|  | 
 | /* | 
 |  * Copyright 2006 The Android Open Source Project | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 |  | 
 | #include "SkAtomics.h" | 
 | #include "SkRegionPriv.h" | 
 | #include "SkTemplates.h" | 
 | #include "SkUtils.h" | 
 |  | 
 | /* Region Layout | 
 |  * | 
 |  *  TOP | 
 |  * | 
 |  *  [ Bottom, X-Intervals, [Left, Right]..., X-Sentinel ] | 
 |  *  ... | 
 |  * | 
 |  *  Y-Sentinel | 
 |  */ | 
 |  | 
 | SkDEBUGCODE(int32_t gRgnAllocCounter;) | 
 |  | 
 | ///////////////////////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /*  Pass in the beginning with the intervals. | 
 |  *  We back up 1 to read the interval-count. | 
 |  *  Return the beginning of the next scanline (i.e. the next Y-value) | 
 |  */ | 
 | static SkRegion::RunType* skip_intervals(const SkRegion::RunType runs[]) { | 
 |     int intervals = runs[-1]; | 
 | #ifdef SK_DEBUG | 
 |     if (intervals > 0) { | 
 |         SkASSERT(runs[0] < runs[1]); | 
 |         SkASSERT(runs[1] < SkRegion::kRunTypeSentinel); | 
 |     } else { | 
 |         SkASSERT(0 == intervals); | 
 |         SkASSERT(SkRegion::kRunTypeSentinel == runs[0]); | 
 |     } | 
 | #endif | 
 |     runs += intervals * 2 + 1; | 
 |     return const_cast<SkRegion::RunType*>(runs); | 
 | } | 
 |  | 
 | bool SkRegion::RunsAreARect(const SkRegion::RunType runs[], int count, | 
 |                             SkIRect* bounds) { | 
 |     assert_sentinel(runs[0], false);    // top | 
 |     SkASSERT(count >= kRectRegionRuns); | 
 |  | 
 |     if (count == kRectRegionRuns) { | 
 |         assert_sentinel(runs[1], false);    // bottom | 
 |         SkASSERT(1 == runs[2]); | 
 |         assert_sentinel(runs[3], false);    // left | 
 |         assert_sentinel(runs[4], false);    // right | 
 |         assert_sentinel(runs[5], true); | 
 |         assert_sentinel(runs[6], true); | 
 |  | 
 |         SkASSERT(runs[0] < runs[1]);    // valid height | 
 |         SkASSERT(runs[3] < runs[4]);    // valid width | 
 |  | 
 |         bounds->set(runs[3], runs[0], runs[4], runs[1]); | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | ////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | SkRegion::SkRegion() { | 
 |     fBounds.set(0, 0, 0, 0); | 
 |     fRunHead = SkRegion_gEmptyRunHeadPtr; | 
 | } | 
 |  | 
 | SkRegion::SkRegion(const SkRegion& src) { | 
 |     fRunHead = SkRegion_gEmptyRunHeadPtr;   // just need a value that won't trigger sk_free(fRunHead) | 
 |     this->setRegion(src); | 
 | } | 
 |  | 
 | SkRegion::SkRegion(const SkIRect& rect) { | 
 |     fRunHead = SkRegion_gEmptyRunHeadPtr;   // just need a value that won't trigger sk_free(fRunHead) | 
 |     this->setRect(rect); | 
 | } | 
 |  | 
 | SkRegion::~SkRegion() { | 
 |     this->freeRuns(); | 
 | } | 
 |  | 
 | void SkRegion::freeRuns() { | 
 |     if (this->isComplex()) { | 
 |         SkASSERT(fRunHead->fRefCnt >= 1); | 
 |         if (sk_atomic_dec(&fRunHead->fRefCnt) == 1) { | 
 |             //SkASSERT(gRgnAllocCounter > 0); | 
 |             //SkDEBUGCODE(sk_atomic_dec(&gRgnAllocCounter)); | 
 |             //SkDEBUGF(("************** gRgnAllocCounter::free %d\n", gRgnAllocCounter)); | 
 |             sk_free(fRunHead); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void SkRegion::allocateRuns(int count, int ySpanCount, int intervalCount) { | 
 |     fRunHead = RunHead::Alloc(count, ySpanCount, intervalCount); | 
 | } | 
 |  | 
 | void SkRegion::allocateRuns(int count) { | 
 |     fRunHead = RunHead::Alloc(count); | 
 | } | 
 |  | 
 | void SkRegion::allocateRuns(const RunHead& head) { | 
 |     fRunHead = RunHead::Alloc(head.fRunCount, | 
 |                               head.getYSpanCount(), | 
 |                               head.getIntervalCount()); | 
 | } | 
 |  | 
 | SkRegion& SkRegion::operator=(const SkRegion& src) { | 
 |     (void)this->setRegion(src); | 
 |     return *this; | 
 | } | 
 |  | 
 | void SkRegion::swap(SkRegion& other) { | 
 |     SkTSwap<SkIRect>(fBounds, other.fBounds); | 
 |     SkTSwap<RunHead*>(fRunHead, other.fRunHead); | 
 | } | 
 |  | 
 | int SkRegion::computeRegionComplexity() const { | 
 |   if (this->isEmpty()) { | 
 |     return 0; | 
 |   } else if (this->isRect()) { | 
 |     return 1; | 
 |   } | 
 |   return fRunHead->getIntervalCount(); | 
 | } | 
 |  | 
 | bool SkRegion::setEmpty() { | 
 |     this->freeRuns(); | 
 |     fBounds.set(0, 0, 0, 0); | 
 |     fRunHead = SkRegion_gEmptyRunHeadPtr; | 
 |     return false; | 
 | } | 
 |  | 
 | bool SkRegion::setRect(int32_t left, int32_t top, | 
 |                        int32_t right, int32_t bottom) { | 
 |     if (left >= right || top >= bottom) { | 
 |         return this->setEmpty(); | 
 |     } | 
 |     this->freeRuns(); | 
 |     fBounds.set(left, top, right, bottom); | 
 |     fRunHead = SkRegion_gRectRunHeadPtr; | 
 |     return true; | 
 | } | 
 |  | 
 | bool SkRegion::setRect(const SkIRect& r) { | 
 |     return this->setRect(r.fLeft, r.fTop, r.fRight, r.fBottom); | 
 | } | 
 |  | 
 | bool SkRegion::setRegion(const SkRegion& src) { | 
 |     if (this != &src) { | 
 |         this->freeRuns(); | 
 |  | 
 |         fBounds = src.fBounds; | 
 |         fRunHead = src.fRunHead; | 
 |         if (this->isComplex()) { | 
 |             sk_atomic_inc(&fRunHead->fRefCnt); | 
 |         } | 
 |     } | 
 |     return fRunHead != SkRegion_gEmptyRunHeadPtr; | 
 | } | 
 |  | 
 | bool SkRegion::op(const SkIRect& rect, const SkRegion& rgn, Op op) { | 
 |     SkRegion tmp(rect); | 
 |  | 
 |     return this->op(tmp, rgn, op); | 
 | } | 
 |  | 
 | bool SkRegion::op(const SkRegion& rgn, const SkIRect& rect, Op op) { | 
 |     SkRegion tmp(rect); | 
 |  | 
 |     return this->op(rgn, tmp, op); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #ifdef SK_BUILD_FOR_ANDROID | 
 | #include <stdio.h> | 
 | char* SkRegion::toString() { | 
 |     Iterator iter(*this); | 
 |     int count = 0; | 
 |     while (!iter.done()) { | 
 |         count++; | 
 |         iter.next(); | 
 |     } | 
 |     // 4 ints, up to 10 digits each plus sign, 3 commas, '(', ')', SkRegion() and '\0' | 
 |     const int max = (count*((11*4)+5))+11+1; | 
 |     char* result = (char*)sk_malloc_throw(max); | 
 |     if (result == nullptr) { | 
 |         return nullptr; | 
 |     } | 
 |     count = sprintf(result, "SkRegion("); | 
 |     iter.reset(*this); | 
