| /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #ifndef SkMathPriv_DEFINED | 
 | #define SkMathPriv_DEFINED | 
 |  | 
 | #include "include/core/SkMath.h" | 
 |  | 
 | /** | 
 |  *  Return the integer square root of value, with a bias of bitBias | 
 |  */ | 
 | int32_t SkSqrtBits(int32_t value, int bitBias); | 
 |  | 
 | /** Return the integer square root of n, treated as a SkFixed (16.16) | 
 |  */ | 
 | static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); } | 
 |  | 
 | /** | 
 |  *  Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) | 
 |  */ | 
 | static inline int SkClampPos(int value) { | 
 |     return value & ~(value >> 31); | 
 | } | 
 |  | 
 | /** | 
 |  * Stores numer/denom and numer%denom into div and mod respectively. | 
 |  */ | 
 | template <typename In, typename Out> | 
 | inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { | 
 | #ifdef SK_CPU_ARM32 | 
 |     // If we wrote this as in the else branch, GCC won't fuse the two into one | 
 |     // divmod call, but rather a div call followed by a divmod.  Silly!  This | 
 |     // version is just as fast as calling __aeabi_[u]idivmod manually, but with | 
 |     // prettier code. | 
 |     // | 
 |     // This benches as around 2x faster than the code in the else branch. | 
 |     const In d = numer/denom; | 
 |     *div = static_cast<Out>(d); | 
 |     *mod = static_cast<Out>(numer-d*denom); | 
 | #else | 
 |     // On x86 this will just be a single idiv. | 
 |     *div = static_cast<Out>(numer/denom); | 
 |     *mod = static_cast<Out>(numer%denom); | 
 | #endif | 
 | } | 
 |  | 
 | /** Returns -1 if n < 0, else returns 0 | 
 |  */ | 
 | #define SkExtractSign(n)    ((int32_t)(n) >> 31) | 
 |  | 
 | /** If sign == -1, returns -n, else sign must be 0, and returns n. | 
 |  Typically used in conjunction with SkExtractSign(). | 
 |  */ | 
 | static inline int32_t SkApplySign(int32_t n, int32_t sign) { | 
 |     SkASSERT(sign == 0 || sign == -1); | 
 |     return (n ^ sign) - sign; | 
 | } | 
 |  | 
 | /** Return x with the sign of y */ | 
 | static inline int32_t SkCopySign32(int32_t x, int32_t y) { | 
 |     return SkApplySign(x, SkExtractSign(x ^ y)); | 
 | } | 
 |  | 
 | /** Given a positive value and a positive max, return the value | 
 |  pinned against max. | 
 |  Note: only works as long as max - value doesn't wrap around | 
 |  @return max if value >= max, else value | 
 |  */ | 
 | static inline unsigned SkClampUMax(unsigned value, unsigned max) { | 
 |     if (value > max) { | 
 |         value = max; | 
 |     } | 
 |     return value; | 
 | } | 
 |  | 
 | // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when | 
 | // we negate it (even though we *know* we're 2's complement and we'll get the same | 
 | // value back). So we create this helper function that casts to size_t (unsigned) first, | 
 | // to avoid the complaint. | 
 | static inline size_t sk_negate_to_size_t(int32_t value) { | 
 | #if defined(_MSC_VER) | 
 | #pragma warning(push) | 
 | #pragma warning(disable : 4146)  // Thanks MSVC, we know what we're negating an unsigned | 
 | #endif | 
 |     return -static_cast<size_t>(value); | 
 | #if defined(_MSC_VER) | 
 | #pragma warning(pop) | 
 | #endif | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /** Return a*b/255, truncating away any fractional bits. Only valid if both | 
 |  a and b are 0..255 | 
 |  */ | 
 | static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { | 
 |     SkASSERT((uint8_t)a == a); | 
 |     SkASSERT((uint8_t)b == b); | 
 |     unsigned prod = a*b + 1; | 
 |     return (prod + (prod >> 8)) >> 8; | 
 | } | 
 |  | 
 | /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if | 
