|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "SkIntersections.h" | 
|  | #include "SkOpAngle.h" | 
|  | #include "SkOpSegment.h" | 
|  | #include "SkPathOpsCurve.h" | 
|  | #include "SkTSort.h" | 
|  |  | 
|  | #if DEBUG_ANGLE | 
|  | #include "SkString.h" | 
|  | #endif | 
|  |  | 
|  | /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest | 
|  | positive y. The largest angle has a positive x and a zero y. */ | 
|  |  | 
|  | #if DEBUG_ANGLE | 
|  | static bool CompareResult(SkString* bugOut, int append, bool compare) { | 
|  | SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append); | 
|  | return compare; | 
|  | } | 
|  |  | 
|  | #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare) | 
|  | #else | 
|  | #define COMPARE_RESULT(append, compare) compare | 
|  | #endif | 
|  |  | 
|  | /*             quarter angle values for sector | 
|  |  | 
|  | 31   x > 0, y == 0              horizontal line (to the right) | 
|  | 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y | 
|  | 1    x > 0, y > 0, x > y        nearer horizontal angle | 
|  | 2                  x + e == y   quad/cubic 45 going horiz | 
|  | 3    x > 0, y > 0, x == y       45 angle | 
|  | 4                  x == y + e   quad/cubic 45 going vert | 
|  | 5    x > 0, y > 0, x < y        nearer vertical angle | 
|  | 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x | 
|  | 7    x == 0, y > 0              vertical line (to the top) | 
|  |  | 
|  | 8  7  6 | 
|  | 9       |       5 | 
|  | 10         |          4 | 
|  | 11           |            3 | 
|  | 12  \          |           / 2 | 
|  | 13              |              1 | 
|  | 14               |               0 | 
|  | 15 --------------+------------- 31 | 
|  | 16               |              30 | 
|  | 17              |             29 | 
|  | 18  /          |          \ 28 | 
|  | 19           |           27 | 
|  | 20         |         26 | 
|  | 21      |      25 | 
|  | 22 23 24 | 
|  | */ | 
|  |  | 
|  | // return true if lh < this < rh | 
|  | bool SkOpAngle::after(const SkOpAngle* test) const { | 
|  | const SkOpAngle& lh = *test; | 
|  | const SkOpAngle& rh = *lh.fNext; | 
|  | SkASSERT(&lh != &rh); | 
|  | #if DEBUG_ANGLE | 
|  | SkString bugOut; | 
|  | bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
|  | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
|  | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, | 
|  | lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, | 
|  | lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), | 
|  | fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), | 
|  | fSegment->t(fEnd), | 
|  | rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, | 
|  | rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); | 
|  | #endif | 
|  | if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) { | 
|  | return COMPARE_RESULT(1, true); | 
|  | } | 
|  | if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) { | 
|  | return COMPARE_RESULT(2, true); | 
|  | } | 
|  | if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) { | 
|  | return COMPARE_RESULT(3, true); | 
|  | } | 
|  | #if DEBUG_ANGLE  // reset bugOut with computed sectors | 
|  | bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
|  | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
|  | " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, | 
|  | lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, | 
|  | lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), | 
|  | fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), | 
|  | fSegment->t(fEnd), | 
|  | rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, | 
|  | rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); | 
|  | #endif | 
|  | bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask; | 
|  | bool lrOverlap = lh.fSectorMask & rh.fSectorMask; | 
|  | int lrOrder;  // set to -1 if either order works | 
|  | if (!lrOverlap) {  // no lh/rh sector overlap | 
|  | if (!ltrOverlap) {  // no lh/this/rh sector overlap | 
|  | return COMPARE_RESULT(4,  (lh.fSectorEnd > rh.fSectorStart) | 
|  | ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart)); | 
|  | } | 
|  | int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f; | 
|  | /* A tiny change can move the start +/- 4. The order can only be determined if | 
|  | lr gap is not 12 to 20 or -12 to -20. | 
|  | -31 ..-21      1 | 
|  | -20 ..-12     -1 | 
|  | -11 .. -1      0 | 
|  | 0          shouldn't get here | 
|  | 11 ..  1      1 | 
|  | 12 .. 20     -1 | 
|  | 21 .. 31      0 | 
|  | */ | 
|  | lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1; | 
|  | } else { | 
|  | lrOrder = (int) lh.orderable(rh); | 
|  | if (!ltrOverlap) { | 
|  | return COMPARE_RESULT(5, !lrOrder); | 
|  | } | 
|  | } | 
|  | int ltOrder; | 
|  | SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask)); | 
|  | if (lh.fSectorMask & fSectorMask) { | 
|  | ltOrder = (int) lh.orderable(*this); | 
|  | } else { | 
|  | int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f; | 
|  | ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1; | 
