|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "CurveIntersection.h" | 
|  | #include "LineUtilities.h" | 
|  |  | 
|  | bool implicitLine(const _Line& line, double& slope, double& axisIntercept) { | 
|  | _Point delta; | 
|  | tangent(line, delta); | 
|  | bool moreHorizontal = fabs(delta.x) > fabs(delta.y); | 
|  | if (moreHorizontal) { | 
|  | slope = delta.y / delta.x; | 
|  | axisIntercept = line[0].y - slope * line[0].x; | 
|  | } else { | 
|  | slope = delta.x / delta.y; | 
|  | axisIntercept = line[0].x - slope * line[0].y; | 
|  | } | 
|  | return moreHorizontal; | 
|  | } | 
|  |  | 
|  | int reduceOrder(const _Line& line, _Line& reduced) { | 
|  | reduced[0] = line[0]; | 
|  | int different = line[0] != line[1]; | 
|  | reduced[1] = line[different]; | 
|  | return 1 + different; | 
|  | } | 
|  |  | 
|  | void sub_divide(const _Line& line, double t1, double t2, _Line& dst) { | 
|  | _Point delta; | 
|  | tangent(line, delta); | 
|  | dst[0].x = line[0].x - t1 * delta.x; | 
|  | dst[0].y = line[0].y - t1 * delta.y; | 
|  | dst[1].x = line[0].x - t2 * delta.x; | 
|  | dst[1].y = line[0].y - t2 * delta.y; | 
|  | } | 
|  |  | 
|  | // may have this below somewhere else already: | 
|  | // copying here because I thought it was clever | 
|  |  | 
|  | // Copyright 2001, softSurfer (www.softsurfer.com) | 
|  | // This code may be freely used and modified for any purpose | 
|  | // providing that this copyright notice is included with it. | 
|  | // SoftSurfer makes no warranty for this code, and cannot be held | 
|  | // liable for any real or imagined damage resulting from its use. | 
|  | // Users of this code must verify correctness for their application. | 
|  |  | 
|  | // Assume that a class is already given for the object: | 
|  | //    Point with coordinates {float x, y;} | 
|  | //=================================================================== | 
|  |  | 
|  | // isLeft(): tests if a point is Left|On|Right of an infinite line. | 
|  | //    Input:  three points P0, P1, and P2 | 
|  | //    Return: >0 for P2 left of the line through P0 and P1 | 
|  | //            =0 for P2 on the line | 
|  | //            <0 for P2 right of the line | 
|  | //    See: the January 2001 Algorithm on Area of Triangles | 
|  | //    return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); | 
|  | double is_left(const _Line& line, const _Point& pt) { | 
|  | _Vector P0 = line[1] - line[0]; | 
|  | _Vector P2 = pt - line[0]; | 
|  | return P0.cross(P2); | 
|  | } | 
|  |  | 
|  | double t_at(const _Line& line, const _Point& pt) { | 
|  | double dx = line[1].x - line[0].x; | 
|  | double dy = line[1].y - line[0].y; | 
|  | if (fabs(dx) > fabs(dy)) { | 
|  | if (approximately_zero(dx)) { | 
|  | return 0; | 
|  | } | 
|  | return (pt.x - line[0].x) / dx; | 
|  | } | 
|  | if (approximately_zero(dy)) { | 
|  | return 0; | 
|  | } | 
|  | return (pt.y - line[0].y) / dy; | 
|  | } | 
|  |  | 
|  | static void setMinMax(double x, int flags, double& minX, double& maxX) { | 
|  | if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) { | 
|  | minX = x; | 
|  | } | 
|  | if (maxX < x && (flags & (kFindTopMax | kFindBottomMax))) { | 
|  | maxX = x; | 
|  | } | 
|  | } | 
|  |  | 
|  | void x_at(const _Point& p1, const _Point& p2, double top, double bottom, | 
|  | int flags, double& minX, double& maxX) { | 
|  | if (AlmostEqualUlps(p1.y, p2.y)) { | 
|  | // It should be OK to bail early in this case. There's another edge | 
|  | // which shares this end point which can intersect without failing to | 
|  | // have a slope ... maybe | 
|  | return; | 
|  | } | 
|  |  | 
|  | // p2.x is always greater than p1.x -- the part of points (p1, p2) are | 
|  | // moving from the start of the cubic towards its end. | 
|  | // if p1.y < p2.y, minX can be affected | 
|  | // if p1.y > p2.y, maxX can be affected | 
|  | double slope = (p2.x - p1.x) / (p2.y - p1.y); | 
|  | int topFlags = flags & (kFindTopMin | kFindTopMax); | 
|  | if (topFlags && ((top <= p1.y && top >= p2.y) | 
|  | || (top >= p1.y && top <= p2.y))) { | 
|  | double x = p1.x + (top - p1.y) * slope; | 
|  | setMinMax(x, topFlags, minX, maxX); | 
|  | } | 
|  | int bottomFlags = flags & (kFindBottomMin | kFindBottomMax); | 
|  | if (bottomFlags && ((bottom <= p1.y && bottom >= p2.y) | 
|  | || (bottom >= p1.y && bottom <= p2.y))) { | 
|  | double x = p1.x + (bottom - p1.y) * slope; | 
|  | setMinMax(x, bottomFlags, minX, maxX); | 
|  | } | 
|  | } | 
|  |  | 
|  | void xy_at_t(const _Line& line, double t, double& x, double& y) { | 
|  | double one_t = 1 - t; | 
|  | if (&x) { | 
|  | x = one_t * line[0].x + t * line[1].x; | 
|  | } | 
|  | if (&y) { | 
|  | y = one_t * line[0].y + t * line[1].y; | 
|  | } | 
|  | } | 
|  |  | 
|  | _Point xy_at_t(const _Line& line, double t) { | 
|  | double one_t = 1 - t; | 
|  | _Point result = { one_t * line[0].x + t * line[1].x, one_t * line[0].y + t * line[1].y }; | 
|  | return result; | 
|  | } |