 |     while (!iter.done()) { | 
 |         const SkIRect& r = iter.rect(); | 
 |         count += sprintf(result+count, "(%d,%d,%d,%d)", r.fLeft, r.fTop, r.fRight, r.fBottom); | 
 |         iter.next(); | 
 |     } | 
 |     count += sprintf(result+count, ")"); | 
 |     return result; | 
 | } | 
 | #endif | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | int SkRegion::count_runtype_values(int* itop, int* ibot) const { | 
 |     int maxT; | 
 |  | 
 |     if (this->isRect()) { | 
 |         maxT = 2; | 
 |     } else { | 
 |         SkASSERT(this->isComplex()); | 
 |         maxT = fRunHead->getIntervalCount() * 2; | 
 |     } | 
 |     *itop = fBounds.fTop; | 
 |     *ibot = fBounds.fBottom; | 
 |     return maxT; | 
 | } | 
 |  | 
 | static bool isRunCountEmpty(int count) { | 
 |     return count <= 2; | 
 | } | 
 |  | 
 | bool SkRegion::setRuns(RunType runs[], int count) { | 
 |     SkDEBUGCODE(this->validate();) | 
 |     SkASSERT(count > 0); | 
 |  | 
 |     if (isRunCountEmpty(count)) { | 
 |     //  SkDEBUGF(("setRuns: empty\n")); | 
 |         assert_sentinel(runs[count-1], true); | 
 |         return this->setEmpty(); | 
 |     } | 
 |  | 
 |     // trim off any empty spans from the top and bottom | 
 |     // weird I should need this, perhaps op() could be smarter... | 
 |     if (count > kRectRegionRuns) { | 
 |         RunType* stop = runs + count; | 
 |         assert_sentinel(runs[0], false);    // top | 
 |         assert_sentinel(runs[1], false);    // bottom | 
 |         // runs[2] is uncomputed intervalCount | 
 |  | 
 |         if (runs[3] == SkRegion::kRunTypeSentinel) {  // should be first left... | 
 |             runs += 3;  // skip empty initial span | 
 |             runs[0] = runs[-2]; // set new top to prev bottom | 
 |             assert_sentinel(runs[1], false);    // bot: a sentinal would mean two in a row | 
 |             assert_sentinel(runs[2], false);    // intervalcount | 
 |             assert_sentinel(runs[3], false);    // left | 
 |             assert_sentinel(runs[4], false);    // right | 
 |         } | 
 |  | 
 |         assert_sentinel(stop[-1], true); | 
 |         assert_sentinel(stop[-2], true); | 
 |  | 
 |         // now check for a trailing empty span | 
 |         if (stop[-5] == SkRegion::kRunTypeSentinel) { // eek, stop[-4] was a bottom with no x-runs | 
 |             stop[-4] = SkRegion::kRunTypeSentinel;    // kill empty last span | 
 |             stop -= 3; | 
 |             assert_sentinel(stop[-1], true);    // last y-sentinel | 
 |             assert_sentinel(stop[-2], true);    // last x-sentinel | 
 |             assert_sentinel(stop[-3], false);   // last right | 
 |             assert_sentinel(stop[-4], false);   // last left | 
 |             assert_sentinel(stop[-5], false);   // last interval-count | 
 |             assert_sentinel(stop[-6], false);   // last bottom | 
 |         } | 
 |         count = (int)(stop - runs); | 
 |     } | 
 |  | 
 |     SkASSERT(count >= kRectRegionRuns); | 
 |  | 
 |     if (SkRegion::RunsAreARect(runs, count, &fBounds)) { | 
 |         return this->setRect(fBounds); | 
 |     } | 
 |  | 
 |     //  if we get here, we need to become a complex region | 
 |  | 
 |     if (!this->isComplex() || fRunHead->fRunCount != count) { | 
 |         this->freeRuns(); | 
 |         this->allocateRuns(count); | 
 |     } | 
 |  | 
 |     // must call this before we can write directly into runs() | 
 |     // in case we are sharing the buffer with another region (copy on write) | 
 |     fRunHead = fRunHead->ensureWritable(); | 
 |     memcpy(fRunHead->writable_runs(), runs, count * sizeof(RunType)); | 
 |     fRunHead->computeRunBounds(&fBounds); | 
 |  | 
 |     SkDEBUGCODE(this->validate();) | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | void SkRegion::BuildRectRuns(const SkIRect& bounds, | 
 |                              RunType runs[kRectRegionRuns]) { | 
 |     runs[0] = bounds.fTop; | 
 |     runs[1] = bounds.fBottom; | 
 |     runs[2] = 1;    // 1 interval for this scanline | 
 |     runs[3] = bounds.fLeft; | 
 |     runs[4] = bounds.fRight; | 
 |     runs[5] = kRunTypeSentinel; | 
 |     runs[6] = kRunTypeSentinel; | 
 | } | 
 |  | 
 | bool SkRegion::contains(int32_t x, int32_t y) const { | 
 |     SkDEBUGCODE(this->validate();) | 
 |  | 
 |     if (!fBounds.contains(x, y)) { | 
 |         return false; | 
 |     } | 
 |     if (this->isRect()) { | 
 |         return true; | 
 |     } | 
 |     SkASSERT(this->isComplex()); | 
 |  | 
 |     const RunType* runs = fRunHead->findScanline(y); | 
 |  | 
 |     // Skip the Bottom and IntervalCount | 
 |     runs += 2; | 
 |  | 
 |     // Just walk this scanline, checking each interval. The X-sentinel will | 
 |     // appear as a left-inteval (runs[0]) and should abort the search. | 
 |     // | 
 |     // We could do a bsearch, using interval-count (runs[1]), but need to time | 
 |     // when that would be worthwhile. | 
 |     // | 
 |     for (;;) { | 
 |         if (x < runs[0]) { | 
 |             break; | 
 |         } | 
 |         if (x < runs[1]) { | 
 |             return true; | 
 |         } | 
 |         runs += 2; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | static SkRegion::RunType scanline_bottom(const SkRegion::RunType runs[]) { | 
 |     return runs[0]; | 
 | } | 
 |  | 
 | static const SkRegion::RunType* scanline_next(const SkRegion::RunType runs[]) { | 
 |     // skip [B N [L R]... S] | 
 |     return runs + 2 + runs[1] * 2 + 1; | 
 | } | 
 |  | 
 | static bool scanline_contains(const SkRegion::RunType runs[], | 
 |                               SkRegion::RunType L, SkRegion::RunType R) { | 
 |     runs += 2;  // skip Bottom and IntervalCount | 
 |     for (;;) { | 
 |         if (L < runs[0]) { | 
 |             break; | 
 |         } | 
 |         if (R <= runs[1]) { | 
 |             return true; | 
 |         } | 
 |         runs += 2; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | bool SkRegion::contains(const SkIRect& r) const { | 
 |     SkDEBUGCODE(this->validate();) | 
 |  | 
 |     if (!fBounds.contains(r)) { | 
 |         return false; | 
 |     } | 
 |     if (this->isRect()) { | 
 |         return true; | 
 |     } | 
 |     SkASSERT(this->isComplex()); | 
 |  | 
 |     const RunType* scanline = fRunHead->findScanline(r.fTop); | 