|  | } | 
|  | int trOrder; | 
|  | if (rh.fSectorMask & fSectorMask) { | 
|  | trOrder = (int) orderable(rh); | 
|  | } else { | 
|  | int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f; | 
|  | trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1; | 
|  | } | 
|  | if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) { | 
|  | return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder)); | 
|  | } | 
|  | SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0); | 
|  | // There's not enough information to sort. Get the pairs of angles in opposite planes. | 
|  | // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs. | 
|  | // FIXME : once all variants are understood, rewrite this more simply | 
|  | if (ltOrder == 0 && lrOrder == 0) { | 
|  | SkASSERT(trOrder < 0); | 
|  | // FIXME : once this is verified to work, remove one opposite angle call | 
|  | SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh)); | 
|  | bool ltOpposite = lh.oppositePlanes(*this); | 
|  | SkASSERT(lrOpposite != ltOpposite); | 
|  | return COMPARE_RESULT(8, ltOpposite); | 
|  | } else if (ltOrder == 1 && trOrder == 0) { | 
|  | SkASSERT(lrOrder < 0); | 
|  | SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this)); | 
|  | bool trOpposite = oppositePlanes(rh); | 
|  | SkASSERT(ltOpposite != trOpposite); | 
|  | return COMPARE_RESULT(9, trOpposite); | 
|  | } else if (lrOrder == 1 && trOrder == 1) { | 
|  | SkASSERT(ltOrder < 0); | 
|  | SkDEBUGCODE(bool trOpposite = oppositePlanes(rh)); | 
|  | bool lrOpposite = lh.oppositePlanes(rh); | 
|  | SkASSERT(lrOpposite != trOpposite); | 
|  | return COMPARE_RESULT(10, lrOpposite); | 
|  | } | 
|  | if (lrOrder < 0) { | 
|  | if (ltOrder < 0) { | 
|  | return COMPARE_RESULT(11, trOrder); | 
|  | } | 
|  | return COMPARE_RESULT(12, ltOrder); | 
|  | } | 
|  | return COMPARE_RESULT(13, !lrOrder); | 
|  | } | 
|  |  | 
|  | // given a line, see if the opposite curve's convex hull is all on one side | 
|  | // returns -1=not on one side    0=this CW of test   1=this CCW of test | 
|  | int SkOpAngle::allOnOneSide(const SkOpAngle& test) const { | 
|  | SkASSERT(!fIsCurve); | 
|  | SkASSERT(test.fIsCurve); | 
|  | const SkDPoint& origin = test.fCurvePart[0]; | 
|  | SkVector line; | 
|  | if (fSegment->verb() == SkPath::kLine_Verb) { | 
|  | const SkPoint* linePts = fSegment->pts(); | 
|  | int lineStart = fStart < fEnd ? 0 : 1; | 
|  | line = linePts[lineStart ^ 1] - linePts[lineStart]; | 
|  | } else { | 
|  | SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() }; | 
|  | line = shortPts[1] - shortPts[0]; | 
|  | } | 
|  | float crosses[3]; | 
|  | SkPath::Verb testVerb = test.fSegment->verb(); | 
|  | int iMax = SkPathOpsVerbToPoints(testVerb); | 
|  | //    SkASSERT(origin == test.fCurveHalf[0]); | 
|  | const SkDCubic& testCurve = test.fCurvePart; | 
|  | //    do { | 
|  | for (int index = 1; index <= iMax; ++index) { | 
|  | float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY)); | 
|  | float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX)); | 
|  | crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2; | 
|  | } | 
|  | if (crosses[0] * crosses[1] < 0) { | 
|  | return -1; | 
|  | } | 
|  | if (SkPath::kCubic_Verb == testVerb) { | 
|  | if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (crosses[0]) { | 
|  | return crosses[0] < 0; | 
|  | } | 
|  | if (crosses[1]) { | 
|  | return crosses[1] < 0; | 
|  | } | 
|  | if (SkPath::kCubic_Verb == testVerb && crosses[2]) { | 
|  | return crosses[2] < 0; | 
|  | } | 
|  | fUnorderable = true; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const { | 
|  | double absX = fabs(x); | 
|  | double absY = fabs(y); | 
|  | double length = absX < absY ? absX / 2 + absY : absX + absY / 2; | 
|  | int exponent; | 
|  | (void) frexp(length, &exponent); | 
|  | double epsilon = ldexp(FLT_EPSILON, exponent); | 
|  | SkPath::Verb verb = fSegment->verb(); | 
|  | SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb); | 
|  | // FIXME: the quad and cubic factors are made up ; determine actual values | 
|  | double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon; | 
|  | double xSlop = slop; | 
|  | double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? | 
|  | double x1 = x - xSlop; | 
|  | double y1 = y + ySlop; | 
|  | double x_ry1 = x1 * ry; | 
|  | double rx_y1 = rx * y1; | 
|  | *result = x_ry1 < rx_y1; | 
|  | double x2 = x + xSlop; | 
|  | double y2 = y - ySlop; | 
|  | double x_ry2 = x2 * ry; | 
|  | double rx_y2 = rx * y2; | 
|  | bool less2 = x_ry2 < rx_y2; | 
|  | return *result == less2; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::checkCrossesZero() const { | 
|  | int start = SkTMin(fSectorStart, fSectorEnd); | 
|  | int end = SkTMax(fSectorStart, fSectorEnd); | 
|  | bool crossesZero = end - start > 16; | 
|  | return crossesZero; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::checkParallel(const SkOpAngle& rh) const { | 
|  | SkDVector scratch[2]; | 
|  | const SkDVector* sweep, * tweep; | 
|  | if (!fUnorderedSweep) { | 
|  | sweep = fSweep; | 
|  | } else { | 
