif), MatrixCapability::kScaleTranslate },
};
for (const auto& rec : recs) {
const MatrixCapability capability = as_IFB(rec.fFilter)->getCTMCapability();
REPORTER_ASSERT(reporter, capability == rec.fExpectCapability);
}
}
// Test SkXfermodeImageFilter::filterBounds with different blending modes.
DEF_TEST(XfermodeImageFilterBounds, reporter) {
SkIRect background_rect = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect foreground_rect = SkIRect::MakeXYWH(50, 50, 100, 100);
sk_sp<SkImageFilter> background = SkImageFilters::Crop(SkRect::Make(background_rect), nullptr);
sk_sp<SkImageFilter> foreground = SkImageFilters::Crop(SkRect::Make(foreground_rect), nullptr);
SkIRect expectedBounds[kSkBlendModeCount];
// Expect union of input rects by default.
for (int i = 0; i < kSkBlendModeCount; ++i) {
expectedBounds[i] = background_rect;
expectedBounds[i].join(foreground_rect);
}
SkIRect intersection = background_rect;
intersection.intersect(foreground_rect);
expectedBounds[static_cast<int>(SkBlendMode::kClear)] = SkIRect::MakeEmpty();
expectedBounds[static_cast<int>(SkBlendMode::kSrc)] = foreground_rect;
expectedBounds[static_cast<int>(SkBlendMode::kDst)] = background_rect;
expectedBounds[static_cast<int>(SkBlendMode::kSrcIn)] = intersection;
expectedBounds[static_cast<int>(SkBlendMode::kDstIn)] = intersection;
expectedBounds[static_cast<int>(SkBlendMode::kSrcOut)] = foreground_rect;
expectedBounds[static_cast<int>(SkBlendMode::kDstOut)] = background_rect;
expectedBounds[static_cast<int>(SkBlendMode::kSrcATop)] = background_rect;
expectedBounds[static_cast<int>(SkBlendMode::kDstATop)] = foreground_rect;
expectedBounds[static_cast<int>(SkBlendMode::kModulate)] = intersection;
// Use a very large input bounds so that the crop rects stored in 'background' and 'foreground'
// aren't restricted.
SkIRect src = SkRectPriv::MakeILarge();
for (int i = 0; i < kSkBlendModeCount; ++i) {
sk_sp<SkImageFilter> xfermode(SkImageFilters::Blend(static_cast<SkBlendMode>(i),
background, foreground, nullptr));
auto bounds = xfermode->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, bounds == expectedBounds[i]);
}
// Test empty intersection.
sk_sp<SkImageFilter> background2 =
SkImageFilters::Crop(SkRect::MakeXYWH(0, 0, 20, 20), nullptr);
sk_sp<SkImageFilter> foreground2 =
SkImageFilters::Crop(SkRect::MakeXYWH(40, 40, 50, 50), nullptr);
sk_sp<SkImageFilter> xfermode(SkImageFilters::Blend(
SkBlendMode::kSrcIn, std::move(background2), std::move(foreground2), nullptr));
auto bounds = xfermode->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, bounds.isEmpty());
}
DEF_TEST(OffsetImageFilterBounds, reporter) {
const SkIRect src = SkIRect::MakeXYWH(0, 0, 100, 100);
const SkVector srcOffset = {-50.5f, -50.5f};
sk_sp<SkImageFilter> offset(SkImageFilters::Offset(srcOffset.fX, srcOffset.fY, nullptr));
// Because the offset has a fractional component, the final output and required input bounds
// will be rounded out to include an extra pixel.
SkIRect expectedForward = SkRect::Make(src).makeOffset(srcOffset.fX, srcOffset.fY).roundOut();
SkIRect boundsForward = offset->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, boundsForward == expectedForward);
SkIRect expectedReverse = SkRect::Make(src).makeOffset(-srcOffset.fX, -srcOffset.fY).roundOut();
// Intersect 'expectedReverse' with the source because we are passing &src in as the known
// input bounds, which is the bounds of non-transparent pixels that can be moved by the offset.
// While the ::Offset filter could show all pixels inside 'expectedReverse' given that 'src'
// is also the target device output of the filter, the required input can be made tighter.
SkAssertResult(expectedReverse.intersect(src));
SkIRect boundsReverse = offset->filterBounds(src, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &src);
REPORTER_ASSERT(reporter, boundsReverse == expectedReverse);
}
DEF_TEST(OffsetImageFilterBoundsNoOverflow, reporter) {
const SkIRect src = SkIRect::MakeXYWH(-10.f, -10.f, 20.f, 20.f);
const SkScalar bigOffset = SkIntToScalar(std::numeric_limits<int>::max()) * 2.f / 3.f;
sk_sp<SkImageFilter> filter =
SkImageFilters::Blend(SkBlendMode::kSrcOver,
SkImageFilters::Offset(-bigOffset, -bigOffset, nullptr),
SkImageFilters::Offset(bigOffset, bigOffset, nullptr));
SkIRect boundsForward = filter->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
// NOTE: isEmpty() will return true even if the l/r or t/b didn't overflow but the dimensions
// would overflow an int32. However, when isEmpty64() is false, it means the actual edge coords
// are valid, which is good enough for our purposes (and gfx::Rect has its own strategies for
// ensuring such a rectangle doesn't get accidentally treated as empty during chromium's
// conversions).