 |     for (;;) { | 
 |         if (!scanline_contains(scanline, r.fLeft, r.fRight)) { | 
 |             return false; | 
 |         } | 
 |         if (r.fBottom <= scanline_bottom(scanline)) { | 
 |             break; | 
 |         } | 
 |         scanline = scanline_next(scanline); | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool SkRegion::contains(const SkRegion& rgn) const { | 
 |     SkDEBUGCODE(this->validate();) | 
 |     SkDEBUGCODE(rgn.validate();) | 
 |  | 
 |     if (this->isEmpty() || rgn.isEmpty() || !fBounds.contains(rgn.fBounds)) { | 
 |         return false; | 
 |     } | 
 |     if (this->isRect()) { | 
 |         return true; | 
 |     } | 
 |     if (rgn.isRect()) { | 
 |         return this->contains(rgn.getBounds()); | 
 |     } | 
 |  | 
 |     /* | 
 |      *  A contains B is equivalent to | 
 |      *  B - A == 0 | 
 |      */ | 
 |     return !Oper(rgn, *this, kDifference_Op, nullptr); | 
 | } | 
 |  | 
 | const SkRegion::RunType* SkRegion::getRuns(RunType tmpStorage[], | 
 |                                            int* intervals) const { | 
 |     SkASSERT(tmpStorage && intervals); | 
 |     const RunType* runs = tmpStorage; | 
 |  | 
 |     if (this->isEmpty()) { | 
 |         tmpStorage[0] = kRunTypeSentinel; | 
 |         *intervals = 0; | 
 |     } else if (this->isRect()) { | 
 |         BuildRectRuns(fBounds, tmpStorage); | 
 |         *intervals = 1; | 
 |     } else { | 
 |         runs = fRunHead->readonly_runs(); | 
 |         *intervals = fRunHead->getIntervalCount(); | 
 |     } | 
 |     return runs; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static bool scanline_intersects(const SkRegion::RunType runs[], | 
 |                                 SkRegion::RunType L, SkRegion::RunType R) { | 
 |     runs += 2;  // skip Bottom and IntervalCount | 
 |     for (;;) { | 
 |         if (R <= runs[0]) { | 
 |             break; | 
 |         } | 
 |         if (L < runs[1]) { | 
 |             return true; | 
 |         } | 
 |         runs += 2; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | bool SkRegion::intersects(const SkIRect& r) const { | 
 |     SkDEBUGCODE(this->validate();) | 
 |  | 
 |     if (this->isEmpty() || r.isEmpty()) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkIRect sect; | 
 |     if (!sect.intersect(fBounds, r)) { | 
 |         return false; | 
 |     } | 
 |     if (this->isRect()) { | 
 |         return true; | 
 |     } | 
 |     SkASSERT(this->isComplex()); | 
 |  | 
 |     const RunType* scanline = fRunHead->findScanline(sect.fTop); | 
 |     for (;;) { | 
 |         if (scanline_intersects(scanline, sect.fLeft, sect.fRight)) { | 
 |             return true; | 
 |         } | 
 |         if (sect.fBottom <= scanline_bottom(scanline)) { | 
 |             break; | 
 |         } | 
 |         scanline = scanline_next(scanline); | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | bool SkRegion::intersects(const SkRegion& rgn) const { | 
 |     if (this->isEmpty() || rgn.isEmpty()) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (!SkIRect::Intersects(fBounds, rgn.fBounds)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     bool weAreARect = this->isRect(); | 
 |     bool theyAreARect = rgn.isRect(); | 
 |  | 
 |     if (weAreARect && theyAreARect) { | 
 |         return true; | 
 |     } | 
 |     if (weAreARect) { | 
 |         return rgn.intersects(this->getBounds()); | 
 |     } | 
 |     if (theyAreARect) { | 
 |         return this->intersects(rgn.getBounds()); | 
 |     } | 
 |  | 
 |     // both of us are complex | 
 |     return Oper(*this, rgn, kIntersect_Op, nullptr); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | bool SkRegion::operator==(const SkRegion& b) const { | 
 |     SkDEBUGCODE(validate();) | 
 |     SkDEBUGCODE(b.validate();) | 
 |  | 
 |     if (this == &b) { | 
 |         return true; | 
 |     } | 
 |     if (fBounds != b.fBounds) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     const SkRegion::RunHead* ah = fRunHead; | 
 |     const SkRegion::RunHead* bh = b.fRunHead; | 
 |  | 
 |     // this catches empties and rects being equal | 
 |     if (ah == bh) { | 
 |         return true; | 
 |     } | 
 |     // now we insist that both are complex (but different ptrs) | 
 |     if (!this->isComplex() || !b.isComplex()) { | 
 |         return false; | 
 |     } | 
 |     return  ah->fRunCount == bh->fRunCount && | 
 |             !memcmp(ah->readonly_runs(), bh->readonly_runs(), | 
 |                     ah->fRunCount * sizeof(SkRegion::RunType)); | 
 | } | 
 |  | 
 | void SkRegion::translate(int dx, int dy, SkRegion* dst) const { | 
 |     SkDEBUGCODE(this->validate();) | 
 |  | 
 |     if (nullptr == dst) { | 
 |         return; | 
 |     } | 
 |     if (this->isEmpty()) { | 
 |         dst->setEmpty(); | 
 |     } else if (this->isRect()) { | 
 |         dst->setRect(fBounds.fLeft + dx, fBounds.fTop + dy, | 
 |                      fBounds.fRight + dx, fBounds.fBottom + dy); | 
 |     } else { | 
 |         if (this == dst) { | 
 |             dst->fRunHead = dst->fRunHead->ensureWritable(); | 
 |         } else { | 
 |             SkRegion    tmp; | 
 |             tmp.allocateRuns(*fRunHead); | 
 |             tmp.fBounds = fBounds; | 
 |             dst->swap(tmp); | 
 |         } | 
 |  | 
 |         dst->fBounds.offset(dx, dy); | 
 |  | 
 |         const RunType*  sruns = fRunHead->readonly_runs(); | 
 |         RunType*        druns = dst->fRunHead->writable_runs(); | 
 |  | 
 |         *druns++ = (SkRegion::RunType)(*sruns++ + dy);    // top | 
 |         for (;;) { | 
 |             int bottom = *sruns++; | 
 |             if (bottom == kRunTypeSentinel) { | 
 |                 break; | 
 |             } | 
 |             *druns++ = (SkRegion::RunType)(bottom + dy);  // bottom; | 
 |             *druns++ = *sruns++;    // copy intervalCount; | 
 |             for (;;) { | 
 |                 int x = *sruns++; | 
 |                 if (x == kRunTypeSentinel) { | 
 |                     break; | 
 |                 } | 
 |                 *druns++ = (SkRegion::RunType)(x + dx); | 
 |                 *druns++ = (SkRegion::RunType)(*sruns++ + dx); | 
 |             } | 
 |             *druns++ = kRunTypeSentinel;    // x sentinel | 
 |         } | 
 |         *druns++ = kRunTypeSentinel;    // y sentinel | 