 |  both a and b are 0..255. The expected result equals (a * b + 254) / 255. | 
 |  */ | 
 | static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { | 
 |     SkASSERT((uint8_t)a == a); | 
 |     SkASSERT((uint8_t)b == b); | 
 |     unsigned prod = a*b + 255; | 
 |     return (prod + (prod >> 8)) >> 8; | 
 | } | 
 |  | 
 | /** Just the rounding step in SkDiv255Round: round(value / 255) | 
 |  */ | 
 | static inline unsigned SkDiv255Round(unsigned prod) { | 
 |     prod += 128; | 
 |     return (prod + (prod >> 8)) >> 8; | 
 | } | 
 |  | 
 | /** | 
 |  * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. | 
 |  */ | 
 | #if defined(_MSC_VER) | 
 |     #include <stdlib.h> | 
 |     static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } | 
 | #else | 
 |     static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } | 
 | #endif | 
 |  | 
 | //! Returns the number of leading zero bits (0...32) | 
 | // From Hacker's Delight 2nd Edition | 
 | constexpr int SkCLZ_portable(uint32_t x) { | 
 |     int n = 32; | 
 |     uint32_t y = x >> 16; if (y != 0) {n -= 16; x = y;} | 
 |              y = x >>  8; if (y != 0) {n -=  8; x = y;} | 
 |              y = x >>  4; if (y != 0) {n -=  4; x = y;} | 
 |              y = x >>  2; if (y != 0) {n -=  2; x = y;} | 
 |              y = x >>  1; if (y != 0) {return n - 2;} | 
 |     return n - x; | 
 | } | 
 |  | 
 | static_assert(32 == SkCLZ_portable(0)); | 
 | static_assert(31 == SkCLZ_portable(1)); | 
 | static_assert( 1 == SkCLZ_portable(1 << 30)); | 
 | static_assert( 1 == SkCLZ_portable((1 << 30) | (1 << 24) | 1)); | 
 | static_assert( 0 == SkCLZ_portable(~0U)); | 
 |  | 
 | #if defined(SK_BUILD_FOR_WIN) | 
 |     #include <intrin.h> | 
 |  | 
 |     static inline int SkCLZ(uint32_t mask) { | 
 |         if (mask) { | 
 |             unsigned long index = 0; | 
 |             _BitScanReverse(&index, mask); | 
 |             // Suppress this bogus /analyze warning. The check for non-zero | 
 |             // guarantees that _BitScanReverse will succeed. | 
 |             #pragma warning(suppress : 6102) // Using 'index' from failed function call | 
 |             return index ^ 0x1F; | 
 |         } else { | 
 |             return 32; | 
 |         } | 
 |     } | 
 | #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) | 
 |     static inline int SkCLZ(uint32_t mask) { | 
 |         // __builtin_clz(0) is undefined, so we have to detect that case. | 
 |         return mask ? __builtin_clz(mask) : 32; | 
 |     } | 
 | #else | 
 |     static inline int SkCLZ(uint32_t mask) { | 
 |         return SkCLZ_portable(mask); | 
 |     } | 
 | #endif | 
 |  | 
 | //! Returns the number of trailing zero bits (0...32) | 
 | // From Hacker's Delight 2nd Edition | 
 | constexpr int SkCTZ_portable(uint32_t x) { | 
 |     return 32 - SkCLZ_portable(~x & (x - 1)); | 
 | } | 
 |  | 
 | static_assert(32 == SkCTZ_portable(0)); | 
 | static_assert( 0 == SkCTZ_portable(1)); | 
 | static_assert(30 == SkCTZ_portable(1 << 30)); | 
 | static_assert( 2 == SkCTZ_portable((1 << 30) | (1 << 24) | (1 << 2))); | 
 | static_assert( 0 == SkCTZ_portable(~0U)); | 
 |  | 
 | #if defined(SK_BUILD_FOR_WIN) | 
 |     #include <intrin.h> | 
 |  | 
 |     static inline int SkCTZ(uint32_t mask) { | 
 |         if (mask) { | 
 |             unsigned long index = 0; | 
 |             _BitScanForward(&index, mask); | 
 |             // Suppress this bogus /analyze warning. The check for non-zero | 
 |             // guarantees that _BitScanReverse will succeed. | 
 |             #pragma warning(suppress : 6102) // Using 'index' from failed function call | 
 |             return index; | 
 |         } else { | 
 |             return 32; | 