REPORTER_ASSERT(reporter, !boundsForward.isEmpty64());
// When querying with unbounded input content, it should not overflow and should not be empty.
SkIRect boundsReverse = filter->filterBounds(src, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, nullptr);
REPORTER_ASSERT(reporter, !boundsReverse.isEmpty64());
// However in this case, when 'src' is also passed as the content bounds, the ::Offset() filters
// detect that they would be transparent black. This propagates up to the src-over blend and
// the entire graph is identified as empty.
boundsReverse = filter->filterBounds(src, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &src);
REPORTER_ASSERT(reporter, boundsReverse.isEmpty64());
}
static void test_arithmetic_bounds(skiatest::Reporter* reporter, float k1, float k2, float k3,
float k4, sk_sp<SkImageFilter> background,
sk_sp<SkImageFilter> foreground,
const SkIRect* crop, const SkIRect& expected) {
sk_sp<SkImageFilter> arithmetic(SkImageFilters::Arithmetic(
k1, k2, k3, k4, false, std::move(background), std::move(foreground), crop));
// Use a very large input bounds so that the crop rects stored in 'background' and 'foreground'
// aren't restricted.
SkIRect src = SkRectPriv::MakeILarge();
SkIRect bounds = arithmetic->filterBounds(src, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr);
REPORTER_ASSERT(reporter, expected == bounds);
}
static void test_arithmetic_combinations(skiatest::Reporter* reporter, float v) {
SkIRect bgRect = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect fgRect = SkIRect::MakeXYWH(50, 50, 100, 100);
sk_sp<SkImageFilter> background = SkImageFilters::Crop(SkRect::Make(bgRect), nullptr);
sk_sp<SkImageFilter> foreground = SkImageFilters::Crop(SkRect::Make(fgRect), nullptr);
SkIRect unionRect = bgRect;
unionRect.join(fgRect);
SkIRect intersection = bgRect;
intersection.intersect(fgRect);
// Test with crop. When k4 is non-zero, the result is expected to be cropRect
// regardless of inputs because the filter affects the whole crop area. When there is no crop
// rect, it should report an effectively infinite output.
static const SkIRect kInf = SkRectPriv::MakeILarge();
test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, nullptr,
SkIRect::MakeEmpty());
test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, nullptr, bgRect);
test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, nullptr, fgRect);
test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, nullptr, intersection);
test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, nullptr, bgRect);
test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, nullptr, fgRect);
test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, nullptr, kInf);
test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, nullptr, unionRect);
test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, nullptr, kInf);
SkIRect cropRect = SkIRect::MakeXYWH(-111, -222, 333, 444);
test_arithmetic_bounds(reporter, 0, 0, 0, 0, background, foreground, &cropRect,
SkIRect::MakeEmpty());
test_arithmetic_bounds(reporter, 0, 0, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, 0, v, 0, background, foreground, &cropRect, bgRect);
test_arithmetic_bounds(reporter, 0, 0, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, v, 0, 0, background, foreground, &cropRect, fgRect);
test_arithmetic_bounds(reporter, 0, v, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, 0, v, v, 0, background, foreground, &cropRect, unionRect);
test_arithmetic_bounds(reporter, 0, v, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, 0, 0, 0, background, foreground, &cropRect, intersection);
test_arithmetic_bounds(reporter, v, 0, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, 0, v, 0, background, foreground, &cropRect, bgRect);
test_arithmetic_bounds(reporter, v, 0, v, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, v, 0, 0, background, foreground, &cropRect, fgRect);
test_arithmetic_bounds(reporter, v, v, 0, v, background, foreground, &cropRect, cropRect);
test_arithmetic_bounds(reporter, v, v, v, 0, background, foreground, &cropRect, unionRect);
test_arithmetic_bounds(reporter, v, v, v, v, background, foreground, &cropRect, cropRect);
}
// Test SkArithmeticImageFilter::filterBounds with different blending modes.
DEF_TEST(ArithmeticImageFilterBounds, reporter) {
test_arithmetic_combinations(reporter, 1);
test_arithmetic_combinations(reporter, 0.5);
}
// Test SkDisplacementMapEffect::filterBounds.