|  | scratch[0] = fCurvePart[1] - fCurvePart[0]; | 
|  | sweep = &scratch[0]; | 
|  | } | 
|  | if (!rh.fUnorderedSweep) { | 
|  | tweep = rh.fSweep; | 
|  | } else { | 
|  | scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0]; | 
|  | tweep = &scratch[1]; | 
|  | } | 
|  | double s0xt0 = sweep->crossCheck(*tweep); | 
|  | if (tangentsDiverge(rh, s0xt0)) { | 
|  | return s0xt0 < 0; | 
|  | } | 
|  | SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; | 
|  | SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; | 
|  | double m0xm1 = m0.crossCheck(m1); | 
|  | if (m0xm1 == 0) { | 
|  | fUnorderable = true; | 
|  | rh.fUnorderable = true; | 
|  | return true; | 
|  | } | 
|  | return m0xm1 < 0; | 
|  | } | 
|  |  | 
|  | // the original angle is too short to get meaningful sector information | 
|  | // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it | 
|  | // would cause it to intersect one of the adjacent angles | 
|  | bool SkOpAngle::computeSector() { | 
|  | if (fComputedSector) { | 
|  | // FIXME: logically, this should return !fUnorderable, but doing so breaks testQuadratic51 | 
|  | // -- but in general, this code may not work so this may be the least of problems | 
|  | // adding the bang fixes testQuads46x in release, however | 
|  | return !fUnorderable; | 
|  | } | 
|  | SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small()); | 
|  | fComputedSector = true; | 
|  | int step = fStart < fEnd ? 1 : -1; | 
|  | int limit = step > 0 ? fSegment->count() : -1; | 
|  | int checkEnd = fEnd; | 
|  | do { | 
|  | // advance end | 
|  | const SkOpSpan& span = fSegment->span(checkEnd); | 
|  | const SkOpSegment* other = span.fOther; | 
|  | int oCount = other->count(); | 
|  | for (int oIndex = 0; oIndex < oCount; ++oIndex) { | 
|  | const SkOpSpan& oSpan = other->span(oIndex); | 
|  | if (oSpan.fOther != fSegment) { | 
|  | continue; | 
|  | } | 
|  | if (oSpan.fOtherIndex == checkEnd) { | 
|  | continue; | 
|  | } | 
|  | if (!approximately_equal(oSpan.fOtherT, span.fT)) { | 
|  | continue; | 
|  | } | 
|  | goto recomputeSector; | 
|  | } | 
|  | checkEnd += step; | 
|  | } while (checkEnd != limit); | 
|  | recomputeSector: | 
|  | if (checkEnd == fEnd || checkEnd - step == fEnd) { | 
|  | fUnorderable = true; | 
|  | return false; | 
|  | } | 
|  | int saveEnd = fEnd; | 
|  | fComputedEnd = fEnd = checkEnd - step; | 
|  | setSpans(); | 
|  | setSector(); | 
|  | fEnd = saveEnd; | 
|  | return !fUnorderable; | 
|  | } | 
|  |  | 
|  | // returns -1 if overlaps   0 if no overlap cw    1 if no overlap ccw | 
|  | int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const { | 
|  | const SkDVector* sweep = fSweep; | 
|  | const SkDVector* tweep = rh.fSweep; | 
|  | double s0xs1 = sweep[0].crossCheck(sweep[1]); | 
|  | double s0xt0 = sweep[0].crossCheck(tweep[0]); | 
|  | double s1xt0 = sweep[1].crossCheck(tweep[0]); | 
|  | bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0; | 
|  | double s0xt1 = sweep[0].crossCheck(tweep[1]); | 
|  | double s1xt1 = sweep[1].crossCheck(tweep[1]); | 
|  | tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0; | 
|  | double t0xt1 = tweep[0].crossCheck(tweep[1]); | 
|  | if (tBetweenS) { | 
|  | return -1; | 
|  | } | 
|  | if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1 | 
|  | return -1; | 
|  | } | 
|  | bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0; | 
|  | sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0; | 
|  | if (sBetweenT) { | 
|  | return -1; | 
|  | } | 
|  | // if all of the sweeps are in the same half plane, then the order of any pair is enough | 
|  | if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) { | 
|  | return 0; | 
|  | } | 
|  | if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) { | 
|  | return 1; | 
|  | } | 
|  | // if the outside sweeps are greater than 180 degress: | 
|  | // first assume the inital tangents are the ordering | 
|  | // if the midpoint direction matches the inital order, that is enough | 
|  | SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; | 
|  | SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; | 
|  | double m0xm1 = m0.crossCheck(m1); | 
|  | if (s0xt0 > 0 && m0xm1 > 0) { | 
|  | return 0; | 
|  | } | 
|  | if (s0xt0 < 0 && m0xm1 < 0) { | 
|  | return 1; | 
|  | } | 
|  | if (tangentsDiverge(rh, s0xt0)) { | 
|  | return s0xt0 < 0; | 
|  | } | 
|  | return m0xm1 < 0; | 
|  | } | 
|  |  | 
|  | // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup | 
|  | double SkOpAngle::distEndRatio(double dist) const { | 
|  | double longest = 0; | 
|  | const SkOpSegment& segment = *this->segment(); | 
|  | int ptCount = SkPathOpsVerbToPoints(segment.verb()); | 
|  | const SkPoint* pts = segment.pts(); | 
|  | for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) { | 
|  | for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) { | 
|  | if (idx1 == idx2) { | 
|  | continue; | 
|  | } | 
|  | SkDVector v; | 
|  | v.set(pts[idx2] - pts[idx1]); | 
|  | double lenSq = v.lengthSquared(); | 
|  | longest = SkTMax(longest, lenSq); | 
|  | } | 
|  | } | 
