|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "SkFloatBits.h" | 
|  | #include "SkOpCoincidence.h" | 
|  | #include "SkPathOpsTypes.h" | 
|  |  | 
|  | static bool arguments_denormalized(float a, float b, int epsilon) { | 
|  | float denormalizedCheck = FLT_EPSILON * epsilon / 2; | 
|  | return fabsf(a) <= denormalizedCheck && fabsf(b) <= denormalizedCheck; | 
|  | } | 
|  |  | 
|  | // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ | 
|  | // FIXME: move to SkFloatBits.h | 
|  | static bool equal_ulps(float a, float b, int epsilon, int depsilon) { | 
|  | if (arguments_denormalized(a, b, depsilon)) { | 
|  | return true; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits < bBits + epsilon && bBits < aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool equal_ulps_pin(float a, float b, int epsilon, int depsilon) { | 
|  | if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { | 
|  | return false; | 
|  | } | 
|  | if (arguments_denormalized(a, b, depsilon)) { | 
|  | return true; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits < bBits + epsilon && bBits < aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool d_equal_ulps(float a, float b, int epsilon) { | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits < bBits + epsilon && bBits < aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool not_equal_ulps(float a, float b, int epsilon) { | 
|  | if (arguments_denormalized(a, b, epsilon)) { | 
|  | return false; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool not_equal_ulps_pin(float a, float b, int epsilon) { | 
|  | if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { | 
|  | return false; | 
|  | } | 
|  | if (arguments_denormalized(a, b, epsilon)) { | 
|  | return false; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool d_not_equal_ulps(float a, float b, int epsilon) { | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits >= bBits + epsilon || bBits >= aBits + epsilon; | 
|  | } | 
|  |  | 
|  | static bool less_ulps(float a, float b, int epsilon) { | 
|  | if (arguments_denormalized(a, b, epsilon)) { | 
|  | return a <= b - FLT_EPSILON * epsilon; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits <= bBits - epsilon; | 
|  | } | 
|  |  | 
|  | static bool less_or_equal_ulps(float a, float b, int epsilon) { | 
|  | if (arguments_denormalized(a, b, epsilon)) { | 
|  | return a < b + FLT_EPSILON * epsilon; | 
|  | } | 
|  | int aBits = SkFloatAs2sCompliment(a); | 
|  | int bBits = SkFloatAs2sCompliment(b); | 
|  | // Find the difference in ULPs. | 
|  | return aBits < bBits + epsilon; | 
|  | } | 
|  |  | 
|  | // equality using the same error term as between | 
|  | bool AlmostBequalUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 2; | 
|  | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostPequalUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 8; | 
|  | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostDequalUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return d_equal_ulps(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostDequalUlps(double a, double b) { | 
|  | return AlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); | 
|  | } | 
|  |  | 
|  | bool AlmostEqualUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostEqualUlps_Pin(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return equal_ulps_pin(a, b, UlpsEpsilon, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool NotAlmostEqualUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return not_equal_ulps(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool NotAlmostEqualUlps_Pin(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return not_equal_ulps_pin(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool NotAlmostDequalUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return d_not_equal_ulps(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool RoughlyEqualUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 256; | 
|  | const int DUlpsEpsilon = 1024; | 
|  | return equal_ulps(a, b, UlpsEpsilon, DUlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostBetweenUlps(float a, float b, float c) { | 
|  | const int UlpsEpsilon = 2; | 
|  | return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon) | 
|  | : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostLessUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return less_ulps(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | bool AlmostLessOrEqualUlps(float a, float b) { | 
|  | const int UlpsEpsilon = 16; | 
|  | return less_or_equal_ulps(a, b, UlpsEpsilon); | 
|  | } | 
|  |  | 
|  | int UlpsDistance(float a, float b) { | 
|  | SkFloatIntUnion floatIntA, floatIntB; | 
|  | floatIntA.fFloat = a; | 
|  | floatIntB.fFloat = b; | 
|  | // Different signs means they do not match. | 
|  | if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) { | 
|  | // Check for equality to make sure +0 == -0 | 
|  | return a == b ? 0 : SK_MaxS32; | 
|  | } | 
|  | // Find the difference in ULPs. | 
|  | return SkTAbs(floatIntA.fSignBitInt - floatIntB.fSignBitInt); | 
|  | } | 
|  |  | 
|  | // cube root approximation using bit hack for 64-bit float | 
|  | // adapted from Kahan's cbrt | 
|  | static double cbrt_5d(double d) { | 
|  | const unsigned int B1 = 715094163; | 
|  | double t = 0.0; | 
|  | unsigned int* pt = (unsigned int*) &t; | 
|  | unsigned int* px = (unsigned int*) &d; | 
|  | pt[1] = px[1] / 3 + B1; | 
|  | return t; | 
|  | } | 
|  |  | 
|  | // iterative cube root approximation using Halley's method (double) | 
|  | static double cbrta_halleyd(const double a, const double R) { | 
|  | const double a3 = a * a * a; | 
|  | const double b = a * (a3 + R + R) / (a3 + a3 + R); | 
|  | return b; | 
|  | } | 
|  |  | 
|  | // cube root approximation using 3 iterations of Halley's method (double) | 
|  | static double halley_cbrt3d(double d) { | 
|  | double a = cbrt_5d(d); | 
|  | a = cbrta_halleyd(a, d); | 
|  | a = cbrta_halleyd(a, d); | 
|  | return cbrta_halleyd(a, d); | 
|  | } | 
|  |  | 
|  | double SkDCubeRoot(double x) { | 
|  | if (approximately_zero_cubed(x)) { | 
|  | return 0; | 
|  | } | 
|  | double result = halley_cbrt3d(fabs(x)); | 
|  | if (x < 0) { | 
|  | result = -result; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | SkOpGlobalState::SkOpGlobalState(SkOpCoincidence* coincidence, SkOpContourHead* head | 
|  | SkDEBUGPARAMS(const char* testName)) | 
|  | : fCoincidence(coincidence) | 
|  | , fContourHead(head) | 
|  | , fNested(0) | 
|  | , fWindingFailed(false) | 
|  | , fAngleCoincidence(false) | 
|  | , fPhase(kIntersecting) | 
|  | SkDEBUGPARAMS(fDebugTestName(testName)) | 
|  | SkDEBUGPARAMS(fAngleID(0)) | 
|  | SkDEBUGPARAMS(fCoinID(0)) | 
|  | SkDEBUGPARAMS(fContourID(0)) | 
|  | SkDEBUGPARAMS(fPtTID(0)) | 
|  | SkDEBUGPARAMS(fSegmentID(0)) | 
|  | SkDEBUGPARAMS(fSpanID(0)) { | 
|  | if (coincidence) { | 
|  | coincidence->debugSetGlobalState(this); | 
|  | } | 
|  | #if DEBUG_T_SECT_LOOP_COUNT | 
|  | debugResetLoopCounts(); | 
|  | #endif | 
|  | } | 
|  |  |