 |  | 
 |         SkASSERT(sruns - fRunHead->readonly_runs() == fRunHead->fRunCount); | 
 |         SkASSERT(druns - dst->fRunHead->readonly_runs() == dst->fRunHead->fRunCount); | 
 |     } | 
 |  | 
 |     SkDEBUGCODE(this->validate();) | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | bool SkRegion::setRects(const SkIRect rects[], int count) { | 
 |     if (0 == count) { | 
 |         this->setEmpty(); | 
 |     } else { | 
 |         this->setRect(rects[0]); | 
 |         for (int i = 1; i < count; i++) { | 
 |             this->op(rects[i], kUnion_Op); | 
 |         } | 
 |     } | 
 |     return !this->isEmpty(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #if defined _WIN32  // disable warning : local variable used without having been initialized | 
 | #pragma warning ( push ) | 
 | #pragma warning ( disable : 4701 ) | 
 | #endif | 
 |  | 
 | #ifdef SK_DEBUG | 
 | static void assert_valid_pair(int left, int rite) | 
 | { | 
 |     SkASSERT(left == SkRegion::kRunTypeSentinel || left < rite); | 
 | } | 
 | #else | 
 |     #define assert_valid_pair(left, rite) | 
 | #endif | 
 |  | 
 | struct spanRec { | 
 |     const SkRegion::RunType*    fA_runs; | 
 |     const SkRegion::RunType*    fB_runs; | 
 |     int                         fA_left, fA_rite, fB_left, fB_rite; | 
 |     int                         fLeft, fRite, fInside; | 
 |  | 
 |     void init(const SkRegion::RunType a_runs[], | 
 |               const SkRegion::RunType b_runs[]) { | 
 |         fA_left = *a_runs++; | 
 |         fA_rite = *a_runs++; | 
 |         fB_left = *b_runs++; | 
 |         fB_rite = *b_runs++; | 
 |  | 
 |         fA_runs = a_runs; | 
 |         fB_runs = b_runs; | 
 |     } | 
 |  | 
 |     bool done() const { | 
 |         SkASSERT(fA_left <= SkRegion::kRunTypeSentinel); | 
 |         SkASSERT(fB_left <= SkRegion::kRunTypeSentinel); | 
 |         return fA_left == SkRegion::kRunTypeSentinel && | 
 |                fB_left == SkRegion::kRunTypeSentinel; | 
 |     } | 
 |  | 
 |     void next() { | 
 |         assert_valid_pair(fA_left, fA_rite); | 
 |         assert_valid_pair(fB_left, fB_rite); | 
 |  | 
 |         int     inside, left, rite SK_INIT_TO_AVOID_WARNING; | 
 |         bool    a_flush = false; | 
 |         bool    b_flush = false; | 
 |  | 
 |         int a_left = fA_left; | 
 |         int a_rite = fA_rite; | 
 |         int b_left = fB_left; | 
 |         int b_rite = fB_rite; | 
 |  | 
 |         if (a_left < b_left) { | 
 |             inside = 1; | 
 |             left = a_left; | 
 |             if (a_rite <= b_left) {   // [...] <...> | 
 |                 rite = a_rite; | 
 |                 a_flush = true; | 
 |             } else { // [...<..]...> or [...<...>...] | 
 |                 rite = a_left = b_left; | 
 |             } | 
 |         } else if (b_left < a_left) { | 
 |             inside = 2; | 
 |             left = b_left; | 
 |             if (b_rite <= a_left) {   // [...] <...> | 
 |                 rite = b_rite; | 
 |                 b_flush = true; | 
 |             } else {    // [...<..]...> or [...<...>...] | 
 |                 rite = b_left = a_left; | 
 |             } | 
 |         } else {    // a_left == b_left | 
 |             inside = 3; | 
 |             left = a_left;  // or b_left | 
 |             if (a_rite <= b_rite) { | 
 |                 rite = b_left = a_rite; | 
 |                 a_flush = true; | 
 |             } | 
 |             if (b_rite <= a_rite) { | 
 |                 rite = a_left = b_rite; | 
 |                 b_flush = true; | 
 |             } | 
 |         } | 
 |  | 
 |         if (a_flush) { | 
 |             a_left = *fA_runs++; | 
 |             a_rite = *fA_runs++; | 
 |         } | 
 |         if (b_flush) { | 
 |             b_left = *fB_runs++; | 
 |             b_rite = *fB_runs++; | 
 |         } | 
 |  | 
 |         SkASSERT(left <= rite); | 
 |  | 
 |         // now update our state | 
 |         fA_left = a_left; | 
 |         fA_rite = a_rite; | 
 |         fB_left = b_left; | 
 |         fB_rite = b_rite; | 
 |  | 
 |         fLeft = left; | 
 |         fRite = rite; | 
 |         fInside = inside; | 
 |     } | 
 | }; | 
 |  | 
 | static SkRegion::RunType* operate_on_span(const SkRegion::RunType a_runs[], | 
 |                                           const SkRegion::RunType b_runs[], | 
 |                                           SkRegion::RunType dst[], | 
 |                                           int min, int max) { | 
 |     spanRec rec; | 
 |     bool    firstInterval = true; | 
 |  | 
 |     rec.init(a_runs, b_runs); | 
 |  | 
 |     while (!rec.done()) { | 
 |         rec.next(); | 
 |  | 
 |         int left = rec.fLeft; | 
 |         int rite = rec.fRite; | 
 |  | 
 |         // add left,rite to our dst buffer (checking for coincidence | 
 |         if ((unsigned)(rec.fInside - min) <= (unsigned)(max - min) && | 
 |                 left < rite) {    // skip if equal | 
 |             if (firstInterval || dst[-1] < left) { | 
 |                 *dst++ = (SkRegion::RunType)(left); | 
 |                 *dst++ = (SkRegion::RunType)(rite); | 
 |                 firstInterval = false; | 
 |             } else { | 
 |                 // update the right edge | 
 |                 dst[-1] = (SkRegion::RunType)(rite); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     *dst++ = SkRegion::kRunTypeSentinel; | 
 |     return dst; | 
 | } | 
 |  | 
 | #if defined _WIN32 | 
 | #pragma warning ( pop ) | 
 | #endif | 
 |  | 
 | static const struct { | 
 |     uint8_t fMin; | 
 |     uint8_t fMax; | 
 | } gOpMinMax[] = { | 
 |     { 1, 1 },   // Difference | 
 |     { 3, 3 },   // Intersection | 
 |     { 1, 3 },   // Union | 
 |     { 1, 2 }    // XOR | 
 | }; | 
 |  | 
 | class RgnOper { | 
 | public: | 
 |     RgnOper(int top, SkRegion::RunType dst[], SkRegion::Op op) { | 
 |         // need to ensure that the op enum lines up with our minmax array | 
 |         SkASSERT(SkRegion::kDifference_Op == 0); | 
 |         SkASSERT(SkRegion::kIntersect_Op == 1); | 
 |         SkASSERT(SkRegion::kUnion_Op == 2); | 
 |         SkASSERT(SkRegion::kXOR_Op == 3); | 
 |         SkASSERT((unsigned)op <= 3); | 
 |  | 
 |         fStartDst = dst; | 
 |         fPrevDst = dst + 1; | 
 |         fPrevLen = 0;       // will never match a length from operate_on_span | 
