|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkTArray_DEFINED | 
|  | #define SkTArray_DEFINED | 
|  |  | 
|  | #include <new> | 
|  | #include "SkTypes.h" | 
|  | #include "SkTemplates.h" | 
|  |  | 
|  | template <typename T, bool MEM_COPY = false> class SkTArray; | 
|  |  | 
|  | namespace SkTArrayExt { | 
|  |  | 
|  | template<typename T> | 
|  | inline void copy(SkTArray<T, true>* self, int dst, int src) { | 
|  | memcpy(&self->fItemArray[dst], &self->fItemArray[src], sizeof(T)); | 
|  | } | 
|  | template<typename T> | 
|  | inline void copy(SkTArray<T, true>* self, const T* array) { | 
|  | memcpy(self->fMemArray, array, self->fCount * sizeof(T)); | 
|  | } | 
|  | template<typename T> | 
|  | inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { | 
|  | memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | inline void copy(SkTArray<T, false>* self, int dst, int src) { | 
|  | SkNEW_PLACEMENT_ARGS(&self->fItemArray[dst], T, (self->fItemArray[src])); | 
|  | } | 
|  | template<typename T> | 
|  | inline void copy(SkTArray<T, false>* self, const T* array) { | 
|  | for (int i = 0; i < self->fCount; ++i) { | 
|  | SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); | 
|  | } | 
|  | } | 
|  | template<typename T> | 
|  | inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { | 
|  | for (int i = 0; i < self->fCount; ++i) { | 
|  | SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); | 
|  | self->fItemArray[i].~T(); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); | 
|  |  | 
|  | /** When MEM_COPY is true T will be bit copied when moved. | 
|  | When MEM_COPY is false, T will be copy constructed / destructed. | 
|  | In all cases T will be default-initialized on allocation, | 
|  | and its destructor will be called from this object's destructor. | 
|  | */ | 
|  | template <typename T, bool MEM_COPY> class SkTArray { | 
|  | public: | 
|  | /** | 
|  | * Creates an empty array with no initial storage | 
|  | */ | 
|  | SkTArray() { | 
|  | fCount = 0; | 
|  | fReserveCount = gMIN_ALLOC_COUNT; | 
|  | fAllocCount = 0; | 
|  | fMemArray = NULL; | 
|  | fPreAllocMemArray = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Creates an empty array that will preallocate space for reserveCount | 
|  | * elements. | 
|  | */ | 
|  | explicit SkTArray(int reserveCount) { | 
|  | this->init(NULL, 0, NULL, reserveCount); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Copies one array to another. The new array will be heap allocated. | 
|  | */ | 
|  | explicit SkTArray(const SkTArray& array) { | 
|  | this->init(array.fItemArray, array.fCount, NULL, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Creates a SkTArray by copying contents of a standard C array. The new | 
|  | * array will be heap allocated. Be careful not to use this constructor | 
|  | * when you really want the (void*, int) version. | 
|  | */ | 
|  | SkTArray(const T* array, int count) { | 
|  | this->init(array, count, NULL, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assign copy of array to this | 
|  | */ | 
|  | SkTArray& operator =(const SkTArray& array) { | 
|  | for (int i = 0; i < fCount; ++i) { | 
|  | fItemArray[i].~T(); | 
|  | } | 
|  | fCount = 0; | 
|  | this->checkRealloc((int)array.count()); | 
|  | fCount = array.count(); | 
|  | SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | virtual ~SkTArray() { | 
|  | for (int i = 0; i < fCount; ++i) { | 
|  | fItemArray[i].~T(); | 
|  | } | 
|  | if (fMemArray != fPreAllocMemArray) { | 
|  | sk_free(fMemArray); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Resets to count() == 0 | 
|  | */ | 
|  | void reset() { this->pop_back_n(fCount); } | 
|  |  | 
|  | /** | 
|  | * Resets to count() = n newly constructed T objects. | 
|  | */ | 
|  | void reset(int n) { | 
|  | SkASSERT(n >= 0); | 
|  | for (int i = 0; i < fCount; ++i) { | 
|  | fItemArray[i].~T(); | 
|  | } | 
|  | // set fCount to 0 before calling checkRealloc so that no copy cons. are called. | 
|  | fCount = 0; | 
