| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBlitRow.h" |
| #include "SkBlitMask.h" |
| #include "SkColorPriv.h" |
| #include "SkUtils.h" |
| |
| #define UNROLL |
| |
| static void S32_Opaque_BlitRow32(SkPMColor* SK_RESTRICT dst, |
| const SkPMColor* SK_RESTRICT src, |
| int count, U8CPU alpha) { |
| SkASSERT(255 == alpha); |
| sk_memcpy32(dst, src, count); |
| } |
| |
| static void S32_Blend_BlitRow32(SkPMColor* SK_RESTRICT dst, |
| const SkPMColor* SK_RESTRICT src, |
| int count, U8CPU alpha) { |
| SkASSERT(alpha <= 255); |
| if (count > 0) { |
| unsigned src_scale = SkAlpha255To256(alpha); |
| unsigned dst_scale = 256 - src_scale; |
| |
| #ifdef UNROLL |
| if (count & 1) { |
| *dst = SkAlphaMulQ(*(src++), src_scale) + SkAlphaMulQ(*dst, dst_scale); |
| dst += 1; |
| count -= 1; |
| } |
| |
| const SkPMColor* SK_RESTRICT srcEnd = src + count; |
| while (src != srcEnd) { |
| *dst = SkAlphaMulQ(*(src++), src_scale) + SkAlphaMulQ(*dst, dst_scale); |
| dst += 1; |
| *dst = SkAlphaMulQ(*(src++), src_scale) + SkAlphaMulQ(*dst, dst_scale); |
| dst += 1; |
| } |
| #else |
| do { |
| *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale); |
| src += 1; |
| dst += 1; |
| } while (--count > 0); |
| #endif |
| } |
| } |
| |
| static void S32A_Opaque_BlitRow32(SkPMColor* SK_RESTRICT dst, |
| const SkPMColor* SK_RESTRICT src, |
| int count, U8CPU alpha) { |
| SkASSERT(255 == alpha); |
| if (count > 0) { |
| #ifdef UNROLL |
| if (count & 1) { |
| *dst = SkPMSrcOver(*(src++), *dst); |
| dst += 1; |
| count -= 1; |
| } |
| |
| const SkPMColor* SK_RESTRICT srcEnd = src + count; |
| while (src != srcEnd) { |
| *dst = SkPMSrcOver(*(src++), *dst); |
| dst += 1; |
| *dst = SkPMSrcOver(*(src++), *dst); |
| dst += 1; |
| } |
| #else |
| do { |
| *dst = SkPMSrcOver(*src, *dst); |
| src += 1; |
| dst += 1; |
| } while (--count > 0); |
| #endif |
| } |
| } |
| |
| static void S32A_Blend_BlitRow32(SkPMColor* SK_RESTRICT dst, |
| const SkPMColor* SK_RESTRICT src, |
| int count, U8CPU alpha) { |
| SkASSERT(alpha <= 255); |
| if (count > 0) { |
| #ifdef UNROLL |
| if (count & 1) { |
| *dst = SkBlendARGB32(*(src++), *dst, alpha); |
| dst += 1; |
| count -= 1; |
| } |
| |
| const SkPMColor* SK_RESTRICT srcEnd = src + count; |
| while (src != srcEnd) { |
| *dst = SkBlendARGB32(*(src++), *dst, alpha); |
| dst += 1; |
| *dst = SkBlendARGB32(*(src++), *dst, alpha); |
| dst += 1; |
| } |
| #else |
| do { |
| *dst = SkBlendARGB32(*src, *dst, alpha); |
| src += 1; |
| dst += 1; |
| } while (--count > 0); |
| #endif |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const SkBlitRow::Proc32 gDefault_Procs32[] = { |
| S32_Opaque_BlitRow32, |
| S32_Blend_BlitRow32, |
| S32A_Opaque_BlitRow32, |
| S32A_Blend_BlitRow32 |
| }; |
| |
| SkBlitRow::Proc32 SkBlitRow::Factory32(unsigned flags) { |
| SkASSERT(flags < SK_ARRAY_COUNT(gDefault_Procs32)); |
| // just so we don't crash |
| flags &= kFlags32_Mask; |
| |
| SkBlitRow::Proc32 proc = PlatformProcs32(flags); |
| if (NULL == proc) { |
| proc = gDefault_Procs32[flags]; |
| } |
| SkASSERT(proc); |
| return proc; |
| } |
| |
| // Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp. |
| // It's not quite perfect, but it's never wrong in the interesting edge cases, |
| // and it's quite a bit faster than blend_perfect. |
| // |
| // blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one. |
