blob: 66158daf300b3f4ccd6b74a1c5683d3da4ce2337 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrColorSpaceXform.h"
#include "SkColorSpace.h"
#include "SkColorSpacePriv.h"
#include "SkMatrix44.h"
#include "SkSpinlock.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
class GrColorSpaceXformCache {
public:
using NewValueFn = std::function<sk_sp<GrColorSpaceXform>(void)>;
GrColorSpaceXformCache() : fSequence(0) {}
sk_sp<GrColorSpaceXform> findOrAdd(uint64_t key, NewValueFn newValue) {
int oldest = 0;
for (int i = 0; i < kEntryCount; ++i) {
if (fEntries[i].fKey == key) {
fEntries[i].fLastUse = fSequence++;
return fEntries[i].fXform;
}
if (fEntries[i].fLastUse < fEntries[oldest].fLastUse) {
oldest = i;
}
}
fEntries[oldest].fKey = key;
fEntries[oldest].fXform = newValue();
fEntries[oldest].fLastUse = fSequence++;
return fEntries[oldest].fXform;
}
private:
enum { kEntryCount = 32 };
struct Entry {
// The default Entry is "valid". Any 64-bit key that is the same 32-bit value repeated
// implies no xform is necessary, so nullptr should be returned. This particular case should
// never happen, but by initializing all entries with this data, we can avoid special cases
// for the array not yet being full.
Entry() : fKey(0), fXform(nullptr), fLastUse(0) {}
uint64_t fKey;
sk_sp<GrColorSpaceXform> fXform;
uint64_t fLastUse;
};
Entry fEntries[kEntryCount];
uint64_t fSequence;
};
GrColorSpaceXform::GrColorSpaceXform(const SkColorSpaceTransferFn& srcTransferFn,
const SkMatrix44& gamutXform, uint32_t flags)
: fSrcTransferFn(srcTransferFn), fGamutXform(gamutXform), fFlags(flags) {}
static SkSpinlock gColorSpaceXformCacheSpinlock;
sk_sp<GrColorSpaceXform> GrColorSpaceXform::Make(const SkColorSpace* src,
GrPixelConfig srcConfig,
const SkColorSpace* dst) {
if (!dst) {
// No transformation is performed in legacy mode
return nullptr;
}
// Treat null sources as sRGB
if (!src) {
if (GrPixelConfigIsFloatingPoint(srcConfig)) {
src = SkColorSpace::MakeSRGBLinear().get();
} else {
src = SkColorSpace::MakeSRGB().get();
}
}
uint32_t flags = 0;
SkColorSpaceTransferFn srcTransferFn;
// kUnknown_GrPixelConfig is a sentinel that means we don't care about transfer functions,
// just the gamut xform.
if (kUnknown_GrPixelConfig != srcConfig) {
// Determine if src transfer function is needed, based on src config and color space
if (GrPixelConfigIsSRGB(srcConfig)) {
// Source texture is sRGB, will be converted to linear when we sample
if (src->gammaCloseToSRGB()) {
// Hardware linearize does the right thing
} else if (src->gammaIsLinear()) {
// Oops, need to undo the (extra) linearize
flags |= kApplyInverseSRGB_Flag;
} else if (src->isNumericalTransferFn(&srcTransferFn)) {
// Need to undo the (extra) linearize, then apply the correct transfer function
flags |= (kApplyInverseSRGB_Flag | kApplyTransferFn_Flag);
} else {
// We don't (yet) support more complex transfer functions
return nullptr;
}
} else {
// Source texture is some non-sRGB format, we consider it linearly encoded
if (src->gammaIsLinear()) {
// Linear sampling does the right thing
} else if (src->isNumericalTransferFn(&srcTransferFn)) {
// Need to manually apply some transfer function (including sRGB)
flags |= kApplyTransferFn_Flag;
} else {
// We don't (yet) support more complex transfer functions
return nullptr;
}
}
}
if (src == dst && (0 == flags)) {
// Quick equality check - no conversion (or transfer function) needed in this case
return nullptr;
}
const SkMatrix44* toXYZD50 = src->toXYZD50();
const SkMatrix44* fromXYZD50 = dst->fromXYZD50();
if (!toXYZD50 || !fromXYZD50) {
// Unsupported colour spaces -- cannot specify gamut as a matrix
return nullptr;
}
// Determine if a gamut xform is needed
uint32_t srcHash = src->toXYZD50Hash();
uint32_t dstHash = dst->toXYZD50Hash();
if (srcHash != dstHash) {
flags |= kApplyGamutXform_Flag;
} else {
SkASSERT(*toXYZD50 == *dst->toXYZD50() && "Hash collision");
}
if (0 == flags) {
// Identical gamut and no transfer function - no conversion needed in this case
return nullptr;
}
auto makeXform = [srcTransferFn, fromXYZD50, toXYZD50, flags]() {
SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor);
if (SkToBool(flags & kApplyGamutXform_Flag)) {
srcToDst.setConcat(*fromXYZD50, *toXYZD50);
} else {
srcToDst.setIdentity();
}
return sk_make_sp<GrColorSpaceXform>(srcTransferFn, srcToDst, flags);
};
// For now, we only cache pure gamut xforms (no transfer functions)
// TODO: Fold a hash of the transfer function into the cache key
if ((kApplyGamutXform_Flag == flags) && gColorSpaceXformCacheSpinlock.tryAcquire()) {