|  | return sqrt(longest) / dist; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const { | 
|  | SkPath::Verb lVerb = fSegment->verb(); | 
|  | SkPath::Verb rVerb = rh.fSegment->verb(); | 
|  | int lPts = SkPathOpsVerbToPoints(lVerb); | 
|  | int rPts = SkPathOpsVerbToPoints(rVerb); | 
|  | SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}}, | 
|  | {{fCurvePart[0], fCurvePart[lPts]}}}; | 
|  | if (rays[0][1] == rays[1][1]) { | 
|  | return checkParallel(rh); | 
|  | } | 
|  | double smallTs[2] = {-1, -1}; | 
|  | bool limited[2] = {false, false}; | 
|  | for (int index = 0; index < 2; ++index) { | 
|  | const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; | 
|  | SkIntersections i; | 
|  | (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i); | 
|  | //      SkASSERT(i.used() >= 1); | 
|  | //        if (i.used() <= 1) { | 
|  | //            continue; | 
|  | //        } | 
|  | double tStart = segment.t(index ? rh.fStart : fStart); | 
|  | double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd); | 
|  | bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd; | 
|  | double t = testAscends ? 0 : 1; | 
|  | for (int idx2 = 0; idx2 < i.used(); ++idx2) { | 
|  | double testT = i[0][idx2]; | 
|  | if (!approximately_between_orderable(tStart, testT, tEnd)) { | 
|  | continue; | 
|  | } | 
|  | if (approximately_equal_orderable(tStart, testT)) { | 
|  | continue; | 
|  | } | 
|  | smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT); | 
|  | limited[index] = approximately_equal_orderable(t, tEnd); | 
|  | } | 
|  | } | 
|  | #if 0 | 
|  | if (smallTs[0] < 0 && smallTs[1] < 0) {  // if neither ray intersects, do endpoint sort | 
|  | double m0xm1 = 0; | 
|  | if (lVerb == SkPath::kLine_Verb) { | 
|  | SkASSERT(rVerb != SkPath::kLine_Verb); | 
|  | SkDVector m0 = rays[1][1] - fCurvePart[0]; | 
|  | SkDPoint endPt; | 
|  | endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]); | 
|  | SkDVector m1 = endPt - fCurvePart[0]; | 
|  | m0xm1 = m0.crossCheck(m1); | 
|  | } | 
|  | if (rVerb == SkPath::kLine_Verb) { | 
|  | SkDPoint endPt; | 
|  | endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]); | 
|  | SkDVector m0 = endPt - fCurvePart[0]; | 
|  | SkDVector m1 = rays[0][1] - fCurvePart[0]; | 
|  | m0xm1 = m0.crossCheck(m1); | 
|  | } | 
|  | if (m0xm1 != 0) { | 
|  | return m0xm1 < 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | bool sRayLonger = false; | 
|  | SkDVector sCept = {0, 0}; | 
|  | double sCeptT = -1; | 
|  | int sIndex = -1; | 
|  | bool useIntersect = false; | 
|  | for (int index = 0; index < 2; ++index) { | 
|  | if (smallTs[index] < 0) { | 
|  | continue; | 
|  | } | 
|  | const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; | 
|  | const SkDPoint& dPt = segment.dPtAtT(smallTs[index]); | 
|  | SkDVector cept = dPt - rays[index][0]; | 
|  | // If this point is on the curve, it should have been detected earlier by ordinary | 
|  | // curve intersection. This may be hard to determine in general, but for lines, | 
|  | // the point could be close to or equal to its end, but shouldn't be near the start. | 
|  | if ((index ? lPts : rPts) == 1) { | 
|  | SkDVector total = rays[index][1] - rays[index][0]; | 
|  | if (cept.lengthSquared() * 2 < total.lengthSquared()) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | SkDVector end = rays[index][1] - rays[index][0]; | 
|  | if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) { | 
|  | continue; | 
|  | } | 
|  | double rayDist = cept.length(); | 
|  | double endDist = end.length(); | 
|  | bool rayLonger = rayDist > endDist; | 
|  | if (limited[0] && limited[1] && rayLonger) { | 
|  | useIntersect = true; | 
|  | sRayLonger = rayLonger; | 
|  | sCept = cept; | 
|  | sCeptT = smallTs[index]; | 
|  | sIndex = index; | 
|  | break; | 
|  | } | 
|  | double delta = fabs(rayDist - endDist); | 
|  | double minX, minY, maxX, maxY; | 
|  | minX = minY = SK_ScalarInfinity; | 
|  | maxX = maxY = -SK_ScalarInfinity; | 
|  | const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart; | 
|  | int ptCount = index ? rPts : lPts; | 
|  | for (int idx2 = 0; idx2 <= ptCount; ++idx2) { | 
|  | minX = SkTMin(minX, curve[idx2].fX); | 
|  | minY = SkTMin(minY, curve[idx2].fY); | 
|  | maxX = SkTMax(maxX, curve[idx2].fX); | 
|  | maxY = SkTMax(maxY, curve[idx2].fY); | 
|  | } | 
|  | double maxWidth = SkTMax(maxX - minX, maxY - minY); | 
|  | delta /= maxWidth; | 
|  | if (delta > 1e-4 && (useIntersect ^= true)) {  // FIXME: move this magic number | 
|  | sRayLonger = rayLonger; | 
|  | sCept = cept; | 
|  | sCeptT = smallTs[index]; | 
|  | sIndex = index; | 
|  | } | 
|  | } | 
|  | if (useIntersect) { | 
|  | const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart; | 
|  | const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment; | 
|  | double tStart = segment.t(sIndex ? rh.fStart : fStart); | 
|  | SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0]; | 
|  | double septDir = mid.crossCheck(sCept); | 
|  | if (!septDir) { | 
|  | return checkParallel(rh); | 
|  | } | 
|  | return sRayLonger ^ (sIndex == 0) ^ (septDir < 0); | 
