blob: 91e54fbe998ca6a6160fe08aa0ddbefea78046d9 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLinearBitmapPipeline.h"
#include "SkPM4f.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "SkColor.h"
#include "SkSize.h"
#include <tuple>
#include "SkLinearBitmapPipeline_core.h"
#include "SkLinearBitmapPipeline_matrix.h"
#include "SkLinearBitmapPipeline_tile.h"
class SkLinearBitmapPipeline::PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
virtual void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
virtual void VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
virtual void pointSpan(Span span) = 0;
};
class SkLinearBitmapPipeline::BilerpProcessorInterface
: public SkLinearBitmapPipeline::PointProcessorInterface {
public:
// The x's and y's are setup in the following order:
// +--------+--------+
// | | |
// | px00 | px10 |
// | 0 | 1 |
// +--------+--------+
// | | |
// | px01 | px11 |
// | 2 | 3 |
// +--------+--------+
// These pixels coordinates are arranged in the following order in xs and ys:
// px00 px10 px01 px11
virtual void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) = 0;
virtual void bilerpSpan(BilerpSpan span) = 0;
};
class SkLinearBitmapPipeline::PixelPlacerInterface {
public:
virtual ~PixelPlacerInterface() { }
virtual void setDestination(SkPM4f* dst) = 0;
virtual void VECTORCALL placePixel(Sk4f pixel0) = 0;
virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};
namespace {
// PointProcessor uses a strategy to help complete the work of the different stages. The strategy
// must implement the following methods:
// * processPoints(xs, ys) - must mutate the xs and ys for the stage.
// * maybeProcessSpan(span, next) - This represents a horizontal series of pixels
// to work over.
// span - encapsulation of span.
// next - a pointer to the next stage.
// maybeProcessSpan - returns false if it can not process the span and needs to fallback to
// point lists for processing.
template<typename Strategy, typename Next>
class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
template <typename... Args>
PointProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointList4(xs, ys);
}
// The span you pass must not be empty.
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
if (!fStrategy.maybeProcessSpan(span, fNext)) {
span_fallback(span, this);
}
}
private:
Next* const fNext;
Strategy fStrategy;
};
// See PointProcessor for responsibilities of Strategy.
template<typename Strategy, typename Next>
class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
BilerpProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointList4(xs, ys);
}
void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->bilerpList(xs, ys);
}
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
if (!fStrategy.maybeProcessSpan(span, fNext)) {
span_fallback(span, this);
}
}
void bilerpSpan(BilerpSpan bSpan) override {
SkASSERT(!bSpan.isEmpty());
if (!fStrategy.maybeProcessBilerpSpan(bSpan, fNext)) {
bilerp_span_fallback(bSpan, this);
}
}
private:
Next* const fNext;
Strategy fStrategy;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Matrix Stage
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>;
static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix(
SkLinearBitmapPipeline::PointProcessorInterface* next,
const SkMatrix& inverse,
SkLinearBitmapPipeline::MatrixStage* matrixProc) {
if (inverse.hasPerspective()) {
SkFAIL("Not implemented.");
} else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
matrixProc->Initialize<AffineMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()},
SkVector{inverse.getSkewX(), inverse.getSkewY()});
} else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
matrixProc->Initialize<ScaleMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()});
} else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
matrixProc->Initialize<TranslateMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
} else {
return next;
}
return matrixProc->get();
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Bilerp Expansion Stage
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
ExpandBilerp(Next* next) : fNext{next} { }
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
SkASSERT(0 < n && n < 4);
// px00 px10 px01 px11
const Sk4s kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f};
if (n >= 1) fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets);
if (n >= 2) fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets);
if (n >= 3) fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets);
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
// px00 px10 px01 px11
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f};
fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets);
fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets);
fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets);
fNext->bilerpList(Sk4s{xs[3]} + kXOffsets, Sk4s{ys[3]} + kYOffsets);
}
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
SkPoint start; SkScalar length; int count;
std::tie(start, length, count) = span;
// Adjust the span so that it is in the correct phase with the pixel.