|  | this->checkRealloc(n); | 
|  | fCount = n; | 
|  | for (int i = 0; i < fCount; ++i) { | 
|  | SkNEW_PLACEMENT(fItemArray + i, T); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Resets to a copy of a C array. | 
|  | */ | 
|  | void reset(const T* array, int count) { | 
|  | for (int i = 0; i < fCount; ++i) { | 
|  | fItemArray[i].~T(); | 
|  | } | 
|  | int delta = count - fCount; | 
|  | this->checkRealloc(delta); | 
|  | fCount = count; | 
|  | SkTArrayExt::copy(this, array); | 
|  | } | 
|  |  | 
|  | void removeShuffle(int n) { | 
|  | SkASSERT(n < fCount); | 
|  | int newCount = fCount - 1; | 
|  | fCount = newCount; | 
|  | fItemArray[n].~T(); | 
|  | if (n != newCount) { | 
|  | SkTArrayExt::copy(this, n, newCount); | 
|  | fItemArray[newCount].~T(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Number of elements in the array. | 
|  | */ | 
|  | int count() const { return fCount; } | 
|  |  | 
|  | /** | 
|  | * Is the array empty. | 
|  | */ | 
|  | bool empty() const { return !fCount; } | 
|  |  | 
|  | /** | 
|  | * Adds 1 new default-initialized T value and returns it by reference. Note | 
|  | * the reference only remains valid until the next call that adds or removes | 
|  | * elements. | 
|  | */ | 
|  | T& push_back() { | 
|  | T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); | 
|  | SkNEW_PLACEMENT(newT, T); | 
|  | return *newT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Version of above that uses a copy constructor to initialize the new item | 
|  | */ | 
|  | T& push_back(const T& t) { | 
|  | T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); | 
|  | SkNEW_PLACEMENT_ARGS(newT, T, (t)); | 
|  | return *newT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Allocates n more default-initialized T values, and returns the address of | 
|  | * the start of that new range. Note: this address is only valid until the | 
|  | * next API call made on the array that might add or remove elements. | 
|  | */ | 
|  | T* push_back_n(int n) { | 
|  | SkASSERT(n >= 0); | 
|  | T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | SkNEW_PLACEMENT(newTs + i, T); | 
|  | } | 
|  | return newTs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Version of above that uses a copy constructor to initialize all n items | 
|  | * to the same T. | 
|  | */ | 
|  | T* push_back_n(int n, const T& t) { | 
|  | SkASSERT(n >= 0); | 
|  | T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); | 
|  | } | 
|  | return newTs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Version of above that uses a copy constructor to initialize the n items | 
|  | * to separate T values. | 
|  | */ | 
|  | T* push_back_n(int n, const T t[]) { | 
|  | SkASSERT(n >= 0); | 
|  | this->checkRealloc(n); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); | 
|  | } | 
|  | fCount += n; | 
|  | return fItemArray + fCount - n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Removes the last element. Not safe to call when count() == 0. | 
|  | */ | 
|  | void pop_back() { | 
|  | SkASSERT(fCount > 0); | 
|  | --fCount; | 
|  | fItemArray[fCount].~T(); | 
|  | this->checkRealloc(0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Removes the last n elements. Not safe to call when count() < n. | 
|  | */ | 
|  | void pop_back_n(int n) { | 
|  | SkASSERT(n >= 0); | 
|  | SkASSERT(fCount >= n); | 
|  | fCount -= n; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | fItemArray[fCount + i].~T(); | 
|  | } | 
|  | this->checkRealloc(0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Pushes or pops from the back to resize. Pushes will be default | 
|  | * initialized. | 
|  | */ | 
|  | void resize_back(int newCount) { | 
|  | SkASSERT(newCount >= 0); | 
|  |  | 
|  | if (newCount > fCount) { | 
|  | this->push_back_n(newCount - fCount); | 
|  | } else if (newCount < fCount) { | 
|  | this->pop_back_n(fCount - newCount); | 
|  | } | 
|  | } | 
|  |  | 
|  | T* begin() { | 
|  | return fItemArray; | 
|  | } | 
|  | const T* begin() const { | 
|  | return fItemArray; | 