| void SkBlitRow::Color32(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) { |
| switch (SkGetPackedA32(color)) { |
| case 0: memmove(dst, src, count * sizeof(SkPMColor)); return; |
| case 255: sk_memset32(dst, color, count); return; |
| } |
| |
| unsigned invA = 255 - SkGetPackedA32(color); |
| invA += invA >> 7; |
| SkASSERT(invA < 256); // We've already handled alpha == 0 above. |
| |
| #if defined(SK_ARM_HAS_NEON) |
| uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8); |
| uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128)); |
| uint8x8_t invA8 = vdup_n_u8(invA); |
| |
| // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels. |
| auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t { |
| uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8), |
| hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8); |
| return (uint32x4_t) |
| vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi)); |
| }; |
| |
| while (count >= 8) { |
| uint32x4_t dst0 = kernel(vld1q_u32(src+0)), |
| dst4 = kernel(vld1q_u32(src+4)); |
| vst1q_u32(dst+0, dst0); |
| vst1q_u32(dst+4, dst4); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| if (count >= 4) { |
| vst1q_u32(dst, kernel(vld1q_u32(src))); |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| if (count >= 2) { |
| uint32x2_t src2 = vld1_u32(src); |
| vst1_u32(dst, vget_low_u32(kernel(vcombine_u32(src2, src2)))); |
| src += 2; |
| dst += 2; |
| count -= 2; |
| } |
| if (count >= 1) { |
| vst1q_lane_u32(dst, kernel(vdupq_n_u32(*src)), 0); |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| __m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color)); |
| __m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128)); |
| __m128i invA16 = _mm_set1_epi16(invA); |
| |
| // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels. |
| auto kernel = [&](const __m128i& src4) -> __m128i { |
| __m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())), |
| hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128())); |
| return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8), |
| _mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8)); |
| }; |
| |
| while (count >= 8) { |
| __m128i dst0 = kernel(_mm_loadu_si128((const __m128i*)(src+0))), |
| dst4 = kernel(_mm_loadu_si128((const __m128i*)(src+4))); |
| _mm_storeu_si128((__m128i*)(dst+0), dst0); |
| _mm_storeu_si128((__m128i*)(dst+4), dst4); |
| src += 8; |
| dst += 8; |
| count -= 8; |
| } |
| if (count >= 4) { |
| _mm_storeu_si128((__m128i*)dst, kernel(_mm_loadu_si128((const __m128i*)src))); |
| src += 4; |
| dst += 4; |
| count -= 4; |
| } |
| if (count >= 2) { |
| _mm_storel_epi64((__m128i*)dst, kernel(_mm_loadl_epi64((const __m128i*)src))); |
| src += 2; |
| dst += 2; |
| count -= 2; |
| } |
| if (count >= 1) { |
| *dst = _mm_cvtsi128_si32(kernel(_mm_cvtsi32_si128(*src))); |
| } |
| #else // Neither NEON nor SSE2. |
| unsigned round = (128 << 16) + (128 << 0); |
| |
| while (count --> 0) { |
| // Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers. |
| const uint32_t mask = 0x00FF00FF; |
| uint32_t rb = (((*src >> 0) & mask) * invA + round) >> 8, // _r_b |
| ag = (((*src >> 8) & mask) * invA + round) >> 0; // a_g_ |
| *dst = color + ((rb & mask) | (ag & ~mask)); |
| src++; |
| dst++; |
| } |
| #endif |
| } |
| |