 |         fTop = (SkRegion::RunType)(top);    // just a first guess, we might update this | 
 |  | 
 |         fMin = gOpMinMax[op].fMin; | 
 |         fMax = gOpMinMax[op].fMax; | 
 |     } | 
 |  | 
 |     void addSpan(int bottom, const SkRegion::RunType a_runs[], | 
 |                  const SkRegion::RunType b_runs[]) { | 
 |         // skip X values and slots for the next Y+intervalCount | 
 |         SkRegion::RunType*  start = fPrevDst + fPrevLen + 2; | 
 |         // start points to beginning of dst interval | 
 |         SkRegion::RunType*  stop = operate_on_span(a_runs, b_runs, start, fMin, fMax); | 
 |         size_t              len = stop - start; | 
 |         SkASSERT(len >= 1 && (len & 1) == 1); | 
 |         SkASSERT(SkRegion::kRunTypeSentinel == stop[-1]); | 
 |  | 
 |         if (fPrevLen == len && | 
 |             (1 == len || !memcmp(fPrevDst, start, | 
 |                                  (len - 1) * sizeof(SkRegion::RunType)))) { | 
 |             // update Y value | 
 |             fPrevDst[-2] = (SkRegion::RunType)(bottom); | 
 |         } else {    // accept the new span | 
 |             if (len == 1 && fPrevLen == 0) { | 
 |                 fTop = (SkRegion::RunType)(bottom); // just update our bottom | 
 |             } else { | 
 |                 start[-2] = (SkRegion::RunType)(bottom); | 
 |                 start[-1] = SkToS32(len >> 1); | 
 |                 fPrevDst = start; | 
 |                 fPrevLen = len; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     int flush() { | 
 |         fStartDst[0] = fTop; | 
 |         fPrevDst[fPrevLen] = SkRegion::kRunTypeSentinel; | 
 |         return (int)(fPrevDst - fStartDst + fPrevLen + 1); | 
 |     } | 
 |  | 
 |     bool isEmpty() const { return 0 == fPrevLen; } | 
 |  | 
 |     uint8_t fMin, fMax; | 
 |  | 
 | private: | 
 |     SkRegion::RunType*  fStartDst; | 
 |     SkRegion::RunType*  fPrevDst; | 
 |     size_t              fPrevLen; | 
 |     SkRegion::RunType   fTop; | 
 | }; | 
 |  | 
 | // want a unique value to signal that we exited due to quickExit | 
 | #define QUICK_EXIT_TRUE_COUNT   (-1) | 
 |  | 
 | static int operate(const SkRegion::RunType a_runs[], | 
 |                    const SkRegion::RunType b_runs[], | 
 |                    SkRegion::RunType dst[], | 
 |                    SkRegion::Op op, | 
 |                    bool quickExit) { | 
 |     const SkRegion::RunType gEmptyScanline[] = { | 
 |         0,  // dummy bottom value | 
 |         0,  // zero intervals | 
 |         SkRegion::kRunTypeSentinel, | 
 |         // just need a 2nd value, since spanRec.init() reads 2 values, even | 
 |         // though if the first value is the sentinel, it ignores the 2nd value. | 
 |         // w/o the 2nd value here, we might read uninitialized memory. | 
 |         // This happens when we are using gSentinel, which is pointing at | 
 |         // our sentinel value. | 
 |         0 | 
 |     }; | 
 |     const SkRegion::RunType* const gSentinel = &gEmptyScanline[2]; | 
 |  | 
 |     int a_top = *a_runs++; | 
 |     int a_bot = *a_runs++; | 
 |     int b_top = *b_runs++; | 
 |     int b_bot = *b_runs++; | 
 |  | 
 |     a_runs += 1;    // skip the intervalCount; | 
 |     b_runs += 1;    // skip the intervalCount; | 
 |  | 
 |     // Now a_runs and b_runs to their intervals (or sentinel) | 
 |  | 
 |     assert_sentinel(a_top, false); | 
 |     assert_sentinel(a_bot, false); | 
 |     assert_sentinel(b_top, false); | 
 |     assert_sentinel(b_bot, false); | 
 |  | 
 |     RgnOper oper(SkMin32(a_top, b_top), dst, op); | 
 |  | 
 |     int prevBot = SkRegion::kRunTypeSentinel; // so we fail the first test | 
 |  | 
 |     while (a_bot < SkRegion::kRunTypeSentinel || | 
 |            b_bot < SkRegion::kRunTypeSentinel) { | 
 |         int                         top, bot SK_INIT_TO_AVOID_WARNING; | 
 |         const SkRegion::RunType*    run0 = gSentinel; | 
 |         const SkRegion::RunType*    run1 = gSentinel; | 
 |         bool                        a_flush = false; | 
 |         bool                        b_flush = false; | 
 |  | 
 |         if (a_top < b_top) { | 
 |             top = a_top; | 
 |             run0 = a_runs; | 
 |             if (a_bot <= b_top) {   // [...] <...> | 
 |                 bot = a_bot; | 
 |                 a_flush = true; | 
 |             } else {  // [...<..]...> or [...<...>...] | 
 |                 bot = a_top = b_top; | 
 |             } | 
 |         } else if (b_top < a_top) { | 
 |             top = b_top; | 
 |             run1 = b_runs; | 
 |             if (b_bot <= a_top) {   // [...] <...> | 
 |                 bot = b_bot; | 
 |                 b_flush = true; | 
 |             } else {    // [...<..]...> or [...<...>...] | 
 |                 bot = b_top = a_top; | 
 |             } | 
 |         } else {    // a_top == b_top | 
 |             top = a_top;    // or b_top | 
 |             run0 = a_runs; | 
 |             run1 = b_runs; | 
 |             if (a_bot <= b_bot) { | 
 |                 bot = b_top = a_bot; | 
 |                 a_flush = true; | 
 |             } | 
 |             if (b_bot <= a_bot) { | 
 |                 bot = a_top = b_bot; | 
 |                 b_flush = true; | 
 |             } | 
 |         } | 
 |  | 
 |         if (top > prevBot) { | 
 |             oper.addSpan(top, gSentinel, gSentinel); | 
 |         } | 
 |         oper.addSpan(bot, run0, run1); | 
 |  | 
 |         if (quickExit && !oper.isEmpty()) { | 
 |             return QUICK_EXIT_TRUE_COUNT; | 
 |         } | 
 |  | 
 |         if (a_flush) { | 
 |             a_runs = skip_intervals(a_runs); | 
 |             a_top = a_bot; | 
 |             a_bot = *a_runs++; | 
 |             a_runs += 1;    // skip uninitialized intervalCount | 
 |             if (a_bot == SkRegion::kRunTypeSentinel) { | 
 |                 a_top = a_bot; | 
 |             } | 
 |         } | 
 |         if (b_flush) { | 
 |             b_runs = skip_intervals(b_runs); | 
 |             b_top = b_bot; | 
 |             b_bot = *b_runs++; | 
 |             b_runs += 1;    // skip uninitialized intervalCount | 
 |             if (b_bot == SkRegion::kRunTypeSentinel) { | 
 |                 b_top = b_bot; | 
 |             } | 
 |         } | 
 |  | 
 |         prevBot = bot; | 
 |     } | 