|  | } else { | 
|  | return checkParallel(rh); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Most of the time, the first one can be found trivially by detecting the smallest sector value. | 
|  | // If all angles have the same sector value, actual sorting is required. | 
|  | const SkOpAngle* SkOpAngle::findFirst() const { | 
|  | const SkOpAngle* best = this; | 
|  | int bestStart = SkTMin(fSectorStart, fSectorEnd); | 
|  | const SkOpAngle* angle = this; | 
|  | while ((angle = angle->fNext) != this) { | 
|  | int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
|  | if (angleEnd < bestStart) { | 
|  | return angle;    // we wrapped around | 
|  | } | 
|  | int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
|  | if (bestStart > angleStart) { | 
|  | best = angle; | 
|  | bestStart = angleStart; | 
|  | } | 
|  | } | 
|  | // back up to the first possible angle | 
|  | const SkOpAngle* firstBest = best; | 
|  | angle = best; | 
|  | int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd); | 
|  | while ((angle = angle->previous()) != firstBest) { | 
|  | if (angle->fStop) { | 
|  | break; | 
|  | } | 
|  | int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
|  | // angles that are smaller by one aren't necessary better, since the larger may be a line | 
|  | // and the smaller may be a curve that curls to the other side of the line. | 
|  | if (bestEnd + 1 < angleStart) { | 
|  | return best; | 
|  | } | 
|  | best = angle; | 
|  | bestEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
|  | } | 
|  | // in the case where all angles are nearly in the same sector, check the order to find the best | 
|  | firstBest = best; | 
|  | angle = best; | 
|  | do { | 
|  | angle = angle->fNext; | 
|  | if (angle->fStop) { | 
|  | return firstBest; | 
|  | } | 
|  | bool orderable = best->orderable(*angle);  // note: may return an unorderable angle | 
|  | if (orderable == 0) { | 
|  | return angle; | 
|  | } | 
|  | best = angle; | 
|  | } while (angle != firstBest); | 
|  | // if the angles are equally ordered, fall back on the initial tangent | 
|  | bool foundBelow = false; | 
|  | while ((angle = angle->fNext)) { | 
|  | SkDVector scratch[2]; | 
|  | const SkDVector* sweep; | 
|  | if (!angle->fUnorderedSweep) { | 
|  | sweep = angle->fSweep; | 
|  | } else { | 
|  | scratch[0] = angle->fCurvePart[1] - angle->fCurvePart[0]; | 
|  | sweep = &scratch[0]; | 
|  | } | 
|  | bool isAbove = sweep->fY <= 0; | 
|  | if (isAbove && foundBelow) { | 
|  | return angle; | 
|  | } | 
|  | foundBelow |= !isAbove; | 
|  | if (angle == firstBest) { | 
|  | return NULL; // should not loop around | 
|  | } | 
|  | } | 
|  | SkASSERT(0);  // should never get here | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0 | 
|  | 0    x                      x               x | 
|  | 1    x                      x          x | 
|  | 2    x                      x    x | 
|  | 3    x                  x        x | 
|  | 4    x             x             x | 
|  | 5    x             x                   x | 
|  | 6    x             x                        x | 
|  | 7         x        x                        x | 
|  | 8             x    x                        x | 
|  | 9             x    x                   x | 
|  | 10            x    x             x | 
|  | 11            x         x        x | 
|  | 12            x             x    x | 
|  | 13            x             x          x | 
|  | 14            x             x               x | 
|  | 15        x                 x               x | 
|  | */ | 
|  | int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const { | 
|  | double absX = fabs(x); | 
|  | double absY = fabs(y); | 
|  | double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0; | 
|  | // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim, | 
|  | // one could coin the term sedecimant for a space divided into 16 sections. | 
|  | // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts | 
|  | static const int sedecimant[3][3][3] = { | 
|  | //       y<0           y==0           y>0 | 
|  | //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0 | 
|  | {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y) | 
|  | {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y) | 
|  | {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y) | 
|  | }; | 
|  | int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1; | 
|  | SkASSERT(SkPath::kLine_Verb == verb || sector >= 0); | 
|  | return sector; | 
|  | } | 
|  |  | 
|  | // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side | 
|  | // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side | 
|  | void SkOpAngle::insert(SkOpAngle* angle) { | 
|  | if (angle->fNext) { | 
|  | if (loopCount() >= angle->loopCount()) { | 
|  | if (!merge(angle)) { | 
|  | return; | 
|  | } | 
|  | } else if (fNext) { | 
|  | if (!angle->merge(this)) { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | angle->insert(this); | 
|  | } | 
|  | return; | 
|  | } | 
|  | bool singleton = NULL == fNext; | 
|  | if (singleton) { | 
|  | fNext = this; | 
|  | } | 