BilerpSpan bSpan{X(start) - 0.5f, Y(start) - 0.5f, Y(start) + 0.5f, length, count};
fNext->bilerpSpan(bSpan);
}
private:
Next* const fNext;
};
static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkFilterQuality filterQuailty,
SkLinearBitmapPipeline::FilterStage* filterProc) {
if (SkFilterQuality::kNone_SkFilterQuality == filterQuailty) {
return next;
} else {
filterProc->Initialize<ExpandBilerp<>>(next);
return filterProc->get();
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Tile Stage
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Clamp = BilerpProcessor<ClampStrategy, Next>;
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Repeat = BilerpProcessor<RepeatStrategy, Next>;
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkSize dimensions,
SkShader::TileMode xMode,
SkShader::TileMode yMode,
SkLinearBitmapPipeline::TileStage* tileProcXOrBoth,
SkLinearBitmapPipeline::TileStage* tileProcY) {
if (xMode == yMode) {
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(next, dimensions);
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(next, dimensions);
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
} else {
switch (yMode) {
case SkShader::kClamp_TileMode:
tileProcY->Initialize<Clamp<>>(next, Y(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcY->Initialize<Repeat<>>(next, Y(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
}
return tileProcXOrBoth->get();
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Source Sampling Stage
class sRGBFast {
public:
static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) {
Sk4s l = pixel * pixel;
return Sk4s{l[0], l[1], l[2], pixel[3]};
}
};
enum class ColorOrder {
kRGBA = false,
kBGRA = true,
};
template <SkColorProfileType colorProfile, ColorOrder colorOrder>
class Pixel8888 {
public:
Pixel8888(int width, const uint32_t* src) : fSrc{src}, fWidth{width}{ }
Pixel8888(const SkPixmap& srcPixmap)
: fSrc{srcPixmap.addr32()}
, fWidth{static_cast<int>(srcPixmap.rowBytes() / 4)} { }
void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
switch (n) {
case 3:
*px2 = this->getPixel(fSrc, bufferLoc[2]);
case 2:
*px1 = this->getPixel(fSrc, bufferLoc[1]);
case 1:
*px0 = this->getPixel(fSrc, bufferLoc[0]);
default:
break;
}
}
void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
*px0 = this->getPixel(fSrc, bufferLoc[0]);
*px1 = this->getPixel(fSrc, bufferLoc[1]);
*px2 = this->getPixel(fSrc, bufferLoc[2]);
*px3 = this->getPixel(fSrc, bufferLoc[3]);
}
void get4Pixels(const void* vsrc, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
const uint32_t* src = static_cast<const uint32_t*>(vsrc);
*px0 = this->getPixel(src, index + 0);
*px1 = this->getPixel(src, index + 1);
*px2 = this->getPixel(src, index + 2);
*px3 = this->getPixel(src, index + 3);
}
Sk4f getPixel(const void* vsrc, int index) {
const uint32_t* src = static_cast<const uint32_t*>(vsrc);
Sk4b bytePixel = Sk4b::Load((uint8_t *)(&src[index]));
Sk4f pixel = SkNx_cast<float, uint8_t>(bytePixel);
if (colorOrder == ColorOrder::kBGRA) {
pixel = SkNx_shuffle<2, 1, 0, 3>(pixel);
}
pixel = pixel * Sk4f{1.0f/255.0f};
if (colorProfile == kSRGB_SkColorProfileType) {
pixel = sRGBFast::sRGBToLinear(pixel);
}
return pixel;
}
const uint32_t* row(int y) { return fSrc + y * fWidth[0]; }
private:
const uint32_t* const fSrc;
const Sk4i fWidth;
};
// Explaination of the math:
// 1 - x x
// +--------+--------+
// | | |
// 1 - y | px00 | px10 |
// | | |
// +--------+--------+
// | | |
// y | px01 | px11 |
// | | |
// +--------+--------+
//
//
// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
// and y:
// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
// * px10 -> x(1 - y) = x - xy
// * px01 -> (1 - x)y = y - xy
// * px11 -> xy
// So x * y is calculated first and then used to calculate all the other factors.
static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
Sk4f px01, Sk4f px11) {
// Calculate fractional xs and ys.