 |     return oper.flush(); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /*  Given count RunTypes in a complex region, return the worst case number of | 
 |     logical intervals that represents (i.e. number of rects that would be | 
 |     returned from the iterator). | 
 |  | 
 |     We could just return count/2, since there must be at least 2 values per | 
 |     interval, but we can first trim off the const overhead of the initial TOP | 
 |     value, plus the final BOTTOM + 2 sentinels. | 
 |  */ | 
 | #if 0 // UNUSED | 
 | static int count_to_intervals(int count) { | 
 |     SkASSERT(count >= 6);   // a single rect is 6 values | 
 |     return (count - 4) >> 1; | 
 | } | 
 | #endif | 
 |  | 
 | /*  Given a number of intervals, what is the worst case representation of that | 
 |     many intervals? | 
 |  | 
 |     Worst case (from a storage perspective), is a vertical stack of single | 
 |     intervals:  TOP + N * (BOTTOM INTERVALCOUNT LEFT RIGHT SENTINEL) + SENTINEL | 
 |  */ | 
 | static int intervals_to_count(int intervals) { | 
 |     return 1 + intervals * 5 + 1; | 
 | } | 
 |  | 
 | /*  Given the intervalCounts of RunTypes in two regions, return the worst-case number | 
 |     of RunTypes need to store the result after a region-op. | 
 |  */ | 
 | static int compute_worst_case_count(int a_intervals, int b_intervals) { | 
 |     // Our heuristic worst case is ai * (bi + 1) + bi * (ai + 1) | 
 |     int intervals = 2 * a_intervals * b_intervals + a_intervals + b_intervals; | 
 |     // convert back to number of RunType values | 
 |     return intervals_to_count(intervals); | 
 | } | 
 |  | 
 | static bool setEmptyCheck(SkRegion* result) { | 
 |     return result ? result->setEmpty() : false; | 
 | } | 
 |  | 
 | static bool setRectCheck(SkRegion* result, const SkIRect& rect) { | 
 |     return result ? result->setRect(rect) : !rect.isEmpty(); | 
 | } | 
 |  | 
 | static bool setRegionCheck(SkRegion* result, const SkRegion& rgn) { | 
 |     return result ? result->setRegion(rgn) : !rgn.isEmpty(); | 
 | } | 
 |  | 
 | bool SkRegion::Oper(const SkRegion& rgnaOrig, const SkRegion& rgnbOrig, Op op, | 
 |                     SkRegion* result) { | 
 |     SkASSERT((unsigned)op < kOpCount); | 
 |  | 
 |     if (kReplace_Op == op) { | 
 |         return setRegionCheck(result, rgnbOrig); | 
 |     } | 
 |  | 
 |     // swith to using pointers, so we can swap them as needed | 
 |     const SkRegion* rgna = &rgnaOrig; | 
 |     const SkRegion* rgnb = &rgnbOrig; | 
 |     // after this point, do not refer to rgnaOrig or rgnbOrig!!! | 
 |  | 
 |     // collaps difference and reverse-difference into just difference | 
 |     if (kReverseDifference_Op == op) { | 
 |         SkTSwap<const SkRegion*>(rgna, rgnb); | 
 |         op = kDifference_Op; | 
 |     } | 
 |  | 
 |     SkIRect bounds; | 
 |     bool    a_empty = rgna->isEmpty(); | 
 |     bool    b_empty = rgnb->isEmpty(); | 
 |     bool    a_rect = rgna->isRect(); | 
 |     bool    b_rect = rgnb->isRect(); | 
 |  | 
 |     switch (op) { | 
 |     case kDifference_Op: | 
 |         if (a_empty) { | 
 |             return setEmptyCheck(result); | 
 |         } | 
 |         if (b_empty || !SkIRect::IntersectsNoEmptyCheck(rgna->fBounds, | 
 |                                                         rgnb->fBounds)) { | 
 |             return setRegionCheck(result, *rgna); | 
 |         } | 
 |         if (b_rect && rgnb->fBounds.containsNoEmptyCheck(rgna->fBounds)) { | 
 |             return setEmptyCheck(result); | 
 |         } | 
 |         break; | 
 |  | 
 |     case kIntersect_Op: | 
 |         if ((a_empty | b_empty) | 
 |                 || !bounds.intersect(rgna->fBounds, rgnb->fBounds)) { | 
 |             return setEmptyCheck(result); | 
 |         } | 
 |         if (a_rect & b_rect) { | 
 |             return setRectCheck(result, bounds); | 
 |         } | 
 |         if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { | 
 |             return setRegionCheck(result, *rgnb); | 
 |         } | 
 |         if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { | 
 |             return setRegionCheck(result, *rgna); | 
 |         } | 
 |         break; | 
 |  | 
 |     case kUnion_Op: | 
 |         if (a_empty) { | 
 |             return setRegionCheck(result, *rgnb); | 
 |         } | 
 |         if (b_empty) { | 
 |             return setRegionCheck(result, *rgna); | 
 |         } | 
 |         if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { | 
 |             return setRegionCheck(result, *rgna); | 
 |         } | 
 |         if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { | 
 |             return setRegionCheck(result, *rgnb); | 
 |         } | 
 |         break; | 
 |  | 
 |     case kXOR_Op: | 
 |         if (a_empty) { | 
 |             return setRegionCheck(result, *rgnb); | 
 |         } | 
 |         if (b_empty) { | 
 |             return setRegionCheck(result, *rgna); | 
 |         } | 
 |         break; | 
 |     default: | 
 |         SkDEBUGFAIL("unknown region op"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     RunType tmpA[kRectRegionRuns]; | 
 |     RunType tmpB[kRectRegionRuns]; | 
 |  | 
 |     int a_intervals, b_intervals; | 
 |     const RunType* a_runs = rgna->getRuns(tmpA, &a_intervals); | 
 |     const RunType* b_runs = rgnb->getRuns(tmpB, &b_intervals); | 
 |  | 
 |     int dstCount = compute_worst_case_count(a_intervals, b_intervals); | 
 |     SkAutoSTMalloc<256, RunType> array(dstCount); | 
 |  | 
 | #ifdef SK_DEBUG | 
 | //  Sometimes helpful to seed everything with a known value when debugging | 
 | //  sk_memset32((uint32_t*)array.get(), 0x7FFFFFFF, dstCount); | 
 | #endif | 
 |  | 
 |     int count = operate(a_runs, b_runs, array.get(), op, nullptr == result); | 
 |     SkASSERT(count <= dstCount); | 
 |  | 
 |     if (result) { | 
 |         SkASSERT(count >= 0); | 
 |         return result->setRuns(array.get(), count); | 
 |     } else { | 
 |         return (QUICK_EXIT_TRUE_COUNT == count) || !isRunCountEmpty(count); | 
 |     } | 
 | } | 
 |  | 
 | bool SkRegion::op(const SkRegion& rgna, const SkRegion& rgnb, Op op) { | 
 |     SkDEBUGCODE(this->validate();) | 
 |     return SkRegion::Oper(rgna, rgnb, op, this); | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #include "SkBuffer.h" | 
 |  | 
