blob: 8fdd9621853402278b0a349768250899c7c29b91 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkColorSpace.h"
#include "SkCommandLineFlags.h"
#include "SkForceLinking.h"
#include "SkImageEncoder.h"
#include "SkMatrix44.h"
#include "SkOSFile.h"
__SK_FORCE_IMAGE_DECODER_LINKING;
DEFINE_string2(input, i, "input.png", "A path to the input image.");
DEFINE_string2(output, o, "output.png", "A path to the output image.");
/**
* Loads the triangular gamut as a set of three points.
*/
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
// rx = rX / (rX + rY + rZ)
// ry = rX / (rX + rY + rZ)
// gx, gy, bx, and gy are calulcated similarly.
float rSum = xyz.get(0, 0) + xyz.get(0, 1) + xyz.get(0, 2);
float gSum = xyz.get(1, 0) + xyz.get(1, 1) + xyz.get(1, 2);
float bSum = xyz.get(2, 0) + xyz.get(2, 1) + xyz.get(2, 2);
rgb[0].fX = xyz.get(0, 0) / rSum;
rgb[0].fY = xyz.get(0, 1) / rSum;
rgb[1].fX = xyz.get(1, 0) / gSum;
rgb[1].fY = xyz.get(1, 1) / gSum;
rgb[2].fX = xyz.get(2, 0) / bSum;
rgb[2].fY = xyz.get(2, 1) / bSum;
}
/**
* Calculates the area of the triangular gamut.
*/
float calculate_area(SkPoint abc[]) {
SkPoint a = abc[0];
SkPoint b = abc[1];
SkPoint c = abc[2];
return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
}
int main(int argc, char** argv) {
SkCommandLineFlags::SetUsage(
"Usage: visualize_color_gamut --input <path to input image>"
"--output <path to output image>\n"
"Description: Writes a visualization of the color gamut to the output image\n");
SkCommandLineFlags::Parse(argc, argv);
const char* input = FLAGS_input[0];
const char* output = FLAGS_output[0];
if (!input || !output) {
SkCommandLineFlags::PrintUsage();
return -1;
}
SkAutoTUnref<SkData> data(SkData::NewFromFileName(input));
if (!data) {
SkDebugf("Cannot find input image.\n");
return -1;
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(data));
if (!codec) {
SkDebugf("Invalid input image.\n");
return -1;
}
// Load a graph of the CIE XYZ color gamut.
SkBitmap bitmap;
if (!GetResourceAsBitmap("gamut.png", &bitmap)) {
SkDebugf("Program failure.\n");
return -1;
}
SkCanvas canvas(bitmap);
sk_sp<SkColorSpace> colorSpace = sk_ref_sp(codec->getColorSpace());
if (!colorSpace) {
SkDebugf("Image had no embedded color space information. Defaulting to sRGB.\n");
colorSpace = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named);
}
// Calculate the points in the gamut from the XYZ values.
SkMatrix44 xyz = colorSpace->xyz();
SkPoint rgb[4];
load_gamut(rgb, xyz);
// Report the XYZ values.
SkDebugf(" X Y Z\n");
SkDebugf("Red %.2f %.2f %.2f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
SkDebugf("Green %.2f %.2f %.2f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
SkDebugf("Blue %.2f %.2f %.2f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
// Report the area of the gamut.
SkDebugf("Area of Gamut: %g\n", calculate_area(rgb));
// Now transform the points so they can be drawn on our canvas. We use 1000 pixels
// to represent the space from 0 to 1. Note that the graph is at an offset of (50, 50).
// Also note that y increases as we move down the canvas.
rgb[0].fX = 50 + 1000*rgb[0].fX;
rgb[0].fY = 50 + 1000*(1 - rgb[0].fY);
rgb[1].fX = 50 + 1000*rgb[1].fX;
rgb[1].fY = 50 + 1000*(1 - rgb[1].fY);
rgb[2].fX = 50 + 1000*rgb[2].fX;
rgb[2].fY = 50 + 1000*(1 - rgb[2].fY);
// Repeat the first point to connect the polygon.
rgb[3] = rgb[0];
SkPaint paint;
canvas.drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
// Finally, encode the result to out.png.
SkAutoTUnref<SkData> out(SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100));
if (!out) {
SkDebugf("Failed to encode output.\n");
return -1;
}
SkFILEWStream stream(output);
bool result = stream.write(out->data(), out->size());
if (!result) {
SkDebugf("Failed to write output.\n");
return -1;
}
return 0;
}