static GrColorSpaceXformCache* gCache;
if (nullptr == gCache) {
gCache = new GrColorSpaceXformCache();
}
uint64_t key = static_cast<uint64_t>(srcHash) << 32 | static_cast<uint64_t>(dstHash);
sk_sp<GrColorSpaceXform> xform = gCache->findOrAdd(key, makeXform);
gColorSpaceXformCacheSpinlock.release();
return xform;
} else {
// If our xform has non-gamut components, or we can't get the spin lock, just build it
return makeXform();
}
}
bool GrColorSpaceXform::Equals(const GrColorSpaceXform* a, const GrColorSpaceXform* b) {
if (a == b) {
return true;
}
if (!a || !b || a->fFlags != b->fFlags) {
return false;
}
if (SkToBool(a->fFlags & kApplyTransferFn_Flag) &&
0 != memcmp(&a->fSrcTransferFn, &b->fSrcTransferFn, sizeof(SkColorSpaceTransferFn))) {
return false;
}
if (SkToBool(a->fFlags & kApplyGamutXform_Flag) && a->fGamutXform != b->fGamutXform) {
return false;
}
return true;
}
GrColor4f GrColorSpaceXform::unclampedXform(const GrColor4f& srcColor) {
// This transform step should only happen with textures (not CPU xform of individual values)
SkASSERT(!SkToBool(fFlags & kApplyInverseSRGB_Flag));
GrColor4f result = srcColor;
if (fFlags & kApplyTransferFn_Flag) {
// Only transform RGB (not alpha)
for (int i = 0; i < 3; ++i) {
result.fRGBA[i] = fSrcTransferFn(result.fRGBA[i]);
}
}
if (fFlags & kApplyGamutXform_Flag) {
fGamutXform.mapScalars(result.fRGBA, result.fRGBA);
}
return result;
}
GrColor4f GrColorSpaceXform::clampedXform(const GrColor4f& srcColor) {
GrColor4f result = this->unclampedXform(srcColor);
for (int i = 0; i < 4; ++i) {
// We always operate on unpremul colors, so clamp to [0,1].
result.fRGBA[i] = SkTPin(result.fRGBA[i], 0.0f, 1.0f);
}
return result;
}
//////////////////////////////////////////////////////////////////////////////
class GrGLColorSpaceXformEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const GrColorSpaceXformEffect& csxe = args.fFp.cast<GrColorSpaceXformEffect>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fColorSpaceHelper.emitCode(uniformHandler, csxe.colorXform());
SkString childColor("src_color");
this->emitChild(0, &childColor, args);
SkString xformedColor;
fragBuilder->appendColorGamutXform(&xformedColor, childColor.c_str(), &fColorSpaceHelper);
fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, xformedColor.c_str(),
args.fInputColor);
}
private:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& processor) override {
const GrColorSpaceXformEffect& csxe = processor.cast<GrColorSpaceXformEffect>();
if (fColorSpaceHelper.isValid()) {
fColorSpaceHelper.setData(pdman, csxe.colorXform());
}
}
GrGLSLColorSpaceXformHelper fColorSpaceHelper;
typedef GrGLSLFragmentProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
GrColorSpaceXformEffect::GrColorSpaceXformEffect(std::unique_ptr<GrFragmentProcessor> child,
sk_sp<GrColorSpaceXform> colorXform)
: INHERITED(kGrColorSpaceXformEffect_ClassID, OptFlags(child.get()))
, fColorXform(std::move(colorXform)) {
this->registerChildProcessor(std::move(child));
}
std::unique_ptr<GrFragmentProcessor> GrColorSpaceXformEffect::clone() const {
return std::unique_ptr<GrFragmentProcessor>(
new GrColorSpaceXformEffect(this->childProcessor(0).clone(), fColorXform));
}
bool GrColorSpaceXformEffect::onIsEqual(const GrFragmentProcessor& s) const {
const GrColorSpaceXformEffect& other = s.cast<GrColorSpaceXformEffect>();
return GrColorSpaceXform::Equals(fColorXform.get(), other.fColorXform.get());
}
void GrColorSpaceXformEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
b->add32(GrColorSpaceXform::XformKey(fColorXform.get()));
}
GrGLSLFragmentProcessor* GrColorSpaceXformEffect::onCreateGLSLInstance() const {
return new GrGLColorSpaceXformEffect();
}
GrFragmentProcessor::OptimizationFlags GrColorSpaceXformEffect::OptFlags(
const GrFragmentProcessor* child) {
// TODO: Implement constant output for constant input
OptimizationFlags flags = kNone_OptimizationFlags;
if (child->compatibleWithCoverageAsAlpha()) {
flags |= kCompatibleWithCoverageAsAlpha_OptimizationFlag;
}
if (child->preservesOpaqueInput()) {
flags |= kPreservesOpaqueInput_OptimizationFlag;
}
return flags;
}
std::unique_ptr<GrFragmentProcessor> GrColorSpaceXformEffect::Make(
std::unique_ptr<GrFragmentProcessor> child,
const SkColorSpace* src,
GrPixelConfig srcConfig,
const SkColorSpace* dst) {
if (!child) {
return nullptr;
}
auto colorXform = GrColorSpaceXform::Make(src, srcConfig, dst);
if (colorXform) {
return std::unique_ptr<GrFragmentProcessor>(
new GrColorSpaceXformEffect(std::move(child), std::move(colorXform)));
} else {
return child;
}
}