Sk4s fxs = xs - xs.floor();
Sk4s fys = ys - ys.floor();
Sk4s fxys{fxs * fys};
Sk4f sum = px11 * fxys;
sum = sum + px01 * (fys - fxys);
sum = sum + px10 * (fxs - fxys);
sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
return sum;
}
template <typename SourceStrategy>
class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...} { }
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
SkASSERT(0 < n && n < 4);
Sk4f px0, px1, px2;
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
if (n >= 1) fNext->placePixel(px0);
if (n >= 2) fNext->placePixel(px1);
if (n >= 3) fNext->placePixel(px2);
}
void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
fNext->place4Pixels(px0, px1, px2, px3);
}
void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override {
Sk4f px00, px10, px01, px11;
fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11);
Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
fNext->placePixel(pixel);
}
void pointSpan(Span span) override {
SkASSERT(!span.isEmpty());
SkPoint start; SkScalar length; int count;
std::tie(start, length, count) = span;
if (length < (count - 1)) {
this->pointSpanSlowRate(span);
} else if (length == (count - 1)) {
this->pointSpanUnitRate(span);
} else {
this->pointSpanFastRate(span);
}
}
private:
// When moving through source space more slowly than dst space (zoomed in),
// we'll be sampling from the same source pixel more than once.
void pointSpanSlowRate(Span span) {
SkPoint start; SkScalar length; int count;
std::tie(start, length, count) = span;
SkScalar x = X(start);
SkFixed fx = SkScalarToFixed(x);
SkScalar dx = length / (count - 1);
SkFixed fdx = SkScalarToFixed(dx);
const void* row = fStrategy.row((int)std::floor(Y(start)));
SkLinearBitmapPipeline::PixelPlacerInterface* next = fNext;
int ix = SkFixedFloorToInt(fx);
int prevIX = ix;
Sk4f fpixel = fStrategy.getPixel(row, ix);
// When dx is less than one, each pixel is used more than once. Using the fixed point fx
// allows the code to quickly check that the same pixel is being used. The code uses this
// same pixel check to do the sRGB and normalization only once.
auto getNextPixel = [&]() {
if (ix != prevIX) {
fpixel = fStrategy.getPixel(row, ix);
prevIX = ix;
}
fx += fdx;
ix = SkFixedFloorToInt(fx);
return fpixel;
};
while (count >= 4) {
Sk4f px0 = getNextPixel();
Sk4f px1 = getNextPixel();
Sk4f px2 = getNextPixel();
Sk4f px3 = getNextPixel();
next->place4Pixels(px0, px1, px2, px3);
count -= 4;
}
while (count > 0) {
next->placePixel(getNextPixel());
count -= 1;
}
}
// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
// We'll never re-use pixels, but we can at least load contiguous pixels.
void pointSpanUnitRate(Span span) {
SkPoint start; SkScalar length; int count;
std::tie(start, length, count) = span;
int ix = SkScalarFloorToInt(X(start));
const void* row = fStrategy.row((int)std::floor(Y(start)));
SkLinearBitmapPipeline::PixelPlacerInterface* next = fNext;
while (count >= 4) {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(row, ix, &px0, &px1, &px2, &px3);
next->place4Pixels(px0, px1, px2, px3);
ix += 4;
count -= 4;
}
while (count > 0) {
next->placePixel(fStrategy.getPixel(row, ix));
ix += 1;
count -= 1;
}
}
// We're moving through source space faster than dst (zoomed out),
// so we'll never reuse a source pixel or be able to do contiguous loads.