 | size_t SkRegion::writeToMemory(void* storage) const { | 
 |     if (nullptr == storage) { | 
 |         size_t size = sizeof(int32_t); // -1 (empty), 0 (rect), runCount | 
 |         if (!this->isEmpty()) { | 
 |             size += sizeof(fBounds); | 
 |             if (this->isComplex()) { | 
 |                 size += 2 * sizeof(int32_t);    // ySpanCount + intervalCount | 
 |                 size += fRunHead->fRunCount * sizeof(RunType); | 
 |             } | 
 |         } | 
 |         return size; | 
 |     } | 
 |  | 
 |     SkWBuffer   buffer(storage); | 
 |  | 
 |     if (this->isEmpty()) { | 
 |         buffer.write32(-1); | 
 |     } else { | 
 |         bool isRect = this->isRect(); | 
 |  | 
 |         buffer.write32(isRect ? 0 : fRunHead->fRunCount); | 
 |         buffer.write(&fBounds, sizeof(fBounds)); | 
 |  | 
 |         if (!isRect) { | 
 |             buffer.write32(fRunHead->getYSpanCount()); | 
 |             buffer.write32(fRunHead->getIntervalCount()); | 
 |             buffer.write(fRunHead->readonly_runs(), | 
 |                          fRunHead->fRunCount * sizeof(RunType)); | 
 |         } | 
 |     } | 
 |     return buffer.pos(); | 
 | } | 
 |  | 
 | size_t SkRegion::readFromMemory(const void* storage, size_t length) { | 
 |     SkRBufferWithSizeCheck  buffer(storage, length); | 
 |     SkRegion                tmp; | 
 |     int32_t                 count; | 
 |  | 
 |     if (buffer.readS32(&count) && (count >= 0) && buffer.read(&tmp.fBounds, sizeof(tmp.fBounds))) { | 
 |         if (count == 0) { | 
 |             tmp.fRunHead = SkRegion_gRectRunHeadPtr; | 
 |         } else { | 
 |             int32_t ySpanCount, intervalCount; | 
 |             if (buffer.readS32(&ySpanCount) && buffer.readS32(&intervalCount)) { | 
 |                 tmp.allocateRuns(count, ySpanCount, intervalCount); | 
 |                 buffer.read(tmp.fRunHead->writable_runs(), count * sizeof(RunType)); | 
 |             } | 
 |         } | 
 |     } | 
 |     size_t sizeRead = 0; | 
 |     if (buffer.isValid()) { | 
 |         this->swap(tmp); | 
 |         sizeRead = buffer.pos(); | 
 |     } | 
 |     return sizeRead; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | const SkRegion& SkRegion::GetEmptyRegion() { | 
 |     static SkRegion gEmpty; | 
 |     return gEmpty; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #ifdef SK_DEBUG | 
 |  | 
 | // Starts with first X-interval, and returns a ptr to the X-sentinel | 
 | static const SkRegion::RunType* skip_intervals_slow(const SkRegion::RunType runs[]) { | 
 |     // want to track that our intevals are all disjoint, such that | 
 |     // prev-right < next-left. We rely on this optimization in places such as | 
 |     // contains(). | 
 |     // | 
 |     SkRegion::RunType prevR = -SkRegion::kRunTypeSentinel; | 
 |  | 
 |     while (runs[0] < SkRegion::kRunTypeSentinel) { | 
 |         SkASSERT(prevR < runs[0]); | 
 |         SkASSERT(runs[0] < runs[1]); | 
 |         SkASSERT(runs[1] < SkRegion::kRunTypeSentinel); | 
 |         prevR = runs[1]; | 
 |         runs += 2; | 
 |     } | 
 |     return runs; | 
 | } | 
 |  | 
 | static void compute_bounds(const SkRegion::RunType runs[], | 
 |                            SkIRect* bounds, int* ySpanCountPtr, | 
 |                            int* intervalCountPtr) { | 
 |     assert_sentinel(runs[0], false);    // top | 
 |  | 
 |     int left = SK_MaxS32; | 
 |     int rite = SK_MinS32; | 
 |     int bot; | 
 |     int ySpanCount = 0; | 
 |     int intervalCount = 0; | 
 |  | 
 |     bounds->fTop = *runs++; | 
 |     do { | 
 |         bot = *runs++; | 
 |         SkASSERT(SkRegion::kRunTypeSentinel > bot); | 
 |  | 
 |         ySpanCount += 1; | 
 |  | 
 |         runs += 1;  // skip intervalCount for now | 
 |         if (*runs < SkRegion::kRunTypeSentinel) { | 
 |             if (left > *runs) { | 
 |                 left = *runs; | 
 |             } | 
 |  | 
 |             const SkRegion::RunType* prev = runs; | 
 |             runs = skip_intervals_slow(runs); | 
 |             int intervals = SkToInt((runs - prev) >> 1); | 
 |             SkASSERT(prev[-1] == intervals); | 
 |             intervalCount += intervals; | 
 |  | 
 |             if (rite < runs[-1]) { | 
 |                 rite = runs[-1]; | 
 |             } | 
 |         } else { | 
 |             SkASSERT(0 == runs[-1]);    // no intervals | 
 |         } | 
 |         SkASSERT(SkRegion::kRunTypeSentinel == *runs); | 
 |         runs += 1; | 
 |     } while (SkRegion::kRunTypeSentinel != *runs); | 
 |  | 
 |     bounds->fLeft = left; | 
 |     bounds->fRight = rite; | 
 |     bounds->fBottom = bot; | 
 |     *ySpanCountPtr = ySpanCount; | 
 |     *intervalCountPtr = intervalCount; | 
 | } | 
 |  | 
 | void SkRegion::validate() const { | 
 |     if (this->isEmpty()) { | 
 |         // check for explicit empty (the zero rect), so we can compare rects to know when | 
 |         // two regions are equal (i.e. emptyRectA == emptyRectB) | 
 |         // this is stricter than just asserting fBounds.isEmpty() | 
 |         SkASSERT(fBounds.fLeft == 0 && fBounds.fTop == 0 && fBounds.fRight == 0 && fBounds.fBottom == 0); | 
 |     } else { | 
 |         SkASSERT(!fBounds.isEmpty()); | 
 |         if (!this->isRect()) { | 
 |             SkASSERT(fRunHead->fRefCnt >= 1); | 
 |             SkASSERT(fRunHead->fRunCount > kRectRegionRuns); | 
 |  | 
 |             const RunType* run = fRunHead->readonly_runs(); | 
 |  | 
 |             // check that our bounds match our runs | 
 |             { | 
 |                 SkIRect bounds; | 
 |                 int ySpanCount, intervalCount; | 
 |                 compute_bounds(run, &bounds, &ySpanCount, &intervalCount); | 
 |  | 
 |                 SkASSERT(bounds == fBounds); | 
 |                 SkASSERT(ySpanCount > 0); | 
 |                 SkASSERT(fRunHead->getYSpanCount() == ySpanCount); | 
 |            //     SkASSERT(intervalCount > 1); | 
 |                 SkASSERT(fRunHead->getIntervalCount() == intervalCount); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void SkRegion::dump() const { | 
 |     if (this->isEmpty()) { | 
 |         SkDebugf("  rgn: empty\n"); | 
 |     } else { | 
 |         SkDebugf("  rgn: [%d %d %d %d]", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); | 
 |         if (this->isComplex()) { | 
