|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | * | 
|  | * The following code is based on the description in RFC 1321. | 
|  | * http://www.ietf.org/rfc/rfc1321.txt | 
|  | */ | 
|  |  | 
|  | #include "SkTypes.h" | 
|  | #include "SkMD5.h" | 
|  | #include <string.h> | 
|  |  | 
|  | /** MD5 basic transformation. Transforms state based on block. */ | 
|  | static void transform(uint32_t state[4], const uint8_t block[64]); | 
|  |  | 
|  | /** Encodes input into output (4 little endian 32 bit values). */ | 
|  | static void encode(uint8_t output[16], const uint32_t input[4]); | 
|  |  | 
|  | /** Encodes input into output (little endian 64 bit value). */ | 
|  | static void encode(uint8_t output[8], const uint64_t input); | 
|  |  | 
|  | /** Decodes input (4 little endian 32 bit values) into storage, if required. */ | 
|  | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); | 
|  |  | 
|  | SkMD5::SkMD5() : byteCount(0) { | 
|  | // These are magic numbers from the specification. | 
|  | this->state[0] = 0x67452301; | 
|  | this->state[1] = 0xefcdab89; | 
|  | this->state[2] = 0x98badcfe; | 
|  | this->state[3] = 0x10325476; | 
|  | } | 
|  |  | 
|  | void SkMD5::update(const uint8_t* input, size_t inputLength) { | 
|  | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); | 
|  | unsigned int bufferAvailable = 64 - bufferIndex; | 
|  |  | 
|  | unsigned int inputIndex; | 
|  | if (inputLength >= bufferAvailable) { | 
|  | if (bufferIndex) { | 
|  | memcpy(&this->buffer[bufferIndex], input, bufferAvailable); | 
|  | transform(this->state, this->buffer); | 
|  | inputIndex = bufferAvailable; | 
|  | } else { | 
|  | inputIndex = 0; | 
|  | } | 
|  |  | 
|  | for (; inputIndex + 63 < inputLength; inputIndex += 64) { | 
|  | transform(this->state, &input[inputIndex]); | 
|  | } | 
|  |  | 
|  | bufferIndex = 0; | 
|  | } else { | 
|  | inputIndex = 0; | 
|  | } | 
|  |  | 
|  | memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); | 
|  |  | 
|  | this->byteCount += inputLength; | 
|  | } | 
|  |  | 
|  | void SkMD5::finish(Digest& digest) { | 
|  | // Get the number of bits before padding. | 
|  | uint8_t bits[8]; | 
|  | encode(bits, this->byteCount << 3); | 
|  |  | 
|  | // Pad out to 56 mod 64. | 
|  | unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); | 
|  | unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); | 
|  | static uint8_t PADDING[64] = { | 
|  | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | }; | 
|  | this->update(PADDING, paddingLength); | 
|  |  | 
|  | // Append length (length before padding, will cause final update). | 
|  | this->update(bits, 8); | 
|  |  | 
|  | // Write out digest. | 
|  | encode(digest.data, this->state); | 
|  |  | 
|  | #if defined(SK_MD5_CLEAR_DATA) | 
|  | // Clear state. | 
|  | memset(this, 0, sizeof(*this)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { | 
|  | //return (x & y) | ((~x) & z); | 
|  | return ((y ^ z) & x) ^ z; //equivelent but faster | 
|  | }}; | 
|  |  | 
|  | struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { | 
|  | return (x & z) | (y & (~z)); | 
|  | //return ((x ^ y) & z) ^ y; //equivelent but slower | 
|  | }}; | 
|  |  | 
|  | struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { | 
|  | return x ^ y ^ z; | 
|  | }}; | 
|  |  | 
|  | struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { | 
|  | return y ^ (x | (~z)); | 
|  | }}; | 
|  |  | 
|  | /** Rotates x left n bits. */ | 
|  | static inline uint32_t rotate_left(uint32_t x, uint8_t n) { | 
|  | return (x << n) | (x >> (32 - n)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, | 
|  | uint32_t x, uint8_t s, uint32_t t) { | 
|  | a = b + rotate_left(a + operation(b, c, d) + x + t, s); | 
|  | } | 
|  |  | 
|  | static void transform(uint32_t state[4], const uint8_t block[64]) { | 
|  | uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; | 
|  |  | 
|  | uint32_t storage[16]; | 
|  | const uint32_t* X = decode(storage, block); | 
|  |  | 
|  | // Round 1 | 
|  | operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1 | 
|  | operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 | 
|  | operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 | 
|  | operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 | 
|  | operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5 | 
|  | operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 | 
|  | operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 | 
|  | operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 | 
|  | operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9 | 
|  | operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 | 
|  | operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 | 
|  | operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 | 
|  | operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13 | 
|  | operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 | 
|  | operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 | 
|  | operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 | 
|  |  | 
|  | // Round 2 | 
|  | operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17 | 