|  | SkOpAngle* next = fNext; | 
|  | if (next->fNext == this) { | 
|  | if (angle->overlap(*this)) { | 
|  | return; | 
|  | } | 
|  | if (singleton || angle->after(this)) { | 
|  | this->fNext = angle; | 
|  | angle->fNext = next; | 
|  | } else { | 
|  | next->fNext = angle; | 
|  | angle->fNext = this; | 
|  | } | 
|  | debugValidateNext(); | 
|  | return; | 
|  | } | 
|  | SkOpAngle* last = this; | 
|  | do { | 
|  | SkASSERT(last->fNext == next); | 
|  | if (angle->overlap(*last) || angle->overlap(*next)) { | 
|  | return; | 
|  | } | 
|  | if (angle->after(last)) { | 
|  | last->fNext = angle; | 
|  | angle->fNext = next; | 
|  | debugValidateNext(); | 
|  | return; | 
|  | } | 
|  | last = next; | 
|  | next = next->fNext; | 
|  | if (last == this && next->fUnorderable) { | 
|  | fUnorderable = true; | 
|  | return; | 
|  | } | 
|  | SkASSERT(last != this); | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::isHorizontal() const { | 
|  | return !fIsCurve && fSweep[0].fY == 0; | 
|  | } | 
|  |  | 
|  | SkOpSpan* SkOpAngle::lastMarked() const { | 
|  | if (fLastMarked) { | 
|  | if (fLastMarked->fChased) { | 
|  | return NULL; | 
|  | } | 
|  | fLastMarked->fChased = true; | 
|  | } | 
|  | return fLastMarked; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::loopContains(const SkOpAngle& test) const { | 
|  | if (!fNext) { | 
|  | return false; | 
|  | } | 
|  | const SkOpAngle* first = this; | 
|  | const SkOpAngle* loop = this; | 
|  | const SkOpSegment* tSegment = test.fSegment; | 
|  | double tStart = tSegment->span(test.fStart).fT; | 
|  | double tEnd = tSegment->span(test.fEnd).fT; | 
|  | do { | 
|  | const SkOpSegment* lSegment = loop->fSegment; | 
|  | // FIXME : use precisely_equal ? or compare points exactly ? | 
|  | if (lSegment != tSegment) { | 
|  | continue; | 
|  | } | 
|  | double lStart = lSegment->span(loop->fStart).fT; | 
|  | if (lStart != tEnd) { | 
|  | continue; | 
|  | } | 
|  | double lEnd = lSegment->span(loop->fEnd).fT; | 
|  | if (lEnd == tStart) { | 
|  | return true; | 
|  | } | 
|  | } while ((loop = loop->fNext) != first); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int SkOpAngle::loopCount() const { | 
|  | int count = 0; | 
|  | const SkOpAngle* first = this; | 
|  | const SkOpAngle* next = this; | 
|  | do { | 
|  | next = next->fNext; | 
|  | ++count; | 
|  | } while (next && next != first); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | // OPTIMIZATION: can this be done better in after when angles are sorted? | 
|  | void SkOpAngle::markStops() { | 
|  | SkOpAngle* angle = this; | 
|  | int lastEnd = SkTMax(fSectorStart, fSectorEnd); | 
|  | do { | 
|  | angle = angle->fNext; | 
|  | int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
|  | // angles that are smaller by one aren't necessary better, since the larger may be a line | 
|  | // and the smaller may be a curve that curls to the other side of the line. | 
|  | if (lastEnd + 1 < angleStart) { | 
|  | angle->fStop = true; | 
|  | } | 
|  | lastEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
|  | } while (angle != this); | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::merge(SkOpAngle* angle) { | 
|  | SkASSERT(fNext); | 
|  | SkASSERT(angle->fNext); | 
|  | SkOpAngle* working = angle; | 
|  | do { | 
|  | if (this == working) { | 
|  | return false; | 
|  | } | 
|  | working = working->fNext; | 
|  | } while (working != angle); | 
|  | do { | 
|  | SkOpAngle* next = working->fNext; | 
|  | working->fNext = NULL; | 
|  | insert(working); | 
|  | working = next; | 
|  | } while (working != angle); | 
|  | // it's likely that a pair of the angles are unorderable | 
|  | #if DEBUG_ANGLE | 
|  | SkOpAngle* last = angle; | 
|  | working = angle->fNext; | 
|  | do { | 
|  | SkASSERT(last->fNext == working); | 
|  | last->fNext = working->fNext; | 
|  | SkASSERT(working->after(last)); | 
|  | last->fNext = working; | 
|  | last = working; | 
|  | working = working->fNext; | 
|  | } while (last != angle); | 
|  | #endif | 
|  | debugValidateNext(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | double SkOpAngle::midT() const { | 
|  | return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const { | 
|  | int startSpan = abs(rh.fSectorStart - fSectorStart); | 
|  | return startSpan >= 8; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::orderable(const SkOpAngle& rh) const { | 
|  | int result; | 
|  | if (!fIsCurve) { | 
|  | if (!rh.fIsCurve) { | 
|  | double leftX = fTangentHalf.dx(); | 
|  | double leftY = fTangentHalf.dy(); | 
|  | double rightX = rh.fTangentHalf.dx(); | 
|  | double rightY = rh.fTangentHalf.dy(); | 
|  | double x_ry = leftX * rightY; | 
|  | double rx_y = rightX * leftY; | 
|  | if (x_ry == rx_y) { | 
|  | if (leftX * rightX < 0 || leftY * rightY < 0) { | 
|  | return true;  // exactly 180 degrees apart | 
|  | } | 
|  | goto unorderable; | 
|  | } | 
|  | SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier | 
|  | return x_ry < rx_y; | 
|  | } | 
|  | if ((result = allOnOneSide(rh)) >= 0) { | 
|  | return result; | 
|  | } | 
|  | if (fUnorderable || approximately_zero(rh.fSide)) { | 