void pointSpanFastRate(Span span) {
span_fallback(span, this);
}
void bilerpSpan(BilerpSpan span) override {
bilerp_span_fallback(span, this);
}
private:
SkLinearBitmapPipeline::PixelPlacerInterface* const fNext;
SourceStrategy fStrategy;
};
using Pixel8888SRGB = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888LRGB = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888SBGR = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kBGRA>;
using Pixel8888LBGR = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kBGRA>;
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler(
SkLinearBitmapPipeline::PixelPlacerInterface* next,
const SkPixmap& srcPixmap,
SkLinearBitmapPipeline::SampleStage* sampleStage) {
const SkImageInfo& imageInfo = srcPixmap.info();
switch (imageInfo.colorType()) {
case kRGBA_8888_SkColorType:
if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
sampleStage->Initialize<Sampler<Pixel8888SRGB>>(next, srcPixmap);
} else {
sampleStage->Initialize<Sampler<Pixel8888LRGB>>(next, srcPixmap);
}
break;
case kBGRA_8888_SkColorType:
if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
sampleStage->Initialize<Sampler<Pixel8888SBGR>>(next, srcPixmap);
} else {
sampleStage->Initialize<Sampler<Pixel8888LBGR>>(next, srcPixmap);
}
break;
default:
SkFAIL("Not implemented. Unsupported src");
break;
}
return sampleStage->get();
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Pixel Placement Stage
template <SkAlphaType alphaType>
class PlaceFPPixel final : public SkLinearBitmapPipeline::PixelPlacerInterface {
public:
void VECTORCALL placePixel(Sk4f pixel) override {
PlacePixel(fDst, pixel, 0);
fDst += 1;
}
void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
SkPM4f* dst = fDst;
PlacePixel(dst, p0, 0);
PlacePixel(dst, p1, 1);
PlacePixel(dst, p2, 2);
PlacePixel(dst, p3, 3);
fDst += 4;
}
void setDestination(SkPM4f* dst) override {
fDst = dst;
}
private:
static void VECTORCALL PlacePixel(SkPM4f* dst, Sk4f pixel, int index) {
Sk4f newPixel = pixel;
if (alphaType == kUnpremul_SkAlphaType) {
newPixel = Premultiply(pixel);
}
newPixel.store(dst + index);
}
static Sk4f VECTORCALL Premultiply(Sk4f pixel) {
float alpha = pixel[3];
return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
}
SkPM4f* fDst;
};
static SkLinearBitmapPipeline::PixelPlacerInterface* choose_pixel_placer(
SkAlphaType alphaType,
SkLinearBitmapPipeline::PixelStage* placerStage) {
if (alphaType == kUnpremul_SkAlphaType) {
placerStage->Initialize<PlaceFPPixel<kUnpremul_SkAlphaType>>();
} else {
// kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
placerStage->Initialize<PlaceFPPixel<kPremul_SkAlphaType>>();
}
return placerStage->get();
}
} // namespace
////////////////////////////////////////////////////////////////////////////////////////////////////
SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkMatrix& inverse,
SkFilterQuality filterQuality,
SkShader::TileMode xTile, SkShader::TileMode yTile,
const SkPixmap& srcPixmap) {
SkSize size = SkSize::Make(srcPixmap.width(), srcPixmap.height());
const SkImageInfo& srcImageInfo = srcPixmap.info();
// As the stages are built, the chooser function may skip a stage. For example, with the
// identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
auto placementStage = choose_pixel_placer(srcImageInfo.alphaType(), &fPixelStage);
auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSampleStage);
auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileXOrBothStage,
&fTileYStage);
auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage);
fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage);
}
void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
SkASSERT(count > 0);
fPixelStage->setDestination(dst);
// The count and length arguments start out in a precise relation in order to keep the
// math correct through the different stages. Count is the number of pixel to produce.
// Since the code samples at pixel centers, length is the distance from the center of the
// first pixel to the center of the last pixel. This implies that length is count-1.
fFirstStage->pointSpan(Span{SkPoint{x + 0.5f, y + 0.5f}, count - 1.0f, count});
}