|  | } | 
|  | T* end() { | 
|  | return fItemArray ? fItemArray + fCount : NULL; | 
|  | } | 
|  | const T* end() const { | 
|  | return fItemArray ? fItemArray + fCount : NULL;; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the i^th element. | 
|  | */ | 
|  | T& operator[] (int i) { | 
|  | SkASSERT(i < fCount); | 
|  | SkASSERT(i >= 0); | 
|  | return fItemArray[i]; | 
|  | } | 
|  |  | 
|  | const T& operator[] (int i) const { | 
|  | SkASSERT(i < fCount); | 
|  | SkASSERT(i >= 0); | 
|  | return fItemArray[i]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * equivalent to operator[](0) | 
|  | */ | 
|  | T& front() { SkASSERT(fCount > 0); return fItemArray[0];} | 
|  |  | 
|  | const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} | 
|  |  | 
|  | /** | 
|  | * equivalent to operator[](count() - 1) | 
|  | */ | 
|  | T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} | 
|  |  | 
|  | const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} | 
|  |  | 
|  | /** | 
|  | * equivalent to operator[](count()-1-i) | 
|  | */ | 
|  | T& fromBack(int i) { | 
|  | SkASSERT(i >= 0); | 
|  | SkASSERT(i < fCount); | 
|  | return fItemArray[fCount - i - 1]; | 
|  | } | 
|  |  | 
|  | const T& fromBack(int i) const { | 
|  | SkASSERT(i >= 0); | 
|  | SkASSERT(i < fCount); | 
|  | return fItemArray[fCount - i - 1]; | 
|  | } | 
|  |  | 
|  | bool operator==(const SkTArray<T, MEM_COPY>& right) const { | 
|  | int leftCount = this->count(); | 
|  | if (leftCount != right.count()) { | 
|  | return false; | 
|  | } | 
|  | for (int index = 0; index < leftCount; ++index) { | 
|  | if (fItemArray[index] != right.fItemArray[index]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool operator!=(const SkTArray<T, MEM_COPY>& right) const { | 
|  | return !(*this == right); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | /** | 
|  | * Creates an empty array that will use the passed storage block until it | 
|  | * is insufficiently large to hold the entire array. | 
|  | */ | 
|  | template <int N> | 
|  | SkTArray(SkAlignedSTStorage<N,T>* storage) { | 
|  | this->init(NULL, 0, storage->get(), N); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Copy another array, using preallocated storage if preAllocCount >= | 
|  | * array.count(). Otherwise storage will only be used when array shrinks | 
|  | * to fit. | 
|  | */ | 
|  | template <int N> | 
|  | SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { | 
|  | this->init(array.fItemArray, array.fCount, storage->get(), N); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Copy a C array, using preallocated storage if preAllocCount >= | 
|  | * count. Otherwise storage will only be used when array shrinks | 
|  | * to fit. | 
|  | */ | 
|  | template <int N> | 
|  | SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { | 
|  | this->init(array, count, storage->get(), N); | 
|  | } | 
|  |  | 
|  | void init(const T* array, int count, | 
|  | void* preAllocStorage, int preAllocOrReserveCount) { | 
|  | SkASSERT(count >= 0); | 
|  | SkASSERT(preAllocOrReserveCount >= 0); | 
|  | fCount              = count; | 
|  | fReserveCount       = (preAllocOrReserveCount > 0) ? | 
|  | preAllocOrReserveCount : | 
|  | gMIN_ALLOC_COUNT; | 
|  | fPreAllocMemArray   = preAllocStorage; | 
|  | if (fReserveCount >= fCount && | 
|  | NULL != preAllocStorage) { | 
|  | fAllocCount = fReserveCount; | 
|  | fMemArray = preAllocStorage; | 
|  | } else { | 
|  | fAllocCount = SkMax32(fCount, fReserveCount); | 
|  | fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); | 
|  | } | 
|  |  | 
|  | SkTArrayExt::copy(this, array); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | static const int gMIN_ALLOC_COUNT = 8; | 
|  |  | 
|  | // Helper function that makes space for n objects, adjusts the count, but does not initialize | 
|  | // the new objects. | 
|  | void* push_back_raw(int n) { | 
|  | this->checkRealloc(n); | 
|  | void* ptr = fItemArray + fCount; | 