 |             const RunType* runs = fRunHead->readonly_runs(); | 
 |             for (int i = 0; i < fRunHead->fRunCount; i++) | 
 |                 SkDebugf(" %d", runs[i]); | 
 |         } | 
 |         SkDebugf("\n"); | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | SkRegion::Iterator::Iterator(const SkRegion& rgn) { | 
 |     this->reset(rgn); | 
 | } | 
 |  | 
 | bool SkRegion::Iterator::rewind() { | 
 |     if (fRgn) { | 
 |         this->reset(*fRgn); | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | void SkRegion::Iterator::reset(const SkRegion& rgn) { | 
 |     fRgn = &rgn; | 
 |     if (rgn.isEmpty()) { | 
 |         fDone = true; | 
 |     } else { | 
 |         fDone = false; | 
 |         if (rgn.isRect()) { | 
 |             fRect = rgn.fBounds; | 
 |             fRuns = nullptr; | 
 |         } else { | 
 |             fRuns = rgn.fRunHead->readonly_runs(); | 
 |             fRect.set(fRuns[3], fRuns[0], fRuns[4], fRuns[1]); | 
 |             fRuns += 5; | 
 |             // Now fRuns points to the 2nd interval (or x-sentinel) | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void SkRegion::Iterator::next() { | 
 |     if (fDone) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (fRuns == nullptr) {   // rect case | 
 |         fDone = true; | 
 |         return; | 
 |     } | 
 |  | 
 |     const RunType* runs = fRuns; | 
 |  | 
 |     if (runs[0] < kRunTypeSentinel) { // valid X value | 
 |         fRect.fLeft = runs[0]; | 
 |         fRect.fRight = runs[1]; | 
 |         runs += 2; | 
 |     } else {    // we're at the end of a line | 
 |         runs += 1; | 
 |         if (runs[0] < kRunTypeSentinel) { // valid Y value | 
 |             int intervals = runs[1]; | 
 |             if (0 == intervals) {    // empty line | 
 |                 fRect.fTop = runs[0]; | 
 |                 runs += 3; | 
 |             } else { | 
 |                 fRect.fTop = fRect.fBottom; | 
 |             } | 
 |  | 
 |             fRect.fBottom = runs[0]; | 
 |             assert_sentinel(runs[2], false); | 
 |             assert_sentinel(runs[3], false); | 
 |             fRect.fLeft = runs[2]; | 
 |             fRect.fRight = runs[3]; | 
 |             runs += 4; | 
 |         } else {    // end of rgn | 
 |             fDone = true; | 
 |         } | 
 |     } | 
 |     fRuns = runs; | 
 | } | 
 |  | 
 | SkRegion::Cliperator::Cliperator(const SkRegion& rgn, const SkIRect& clip) | 
 |         : fIter(rgn), fClip(clip), fDone(true) { | 
 |     const SkIRect& r = fIter.rect(); | 
 |  | 
 |     while (!fIter.done()) { | 
 |         if (r.fTop >= clip.fBottom) { | 
 |             break; | 
 |         } | 
 |         if (fRect.intersect(clip, r)) { | 
 |             fDone = false; | 
 |             break; | 
 |         } | 
 |         fIter.next(); | 
 |     } | 
 | } | 
 |  | 
 | void SkRegion::Cliperator::next() { | 
 |     if (fDone) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const SkIRect& r = fIter.rect(); | 
 |  | 
 |     fDone = true; | 
 |     fIter.next(); | 
 |     while (!fIter.done()) { | 
 |         if (r.fTop >= fClip.fBottom) { | 
 |             break; | 
 |         } | 
 |         if (fRect.intersect(fClip, r)) { | 
 |             fDone = false; | 
 |             break; | 
 |         } | 
 |         fIter.next(); | 
 |     } | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | SkRegion::Spanerator::Spanerator(const SkRegion& rgn, int y, int left, | 
 |                                  int right) { | 
 |     SkDEBUGCODE(rgn.validate();) | 
 |  | 
 |     const SkIRect& r = rgn.getBounds(); | 
 |  | 
 |     fDone = true; | 
 |     if (!rgn.isEmpty() && y >= r.fTop && y < r.fBottom && | 
 |             right > r.fLeft && left < r.fRight) { | 
 |         if (rgn.isRect()) { | 
 |             if (left < r.fLeft) { | 
 |                 left = r.fLeft; | 
 |             } | 
 |             if (right > r.fRight) { | 
 |                 right = r.fRight; | 
 |             } | 
 |             fLeft = left; | 
 |             fRight = right; | 
 |             fRuns = nullptr;    // means we're a rect, not a rgn | 
 |             fDone = false; | 
 |         } else { | 
 |             const SkRegion::RunType* runs = rgn.fRunHead->findScanline(y); | 
 |             runs += 2;  // skip Bottom and IntervalCount | 
 |             for (;;) { | 
 |                 // runs[0..1] is to the right of the span, so we're done | 
 |                 if (runs[0] >= right) { | 
 |                     break; | 
 |                 } | 
 |                 // runs[0..1] is to the left of the span, so continue | 
 |                 if (runs[1] <= left) { | 
 |                     runs += 2; | 
 |                     continue; | 
 |                 } | 
 |                 // runs[0..1] intersects the span | 
 |                 fRuns = runs; | 
 |                 fLeft = left; | 
 |                 fRight = right; | 
 |                 fDone = false; | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | bool SkRegion::Spanerator::next(int* left, int* right) { | 
 |     if (fDone) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (fRuns == nullptr) {   // we're a rect | 
 |         fDone = true;   // ok, now we're done | 
 |         if (left) { | 
 |             *left = fLeft; | 
 |         } | 
 |         if (right) { | 
 |             *right = fRight; | 
 |         } | 
 |         return true;    // this interval is legal | 
 |     } | 
 |  | 
 |     const SkRegion::RunType* runs = fRuns; | 
 |  | 
 |     if (runs[0] >= fRight) { | 
 |         fDone = true; | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkASSERT(runs[1] > fLeft); | 
 |  | 
 |     if (left) { | 
 |         *left = SkMax32(fLeft, runs[0]); | 
 |     } | 
 |     if (right) { | 
 |         *right = SkMin32(fRight, runs[1]); | 
 |     } | 
 |     fRuns = runs + 2; | 
 |     return true; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #ifdef SK_DEBUG | 
 |  | 
 | bool SkRegion::debugSetRuns(const RunType runs[], int count) { | 
 |     // we need to make a copy, since the real method may modify the array, and | 
 |     // so it cannot be const. | 
 |  | 
 |     SkAutoTArray<RunType> storage(count); | 
 |     memcpy(storage.get(), runs, count * sizeof(RunType)); | 
 |     return this->setRuns(storage.get(), count); | 
 | } | 
 |  | 
 | #endif |