|  | /* | 
|  | http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. | 
|  | Then for degree elevation, the equations are: | 
|  |  | 
|  | Q0 = P0 | 
|  | Q1 = 1/3 P0 + 2/3 P1 | 
|  | Q2 = 2/3 P1 + 1/3 P2 | 
|  | Q3 = P2 | 
|  | In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from | 
|  | the equations above: | 
|  |  | 
|  | P1 = 3/2 Q1 - 1/2 Q0 | 
|  | P1 = 3/2 Q2 - 1/2 Q3 | 
|  | If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since | 
|  | it's likely not, your best bet is to average them. So, | 
|  |  | 
|  | P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 | 
|  |  | 
|  | SkDCubic defined by: P1/2 - anchor points, C1/C2 control points | 
|  | |x| is the euclidean norm of x | 
|  | mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the | 
|  | control point at C = (3·C2 - P2 + 3·C1 - P1)/4 | 
|  |  | 
|  | Algorithm | 
|  |  | 
|  | pick an absolute precision (prec) | 
|  | Compute the Tdiv as the root of (cubic) equation | 
|  | sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec | 
|  | if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a | 
|  | quadratic, with a defect less than prec, by the mid-point approximation. | 
|  | Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) | 
|  | 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point | 
|  | approximation | 
|  | Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation | 
|  |  | 
|  | confirmed by (maybe stolen from) | 
|  | http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html | 
|  | // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf | 
|  | // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf | 
|  |  | 
|  | */ | 
|  |  | 
|  | #include "SkPathOpsCubic.h" | 
|  | #include "SkPathOpsLine.h" | 
|  | #include "SkPathOpsQuad.h" | 
|  | #include "SkReduceOrder.h" | 
|  | #include "SkTArray.h" | 
|  | #include "SkTSort.h" | 
|  |  | 
|  | #define USE_CUBIC_END_POINTS 1 | 
|  |  | 
|  | static double calc_t_div(const SkDCubic& cubic, double precision, double start) { | 
|  | const double adjust = sqrt(3.) / 36; | 
|  | SkDCubic sub; | 
|  | const SkDCubic* cPtr; | 
|  | if (start == 0) { | 
|  | cPtr = &cubic; | 
|  | } else { | 
|  | // OPTIMIZE: special-case half-split ? | 
|  | sub = cubic.subDivide(start, 1); | 
|  | cPtr = ⊂ | 
|  | } | 
|  | const SkDCubic& c = *cPtr; | 
|  | double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; | 
|  | double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; | 
|  | double dist = sqrt(dx * dx + dy * dy); | 
|  | double tDiv3 = precision / (adjust * dist); | 
|  | double t = SkDCubeRoot(tDiv3); | 
|  | if (start > 0) { | 
|  | t = start + (1 - start) * t; | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  | SkDQuad SkDCubic::toQuad() const { | 
|  | SkDQuad quad; | 
|  | quad[0] = fPts[0]; | 
|  | const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2}; | 
|  | const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2}; | 
|  | quad[1].fX = (fromC1.fX + fromC2.fX) / 2; | 
|  | quad[1].fY = (fromC1.fY + fromC2.fY) / 2; | 
|  | quad[2] = fPts[3]; | 
|  | return quad; | 
|  | } | 
|  |  | 
|  | static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) { | 
|  | double tDiv = calc_t_div(cubic, precision, 0); | 
|  | if (tDiv >= 1) { | 
|  | return true; | 
|  | } | 
|  | if (tDiv >= 0.5) { | 
|  | ts->push_back(0.5); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void addTs(const SkDCubic& cubic, double precision, double start, double end, | 
|  | SkTArray<double, true>* ts) { | 
|  | double tDiv = calc_t_div(cubic, precision, 0); | 
|  | double parts = ceil(1.0 / tDiv); | 
|  | for (double index = 0; index < parts; ++index) { | 
|  | double newT = start + (index / parts) * (end - start); | 
|  | if (newT > 0 && newT < 1) { | 
|  | ts->push_back(newT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // flavor that returns T values only, deferring computing the quads until they are needed | 
|  | // FIXME: when called from recursive intersect 2, this could take the original cubic | 
|  | // and do a more precise job when calling chop at and sub divide by computing the fractional ts. | 
|  | // it would still take the prechopped cubic for reduce order and find cubic inflections | 
|  | void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const { | 
|  | SkReduceOrder reducer; | 
|  | int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics); | 
|  | if (order < 3) { | 
|  | return; | 
|  | } | 
|  | double inflectT[5]; | 
|  | int inflections = findInflections(inflectT); | 
|  | SkASSERT(inflections <= 2); | 
|  | if (!endsAreExtremaInXOrY()) { | 
|  | inflections += findMaxCurvature(&inflectT[inflections]); | 
|  | SkASSERT(inflections <= 5); | 
|  | } | 
|  | SkTQSort<double>(inflectT, &inflectT[inflections - 1]); | 
|  | // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its | 
|  | // own subroutine? | 
|  | while (inflections && approximately_less_than_zero(inflectT[0])) { | 
|  | memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); | 
|  | } | 
|  | int start = 0; | 
|  | int next = 1; | 
|  | while (next < inflections) { | 
|  | if (!approximately_equal(inflectT[start], inflectT[next])) { | 
|  | ++start; | 
|  | ++next; | 
|  | continue; | 
|  | } | 
|  | memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); | 
|  | } | 
|  |  | 
|  | while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { | 
|  | --inflections; | 
|  | } | 
|  | SkDCubicPair pair; | 
|  | if (inflections == 1) { | 
|  | pair = chopAt(inflectT[0]); | 
|  | int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics); | 
|  | if (orderP1 < 2) { | 
|  | --inflections; | 
|  | } else { | 
|  | int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics); | 
|  | if (orderP2 < 2) { | 
|  | --inflections; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (inflections == 0 && add_simple_ts(*this, precision, ts)) { | 
|  | return; | 
|  | } | 
|  | if (inflections == 1) { | 
|  | pair = chopAt(inflectT[0]); | 
|  | addTs(pair.first(), precision, 0, inflectT[0], ts); | 
|  | addTs(pair.second(), precision, inflectT[0], 1, ts); | 
|  | return; | 
|  | } | 
|  | if (inflections > 1) { | 
|  | SkDCubic part = subDivide(0, inflectT[0]); | 
|  | addTs(part, precision, 0, inflectT[0], ts); | 
|  | int last = inflections - 1; | 
|  | for (int idx = 0; idx < last; ++idx) { | 
|  | part = subDivide(inflectT[idx], inflectT[idx + 1]); | 
|  | addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); | 
|  | } | 
|  | part = subDivide(inflectT[last], 1); | 
|  | addTs(part, precision, inflectT[last], 1, ts); | 
|  | return; | 
|  | } | 
|  | addTs(*this, precision, 0, 1, ts); | 
|  | } |