|  | fCount += n; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | inline void checkRealloc(int delta) { | 
|  | SkASSERT(fCount >= 0); | 
|  | SkASSERT(fAllocCount >= 0); | 
|  |  | 
|  | SkASSERT(-delta <= fCount); | 
|  |  | 
|  | int newCount = fCount + delta; | 
|  | int newAllocCount = fAllocCount; | 
|  |  | 
|  | if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { | 
|  | // whether we're growing or shrinking, we leave at least 50% extra space for future | 
|  | // growth (clamped to the reserve count). | 
|  | newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); | 
|  | } | 
|  | if (newAllocCount != fAllocCount) { | 
|  |  | 
|  | fAllocCount = newAllocCount; | 
|  | char* newMemArray; | 
|  |  | 
|  | if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { | 
|  | newMemArray = (char*) fPreAllocMemArray; | 
|  | } else { | 
|  | newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); | 
|  | } | 
|  |  | 
|  | SkTArrayExt::copyAndDelete<T>(this, newMemArray); | 
|  |  | 
|  | if (fMemArray != fPreAllocMemArray) { | 
|  | sk_free(fMemArray); | 
|  | } | 
|  | fMemArray = newMemArray; | 
|  | } | 
|  | } | 
|  |  | 
|  | friend void* operator new<T>(size_t, SkTArray*, int); | 
|  |  | 
|  | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, int dst, int src); | 
|  | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); | 
|  | template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); | 
|  |  | 
|  | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, int dst, int src); | 
|  | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); | 
|  | template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); | 
|  |  | 
|  | int fReserveCount; | 
|  | int fCount; | 
|  | int fAllocCount; | 
|  | void*    fPreAllocMemArray; | 
|  | union { | 
|  | T*       fItemArray; | 
|  | void*    fMemArray; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly | 
|  | template <typename T, bool MEM_COPY> | 
|  | void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) { | 
|  | // Currently, we only support adding to the end of the array. When the array class itself | 
|  | // supports random insertion then this should be updated. | 
|  | // SkASSERT(atIndex >= 0 && atIndex <= array->count()); | 
|  | SkASSERT(atIndex == array->count()); | 
|  | return array->push_back_raw(1); | 
|  | } | 
|  |  | 
|  | // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete | 
|  | // to match the op new silences warnings about missing op delete when a constructor throws an | 
|  | // exception. | 
|  | template <typename T, bool MEM_COPY> | 
|  | void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) { | 
|  | SK_CRASH(); | 
|  | } | 
|  |  | 
|  | // Constructs a new object as the last element of an SkTArray. | 
|  | #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \ | 
|  | (new ((array_ptr), (array_ptr)->count()) type_name args) | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Subclass of SkTArray that contains a preallocated memory block for the array. | 
|  | */ | 
|  | template <int N, typename T, bool MEM_COPY = false> | 
|  | class SkSTArray : public SkTArray<T, MEM_COPY> { | 
|  | private: | 
|  | typedef SkTArray<T, MEM_COPY> INHERITED; | 
|  |  | 
|  | public: | 
|  | SkSTArray() : INHERITED(&fStorage) { | 
|  | } | 
|  |  | 
|  | SkSTArray(const SkSTArray& array) | 
|  | : INHERITED(array, &fStorage) { | 
|  | } | 
|  |  | 
|  | explicit SkSTArray(const INHERITED& array) | 
|  | : INHERITED(array, &fStorage) { | 
|  | } | 
|  |  | 
|  | explicit SkSTArray(int reserveCount) | 
|  | : INHERITED(reserveCount) { | 
|  | } | 
|  |  | 
|  | SkSTArray(const T* array, int count) | 
|  | : INHERITED(array, count, &fStorage) { | 
|  | } | 
|  |  | 
|  | SkSTArray& operator= (const SkSTArray& array) { | 
|  | return *this = *(const INHERITED*)&array; | 
|  | } | 
|  |  | 
|  | SkSTArray& operator= (const INHERITED& array) { | 
|  | INHERITED::operator=(array); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SkAlignedSTStorage<N,T> fStorage; | 
|  | }; | 
|  |  | 
|  | #endif |