 |         } | 
 |     } | 
 | #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) | 
 |     static inline int SkCTZ(uint32_t mask) { | 
 |         // __builtin_ctz(0) is undefined, so we have to detect that case. | 
 |         return mask ? __builtin_ctz(mask) : 32; | 
 |     } | 
 | #else | 
 |     static inline int SkCTZ(uint32_t mask) { | 
 |         return SkCTZ_portable(mask); | 
 |     } | 
 | #endif | 
 |  | 
 | /** | 
 |  *  Returns the log2 of the specified value, were that value to be rounded up | 
 |  *  to the next power of 2. It is undefined to pass 0. Examples: | 
 |  *  SkNextLog2(1) -> 0 | 
 |  *  SkNextLog2(2) -> 1 | 
 |  *  SkNextLog2(3) -> 2 | 
 |  *  SkNextLog2(4) -> 2 | 
 |  *  SkNextLog2(5) -> 3 | 
 |  */ | 
 | static inline int SkNextLog2(uint32_t value) { | 
 |     SkASSERT(value != 0); | 
 |     return 32 - SkCLZ(value - 1); | 
 | } | 
 |  | 
 | constexpr int SkNextLog2_portable(uint32_t value) { | 
 |     SkASSERT(value != 0); | 
 |     return 32 - SkCLZ_portable(value - 1); | 
 | } | 
 |  | 
 | /** | 
 | *  Returns the log2 of the specified value, were that value to be rounded down | 
 | *  to the previous power of 2. It is undefined to pass 0. Examples: | 
 | *  SkPrevLog2(1) -> 0 | 
 | *  SkPrevLog2(2) -> 1 | 
 | *  SkPrevLog2(3) -> 1 | 
 | *  SkPrevLog2(4) -> 2 | 
 | *  SkPrevLog2(5) -> 2 | 
 | */ | 
 | static inline int SkPrevLog2(uint32_t value) { | 
 |     SkASSERT(value != 0); | 
 |     return 32 - SkCLZ(value >> 1); | 
 | } | 
 |  | 
 | constexpr int SkPrevLog2_portable(uint32_t value) { | 
 |     SkASSERT(value != 0); | 
 |     return 32 - SkCLZ_portable(value >> 1); | 
 | } | 
 |  | 
 | /** | 
 |  *  Returns the smallest power-of-2 that is >= the specified value. If value | 
 |  *  is already a power of 2, then it is returned unchanged. It is undefined | 
 |  *  if value is <= 0. | 
 |  */ | 
 | static inline int SkNextPow2(int value) { | 
 |     SkASSERT(value > 0); | 
 |     return 1 << SkNextLog2(value); | 
 | } | 
 |  | 
 | constexpr int SkNextPow2_portable(int value) { | 
 |     SkASSERT(value > 0); | 
 |     return 1 << SkNextLog2_portable(value); | 
 | } | 
 |  | 
 | /** | 
 | *  Returns the largest power-of-2 that is <= the specified value. If value | 
 | *  is already a power of 2, then it is returned unchanged. It is undefined | 
 | *  if value is <= 0. | 
 | */ | 
 | static inline int SkPrevPow2(int value) { | 
 |     SkASSERT(value > 0); | 
 |     return 1 << SkPrevLog2(value); | 
 | } | 
 |  | 
 | constexpr int SkPrevPow2_portable(int value) { | 
 |     SkASSERT(value > 0); | 
 |     return 1 << SkPrevLog2_portable(value); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /** | 
 |  *  Return the smallest power-of-2 >= n. | 
 |  */ | 
 | static inline uint32_t GrNextPow2(uint32_t n) { | 
 |     return n ? (1 << (32 - SkCLZ(n - 1))) : 1; | 
 | } | 
 |  | 
 | /** | 
 |  * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. | 
 |  */ | 
 | static inline size_t GrNextSizePow2(size_t n) { | 
 |     constexpr int kNumSizeTBits = 8 * sizeof(size_t); | 
 |     constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); | 
 |  | 
 |     if (!n) { | 
 |         return 1; | 
 |     } else if (n >= kHighBitSet) { | 
 |         return n; | 
 |     } | 
 |  | 
 |     n--; | 
 |     uint32_t shift = 1; | 
 |     while (shift < kNumSizeTBits) { | 
 |         n |= n >> shift; | 
 |         shift <<= 1; | 
 |     } | 
 |     return n + 1; | 
 | } | 
 |  | 
 | // conservative check. will return false for very large values that "could" fit | 
 | template <typename T> static inline bool SkFitsInFixed(T x) { | 
 |     return SkTAbs(x) <= 32767.0f; | 
 | } | 
 |  | 
 | #endif |