|  | operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18 | 
|  | operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 | 
|  | operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 | 
|  | operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21 | 
|  | operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22 | 
|  | operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 | 
|  | operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 | 
|  | operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25 | 
|  | operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26 | 
|  | operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 | 
|  | operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 | 
|  | operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29 | 
|  | operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30 | 
|  | operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 | 
|  | operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 | 
|  |  | 
|  | // Round 3 | 
|  | operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33 | 
|  | operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 | 
|  | operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 | 
|  | operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 | 
|  | operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37 | 
|  | operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 | 
|  | operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 | 
|  | operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 | 
|  | operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41 | 
|  | operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 | 
|  | operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 | 
|  | operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44 | 
|  | operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45 | 
|  | operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 | 
|  | operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 | 
|  | operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 | 
|  |  | 
|  | // Round 4 | 
|  | operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49 | 
|  | operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 | 
|  | operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 | 
|  | operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 | 
|  | operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53 | 
|  | operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 | 
|  | operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 | 
|  | operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 | 
|  | operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57 | 
|  | operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 | 
|  | operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 | 
|  | operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 | 
|  | operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61 | 
|  | operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 | 
|  | operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 | 
|  | operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 | 
|  |  | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  |  | 
|  | #if defined(SK_MD5_CLEAR_DATA) | 
|  | // Clear sensitive information. | 
|  | if (X == &storage) { | 
|  | memset(storage, 0, sizeof(storage)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void encode(uint8_t output[16], const uint32_t input[4]) { | 
|  | for (size_t i = 0, j = 0; i < 4; i++, j += 4) { | 
|  | output[j  ] = (uint8_t) (input[i]        & 0xff); | 
|  | output[j+1] = (uint8_t)((input[i] >>  8) & 0xff); | 
|  | output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); | 
|  | output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode(uint8_t output[8], const uint64_t input) { | 
|  | output[0] = (uint8_t) (input        & 0xff); | 
|  | output[1] = (uint8_t)((input >>  8) & 0xff); | 
|  | output[2] = (uint8_t)((input >> 16) & 0xff); | 
|  | output[3] = (uint8_t)((input >> 24) & 0xff); | 
|  | output[4] = (uint8_t)((input >> 32) & 0xff); | 
|  | output[5] = (uint8_t)((input >> 40) & 0xff); | 
|  | output[6] = (uint8_t)((input >> 48) & 0xff); | 
|  | output[7] = (uint8_t)((input >> 56) & 0xff); | 
|  | } | 
|  |  | 
|  | static inline bool is_aligned(const void *pointer, size_t byte_count) { | 
|  | return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; | 
|  | } | 
|  |  | 
|  | static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { | 
|  | #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) | 
|  | return reinterpret_cast<const uint32_t*>(input); | 
|  | #else | 
|  | #if defined(SK_CPU_LENDIAN) | 
|  | if (is_aligned(input, 4)) { | 
|  | return reinterpret_cast<const uint32_t*>(input); | 
|  | } | 
|  | #endif | 
|  | for (size_t i = 0, j = 0; j < 64; i++, j += 4) { | 
|  | storage[i] =  ((uint32_t)input[j  ])        | | 
|  | (((uint32_t)input[j+1]) <<  8) | | 
|  | (((uint32_t)input[j+2]) << 16) | | 
|  | (((uint32_t)input[j+3]) << 24); | 
|  | } | 
|  | return storage; | 
|  | #endif | 
|  | } |