|  | goto unorderable; | 
|  | } | 
|  | } else if (!rh.fIsCurve) { | 
|  | if ((result = rh.allOnOneSide(*this)) >= 0) { | 
|  | return !result; | 
|  | } | 
|  | if (rh.fUnorderable || approximately_zero(fSide)) { | 
|  | goto unorderable; | 
|  | } | 
|  | } | 
|  | if ((result = convexHullOverlaps(rh)) >= 0) { | 
|  | return result; | 
|  | } | 
|  | return endsIntersect(rh); | 
|  | unorderable: | 
|  | fUnorderable = true; | 
|  | rh.fUnorderable = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::overlap(const SkOpAngle& other) const { | 
|  | int min = SkTMin(fStart, fEnd); | 
|  | const SkOpSpan& span = fSegment->span(min); | 
|  | const SkOpSegment* oSeg = other.fSegment; | 
|  | int oMin = SkTMin(other.fStart, other.fEnd); | 
|  | const SkOpSpan& oSpan = oSeg->span(oMin); | 
|  | if (!span.fSmall && !oSpan.fSmall) { | 
|  | return false; | 
|  | } | 
|  | if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) { | 
|  | return false; | 
|  | } | 
|  | // see if small span is contained by opposite span | 
|  | return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart) | 
|  | : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart); | 
|  | } | 
|  |  | 
|  | // OPTIMIZE: if this shows up in a profile, add a previous pointer | 
|  | // as is, this should be rarely called | 
|  | SkOpAngle* SkOpAngle::previous() const { | 
|  | SkOpAngle* last = fNext; | 
|  | do { | 
|  | SkOpAngle* next = last->fNext; | 
|  | if (next == this) { | 
|  | return last; | 
|  | } | 
|  | last = next; | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | void SkOpAngle::set(const SkOpSegment* segment, int start, int end) { | 
|  | fSegment = segment; | 
|  | fStart = start; | 
|  | fComputedEnd = fEnd = end; | 
|  | fNext = NULL; | 
|  | fComputeSector = fComputedSector = false; | 
|  | fStop = false; | 
|  | setSpans(); | 
|  | setSector(); | 
|  | } | 
|  |  | 
|  | void SkOpAngle::setCurveHullSweep() { | 
|  | fUnorderedSweep = false; | 
|  | fSweep[0] = fCurvePart[1] - fCurvePart[0]; | 
|  | if (SkPath::kLine_Verb == fSegment->verb()) { | 
|  | fSweep[1] = fSweep[0]; | 
|  | return; | 
|  | } | 
|  | fSweep[1] = fCurvePart[2] - fCurvePart[0]; | 
|  | if (SkPath::kCubic_Verb != fSegment->verb()) { | 
|  | if (!fSweep[0].fX && !fSweep[0].fY) { | 
|  | fSweep[0] = fSweep[1]; | 
|  | } | 
|  | return; | 
|  | } | 
|  | SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0]; | 
|  | if (fSweep[0].fX == 0 && fSweep[0].fY == 0) { | 
|  | fSweep[0] = fSweep[1]; | 
|  | fSweep[1] = thirdSweep; | 
|  | if (fSweep[0].fX == 0 && fSweep[0].fY == 0) { | 
|  | fSweep[0] = fSweep[1]; | 
|  | fCurvePart[1] = fCurvePart[3]; | 
|  | fIsCurve = false; | 
|  | } | 
|  | return; | 
|  | } | 
|  | double s1x3 = fSweep[0].crossCheck(thirdSweep); | 
|  | double s3x2 = thirdSweep.crossCheck(fSweep[1]); | 
|  | if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors | 
|  | return; | 
|  | } | 
|  | double s2x1 = fSweep[1].crossCheck(fSweep[0]); | 
|  | // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble | 
|  | // probably such wide sweeps should be artificially subdivided earlier so that never happens | 
|  | SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0); | 
|  | if (s3x2 * s2x1 < 0) { | 
|  | SkASSERT(s2x1 * s1x3 > 0); | 
|  | fSweep[0] = fSweep[1]; | 
|  | fUnorderedSweep = true; | 
|  | } | 
|  | fSweep[1] = thirdSweep; | 
|  | } | 
|  |  | 
|  | void SkOpAngle::setSector() { | 
|  | SkPath::Verb verb = fSegment->verb(); | 
|  | if (SkPath::kLine_Verb != verb && small()) { | 
|  | fSectorStart = fSectorEnd = -1; | 
|  | fSectorMask = 0; | 
|  | fComputeSector = true;  // can't determine sector until segment length can be found | 
|  | return; | 
|  | } | 
|  | fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY); | 
|  | if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same | 
|  | SkASSERT(fSectorStart >= 0); | 
|  | fSectorEnd = fSectorStart; | 
|  | fSectorMask = 1 << fSectorStart; | 
|  | return; | 
|  | } | 
|  | SkASSERT(SkPath::kLine_Verb != verb); | 
|  | fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY); | 
|  | if (fSectorEnd == fSectorStart) { | 
|  | SkASSERT((fSectorStart & 3) != 3);  // if the sector has no span, it can't be an exact angle | 
|  | fSectorMask = 1 << fSectorStart; | 
|  | return; | 
|  | } | 
|  | bool crossesZero = checkCrossesZero(); | 
|  | int start = SkTMin(fSectorStart, fSectorEnd); | 
|  | bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; | 
|  | // bump the start and end of the sector span if they are on exact compass points | 
|  | if ((fSectorStart & 3) == 3) { | 
|  | fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; | 
|  | } | 
|  | if ((fSectorEnd & 3) == 3) { | 
|  | fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; | 
|  | } | 
|  | crossesZero = checkCrossesZero(); | 
|  | start = SkTMin(fSectorStart, fSectorEnd); | 
|  | int end = SkTMax(fSectorStart, fSectorEnd); | 
|  | if (!crossesZero) { | 
|  | fSectorMask = (unsigned) -1 >> (31 - end + start) << start; | 
|  | } else { | 