DEF_TEST(DisplacementMapBounds, reporter) {
SkIRect floodBounds(SkIRect::MakeXYWH(20, 30, 10, 10));
sk_sp<SkImageFilter> flood(SkImageFilters::Shader(SkShaders::Color(SK_ColorGREEN),
&floodBounds));
SkIRect tilingBounds(SkIRect::MakeXYWH(0, 0, 200, 100));
sk_sp<SkImageFilter> tiling(SkImageFilters::Tile(SkRect::Make(floodBounds),
SkRect::Make(tilingBounds),
flood));
sk_sp<SkImageFilter> displace(SkImageFilters::DisplacementMap(SkColorChannel::kR,
SkColorChannel::kB,
20.0f, nullptr, tiling));
// The filter graph rooted at 'displace' uses the dynamic source image for the displacement
// component of ::DisplacementMap, modifying the color component produced by the ::Tile. The
// output of the tiling filter will be 'tilingBounds', regardless of its input, so 'floodBounds'
// has no effect on the output. Since 'tiling' doesn't reference any dynamic source image, it
// also will not affect the required input bounds. The displacement map is sampled 1-to-1
// with the output pixels, and covers the output unless the color's output makes that impossible
// and the output is a subset of the desired output. Thus, the displacement can impact the
// reported output bounds.
SkIRect input(SkIRect::MakeXYWH(20, 30, 40, 50));
// 'input' is the desired output, which directly constrains the displacement component in this
// specific filter graph.
SkIRect actualInput = displace->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection);
REPORTER_ASSERT(reporter, input == actualInput);
// 'input' is the content bounds, which don't affect output bounds because it's only referenced
// by the displacement component and not the color component.
SkIRect actualOutput = displace->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, tilingBounds.makeOutset(10, 10) == actualOutput);
}
// Test SkImageSource::filterBounds.
DEF_TEST(ImageSourceBounds, reporter) {
sk_sp<SkImage> image(make_gradient_circle(64, 64).asImage());
// Default src and dst rects.
sk_sp<SkImageFilter> source1(SkImageFilters::Image(image, SkFilterMode::kNearest));
SkIRect imageBounds = SkIRect::MakeWH(64, 64);
SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40));
REPORTER_ASSERT(reporter,
imageBounds == source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
SkMatrix scale(SkMatrix::Scale(2, 2));
SkIRect scaledBounds = SkIRect::MakeWH(128, 128);
REPORTER_ASSERT(reporter,
scaledBounds == source1->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source1->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
// Specified src and dst rects (which are outside available pixels).
SkRect src(SkRect::MakeXYWH(0.5, 0.5, 100.5, 100.5));
SkRect dst(SkRect::MakeXYWH(-10.5, -10.5, 120.5, 120.5));
sk_sp<SkImageFilter> source2(SkImageFilters::Image(image, src, dst,
SkSamplingOptions(SkFilterMode::kLinear,
SkMipmapMode::kLinear)));
SkRect clippedSrc = src;
SkAssertResult(clippedSrc.intersect(SkRect::Make(image->dimensions())));
SkRect clippedDst = SkMatrix::RectToRect(src, dst).mapRect(clippedSrc);
REPORTER_ASSERT(reporter,
clippedDst.roundOut() ==
source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection, nullptr));
REPORTER_ASSERT(reporter,
source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
scale.mapRect(&clippedDst);
scale.mapRect(&clippedSrc);
REPORTER_ASSERT(reporter,
clippedDst.roundOut() ==
source2->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection, nullptr));
REPORTER_ASSERT(reporter,
source2->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
}
// Test SkPictureImageFilter::filterBounds.
DEF_TEST(PictureImageSourceBounds, reporter) {
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(64, 64);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
// Default target rect.
sk_sp<SkImageFilter> source1(SkImageFilters::Picture(picture));
SkIRect pictureBounds = SkIRect::MakeWH(64, 64);
SkIRect input(SkIRect::MakeXYWH(10, 20, 30, 40));
REPORTER_ASSERT(reporter,
pictureBounds == source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source1->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
SkMatrix scale(SkMatrix::Scale(2, 2));
SkIRect scaledPictureBounds = SkIRect::MakeWH(128, 128);
REPORTER_ASSERT(reporter,
scaledPictureBounds == source1->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source1->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
// Specified target rect.
SkRect targetRect(SkRect::MakeXYWH(9.5, 9.5, 31, 21));
sk_sp<SkImageFilter> source2(SkImageFilters::Picture(picture, targetRect));
REPORTER_ASSERT(reporter,
targetRect.roundOut() == source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source2->filterBounds(input, SkMatrix::I(),
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
scale.mapRect(&targetRect);
REPORTER_ASSERT(reporter,
targetRect.roundOut() == source2->filterBounds(input, scale,
SkImageFilter::kForward_MapDirection,
nullptr));
REPORTER_ASSERT(reporter,
source2->filterBounds(input, scale,
SkImageFilter::kReverse_MapDirection, &input).isEmpty());
}
DEF_TEST(DropShadowImageFilter_Huge, reporter) {
// Successful if it doesn't crash or trigger ASAN. (crbug.com/1264705)
auto surf = SkSurfaces::Raster(SkImageInfo::MakeN32Premul(300, 150));
SkPaint paint;
paint.setImageFilter(SkImageFilters::DropShadowOnly(
0.0f, 0.437009f, 14129.6f, 14129.6f, SK_ColorGRAY, nullptr));
surf->getCanvas()->saveLayer(nullptr, &paint);
surf->getCanvas()->restore();
}