|  | fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkOpAngle::setSpans() { | 
|  | fUnorderable = fSegment->isTiny(this); | 
|  | fLastMarked = NULL; | 
|  | const SkPoint* pts = fSegment->pts(); | 
|  | SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY | 
|  | = SK_ScalarNaN); | 
|  | fSegment->subDivide(fStart, fEnd, &fCurvePart); | 
|  | setCurveHullSweep(); | 
|  | const SkPath::Verb verb = fSegment->verb(); | 
|  | if (verb != SkPath::kLine_Verb | 
|  | && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) { | 
|  | SkDLine lineHalf; | 
|  | lineHalf[0].set(fCurvePart[0].asSkPoint()); | 
|  | lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint()); | 
|  | fTangentHalf.lineEndPoints(lineHalf); | 
|  | fSide = 0; | 
|  | } | 
|  | switch (verb) { | 
|  | case SkPath::kLine_Verb: { | 
|  | SkASSERT(fStart != fEnd); | 
|  | const SkPoint& cP1 = pts[fStart < fEnd]; | 
|  | SkDLine lineHalf; | 
|  | lineHalf[0].set(fSegment->span(fStart).fPt); | 
|  | lineHalf[1].set(cP1); | 
|  | fTangentHalf.lineEndPoints(lineHalf); | 
|  | fSide = 0; | 
|  | fIsCurve = false; | 
|  | } return; | 
|  | case SkPath::kQuad_Verb: { | 
|  | SkLineParameters tangentPart; | 
|  | SkDQuad& quad2 = *SkTCast<SkDQuad*>(&fCurvePart); | 
|  | (void) tangentPart.quadEndPoints(quad2); | 
|  | fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only | 
|  | } break; | 
|  | case SkPath::kCubic_Verb: { | 
|  | SkLineParameters tangentPart; | 
|  | (void) tangentPart.cubicPart(fCurvePart); | 
|  | fSide = -tangentPart.pointDistance(fCurvePart[3]); | 
|  | double testTs[4]; | 
|  | // OPTIMIZATION: keep inflections precomputed with cubic segment? | 
|  | int testCount = SkDCubic::FindInflections(pts, testTs); | 
|  | double startT = fSegment->t(fStart); | 
|  | double endT = fSegment->t(fEnd); | 
|  | double limitT = endT; | 
|  | int index; | 
|  | for (index = 0; index < testCount; ++index) { | 
|  | if (!::between(startT, testTs[index], limitT)) { | 
|  | testTs[index] = -1; | 
|  | } | 
|  | } | 
|  | testTs[testCount++] = startT; | 
|  | testTs[testCount++] = endT; | 
|  | SkTQSort<double>(testTs, &testTs[testCount - 1]); | 
|  | double bestSide = 0; | 
|  | int testCases = (testCount << 1) - 1; | 
|  | index = 0; | 
|  | while (testTs[index] < 0) { | 
|  | ++index; | 
|  | } | 
|  | index <<= 1; | 
|  | for (; index < testCases; ++index) { | 
|  | int testIndex = index >> 1; | 
|  | double testT = testTs[testIndex]; | 
|  | if (index & 1) { | 
|  | testT = (testT + testTs[testIndex + 1]) / 2; | 
|  | } | 
|  | // OPTIMIZE: could avoid call for t == startT, endT | 
|  | SkDPoint pt = dcubic_xy_at_t(pts, testT); | 
|  | SkLineParameters tangentPart; | 
|  | tangentPart.cubicEndPoints(fCurvePart); | 
|  | double testSide = tangentPart.pointDistance(pt); | 
|  | if (fabs(bestSide) < fabs(testSide)) { | 
|  | bestSide = testSide; | 
|  | } | 
|  | } | 
|  | fSide = -bestSide;  // compare sign only | 
|  | } break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::small() const { | 
|  | int min = SkMin32(fStart, fEnd); | 
|  | int max = SkMax32(fStart, fEnd); | 
|  | for (int index = min; index < max; ++index) { | 
|  | const SkOpSpan& mSpan = fSegment->span(index); | 
|  | if (!mSpan.fSmall) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const { | 
|  | if (s0xt0 == 0) { | 
|  | return false; | 
|  | } | 
|  | // if the ctrl tangents are not nearly parallel, use them | 
|  | // solve for opposite direction displacement scale factor == m | 
|  | // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x | 
|  | // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] | 
|  | // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) | 
|  | //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) | 
|  | // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x | 
|  | // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) | 
|  | // m = v1.cross(v2) / v1.dot(v2) | 
|  | const SkDVector* sweep = fSweep; | 
|  | const SkDVector* tweep = rh.fSweep; | 
|  | double s0dt0 = sweep[0].dot(tweep[0]); | 
|  | if (!s0dt0) { | 
|  | return true; | 
|  | } | 
|  | SkASSERT(s0dt0 != 0); | 
|  | double m = s0xt0 / s0dt0; | 
|  | double sDist = sweep[0].length() * m; | 
|  | double tDist = tweep[0].length() * m; | 
|  | bool useS = fabs(sDist) < fabs(tDist); | 
|  | double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist)); | 
|  | return mFactor < 5000;  // empirically found limit | 
|  | } | 
|  |  | 
|  | SkOpAngleSet::SkOpAngleSet() | 
|  | : fAngles(NULL) | 
|  | #if DEBUG_ANGLE | 
|  | , fCount(0) | 
|  | #endif | 
|  | { | 
|  | } | 
|  |  | 
|  | SkOpAngleSet::~SkOpAngleSet() { | 
|  | SkDELETE(fAngles); | 
|  | } | 
|  |  | 
|  | SkOpAngle& SkOpAngleSet::push_back() { | 
|  | if (!fAngles) { | 
|  | fAngles = SkNEW_ARGS(SkChunkAlloc, (2)); | 
|  | } | 
|  | void* ptr = fAngles->allocThrow(sizeof(SkOpAngle)); | 
|  | SkOpAngle* angle = (SkOpAngle*) ptr; | 
|  | #if DEBUG_ANGLE | 
|  | angle->setID(++fCount); | 
|  | #endif | 
|  | return *angle; | 
|  | } | 
|  |  | 
|  | void SkOpAngleSet::reset() { | 
|  | if (fAngles) { | 
|  | fAngles->reset(); | 
|  | } | 
|  | } |